当前位置:文档之家› 学生版圆锥曲线(2)

学生版圆锥曲线(2)

学生版圆锥曲线(2)
学生版圆锥曲线(2)

圆锥曲线(2)

一、基础训练

1.斜率为2的直线被双曲线82

2=-y x 截得线段的中点的轨迹方程

为 .

2.一动点到定点A (3,0)的距离和它到直线:12l x =的距离比是12

,则动点的轨迹方程

是 .

3.一动圆C 与圆2

2

2

2

12:(2)1:(2)4C x y C x y ++=-+=及圆都外切,则动圆圆心C 的轨迹方程是 .

4.已知抛物线2

:2(0)C y p x p =>的准线为l ,过(1,0

)M l 相交于点

A ,与C 的一个交点为

B .若A M M B =

,则p = .

5.在平面直角坐标系xO y 中,抛物线2

4y x =的焦点为F ,点P 在抛物线上,且位于x 轴

上方.若点P 到坐标原点O 的距离为则过F 、O 、P 三点的圆的方程是 . 6.已知21F F ,是椭圆

)0(12

22

2>>=+

b a b

y a

x 的左右焦点,过1F 的直线与椭圆相交于

B A ,两点.若2

0AF

AB ==?,则椭圆的离心率为__________.

二、典型例题

例1.如图所示,在Rt △ABC 中,∠CAB =90°,|AB |=2,|AC |=32

,一曲线E

过点C ,动点P 在曲线E 上运动,且保持|P A |+|PB |的值不变. (1)建立适当的平面直角坐标系,求曲线E 的方程;

(2)设点K 是曲线E 上的一个动点,求线段KA 的中点的轨迹方程.

例2.设动点P 在y 轴与直线l :8x =之间的区域(含边界)上运动,且到点(20)F ,

和直线l 的距离之和为10,设动点P 的轨迹为曲线C ,过点(24)S , 作两条直线SA SB 、分别交曲线C 于A B 、两点,斜率分别为12k k 、.(1)求曲线C 的方程;(2)若121

k k ?=,求证:

直线A B 恒过定点.

例3.已知椭圆O 的中心在原点,长轴在x 轴上,右顶点(2,0)A 到右焦点的距离与它到右准线的距离之比为

2

3. 不过A 点的动直线12

y x m =

+交椭圆O 于P ,Q 两点.

(1)求椭圆的标准方程;

(2)证明P ,Q 两点的横坐标的平方和为定值;

(3)过点 A,P ,Q 的动圆记为圆C ,动圆C 过不同于A 的定点,请求出该定点坐标.

例4.已知椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的右准线

l 的

方程为x 3

2.

(1)求椭圆C 的方程;

(2)过定点B (1,0)作直线l 与椭圆C 相交于P ,Q (异于A 1,A 2)

两点,设直线P A 1与直线QA 2相交于点M (2x 0,y 0). ①试用x 0,y 0表示点P ,Q 的坐标;

②求证:点M 始终在一条定直线上.

三、作业

1.到直线10x y -+=

的距离等于P 的轨迹方程是 .

2.点P (8,1)平分双曲线22

44x y -=的一条弦,则这条弦所在的直线方程是 . 3.已知F 1,F 2为椭圆x 212+y 2

3

=1的两个焦点,点P 在椭圆上,如果线段PF 1的中点在y 轴

上,且|PF 1|=t |PF 2|,则t 的值为 4.设双曲线

222

2

1(0)

x y a b a

b

-

=>>的半焦距为c ,直线l 过(,0),(0,)a b 两点,已知原点到直

线l 的距离为

c 4

3,则双曲线的离心率为_ .

5.已知12,F F 分别是双曲线2

222

1y x a b -=的左、右焦点,P 为双曲线左支上任意一点,若

2

21

P F P F 的最小值为8a ,则双曲线的离心率的取值范围为 . 6. 椭圆

222

2

1(0)x y a b a

b

+

=>>的内接三角形ABC ,它的一边BC 与长轴重合,A 在椭圆

上运动,则三角形ABC 的重心轨迹是 ..

7. 已知过定点A (0,-2)的动直线l 与抛物线2

y x =相交于两点M 、N ,求线段MN 的中点P 的轨迹方程.

8.已知抛物线的方程为()022>=p py x ,直线x y =

⑴求p 的值;

⑵抛物线上是否存在异于点A 、B 的点C ,使得经过A 处有相同的切线.若存在,求出点C

9.已知椭圆C :

12

22

2=+

b

y a

x (0>>b a )经过)1,1(与???

? ??23,26两点,过原点的直线l 与椭圆C 交于A 、B 两点,椭圆C 上一点M 满足

||||MB MA =.

(1)求椭圆C 的方程; (2)求证:2

2

2

|

|2|

|1|

|1OM OB OA +

+

为定值.

10.一束光线从点1(1,0)F -出发,经直线l :230x y -+=上一点P 反射后,恰好穿过点

2(1,0)F .

(1)求P 点的坐标;

(2)求以1F 、2F 为焦点且过点P 的椭圆C 的方程;

(3)设点Q 是椭圆C 上除长轴两端点外的任意一点,试问在x 轴上是否存在两定点

A 、

B ,使得直线Q A 、Q B 的斜率之积为定值?若存在,请求出定值,并求出所有满足

条件的定点A 、B 的坐标;若不存在,请说明理由.

基础_巩固练习_直线与圆锥曲线

【巩固练习】 一、选择题 1.双曲线22 134 x y -=上一点P 到左焦点的距离与到左准线的距离之比为( ) 2.椭圆22214x y m +=与双曲线22 212x y m -=有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 3.已知动点P (,)x y 24x =-,则动点P 的轨迹是( ) A. 椭圆 B. 双曲线 C. 抛物线 D. 直线 4.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜 率为|PF |=( ) A ..8 C .D .16 5. 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 6. 已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( ) A .16 B .18 C .21 D .26 二、填空题 7. 双曲线2224mx my -=的一条准线是1y =,则实数m 为________. 8.已知双曲线22 1124 x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________. 9.过点P (3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则这样的直线l 共有________条. 10.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为________. 11.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________. 三、解答题 12.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线有几条. 13.设双曲线C :2 221(0)x y a a -=>与直线:1l x y +=相交于两个不同的点A 、B ,求双曲线C 的离心率e 的取值范围: 14.设双曲线22 22x y a b -=1(0

圆锥曲线学生版 苏教版

圆锥曲线(学生版) 一、填空题 1、已知双曲线22 221(0,0)x y a b a b -=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值 为 ▲ 2、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2 = 4x 的准线交于A 、B 两点, AB =3,则C 的实轴长为 ▲ . 3、已知1F 、2F 分别是椭圆14 82 2=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则 121 || PF PF PF -的取值范围是 ▲ . 4、已知双曲线22221y x a b -=的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等5,则该双曲线的标准方程为 ▲ . 5、已知双曲线)0,0(12 22 2>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆 05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为 ▲ . 6、在平面直角坐标系xOy 中,双曲线22 22:1(0,0)x y E a b a b -=>>的左顶点为A ,过双曲 线E 的右焦点F 作与实轴垂直的直线交双曲线E 于B ,C 两点,若ABC ?为直角三角形,则双曲线E 的离心率为 . 7、设双曲线22 145 x y -=的左、 右焦点分别为1F ,2F ,点P 为双曲线上位于第一象限内一点,且12PF F 的面积为6,则点P 的坐标为 8、如图,过抛物线y 2 =2px (p>0)的焦点F 的直线L 交抛物线于点A 、B , 交其准线于点C ,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为 。 9、已知圆C 的圆心为抛物线x y 42 -=的焦点,又直线4360x y --=与圆C 相切,则圆C 的标准方程为 ▲ . 10、圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

直线与圆锥曲线的位置关系综合应用(附详细答案)【打印讲义】

二轮专题——直线与圆锥曲线的位置关系综合应用 【目标】掌握直线与圆锥曲线的位置关系,并会综合应用知识处理相关问题。 【重点】直线与圆锥曲线中的最值、值域、参数范围问题,定点、定值以及探究性问题。 【难点】圆锥曲线与三角、函数与方程、不等式、数列、平面向量等知识的的综合应用. 【知识与方法】 圆锥曲线中的定点、定值、最值问题是圆锥曲线的综合问题,解决此类问题需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的. 1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的。如果试题以客观题形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值或值域. 当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解. 【基础训练】 1、若实数x 、y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是( ) A 、5 B 、10 C 、9 D 、5+25 2、若关于x 的方程)2(12 -=-x k x 有两个不等实根,则实数k 的取值范围是( ) A 、)3 3,3 3(-B 、) 3,3(-C 、??? ? ?-0,33D 、??????????? ??--33, 2121,33 3、已知P 、Q 分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ 的面积为1,(0为原点),则线段PQ 中点M 的轨迹为( ) A 、双曲线x 2 -y 2 =1 B 、双曲线x 2 -y 2 =1的右支 C 、半圆x 2 +y 2 =1(x<0) D 、一段圆弧x 2 +y 2 =1(x> 2 2) 4、一个等边三角形有两个顶点在抛物线y 2=20x 上,第三个顶点在原点,则这个三角形的面积为 5、椭圆 19 16 2 2 =+ y x 在第一象限上一动点P ,若A(4,0),B(0,3),O(0,0),则APBO S 四边形 的最大 值为 题型一、最值及值域问题 例1.【广东省梅州市2013届高三总复习质检】已知F 1,F 2分别是椭圆C :222 2 1(0)y x a b a b + =>>的 上、下焦点,其中F 1也是抛物线C 1:2 4x y =的焦点, 点M 是C 1与C 2在第二象限的交点,且15||3 MF =。 (1)求椭圆C 1的方程; (2)已知A (b ,0),B (0,a ),直线y =kx (k >0)与AB 相交于点D ,与椭圆C 1相交于点E ,F 两点,求四边形AEBF 面积的最大值。 【跟踪训练1】 【广东省肇庆市2013届高三一模】已知椭圆2212 2 : 1(0)x y C a b a b + =>> 的离心率为3 e = ,直线 :2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程; (2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2P F 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程; (3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=?RS QR ,求||Q S 的取值范围.

2021年山东省高考数学重难点热点复习:圆锥曲线

2021年山东省高考数学重难点热点复习:圆锥曲线 1.已知椭圆C :x 2 a +y 2 b =1(a >b >0)过点(1,√72),且离心率e =√32. (1)求椭圆C 的方程; (2)已知斜率为12的直线l 与椭圆C 交于两个不同点A ,B ,点P 的坐标为(2,1),设直线P A 与PB 的倾斜角分别为α,β,证明:α+β=π. 【解答】解:(1)由题意得{ 1a 2+74b 2 =1,e =√1?b 2a 2=√32, 解得a 2=8,b 2=2, 所以椭圆的方程为C :x 28+y 22 =1. (2)证明:设直线l :y =?12x +m , 由{y =12x +m ,x 28+y 22=1,消去y 得x 2+2mx +2m 2﹣4=0,△=4m 2﹣8m 2+16>0, 解得﹣2<m <2. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=?2m ,x 1?x 2=2m 2?4, 由题意,易知P A 与PB 的斜率存在,所以α,β≠π2. 设直线P A 与PB 的斜率分别为k 1,k 2, 则tan α=k 1,tan β=k 2, 要证α+β=π,即证tan α=tan (π﹣B )=﹣tan β, 只需证k 1+k 2=0, ∵k 1=y 1?1x 1?2,k 1=y 2?1x 2?2 , 故k 1+k 2=y 1?1x 1?2+y 2?1 x 2?2=(y 1?1)(x 2?2)+(y 2?1)(x 1?2)(x 1?2)(x 2?2), 又y 1=12x 1+m ,y 2=12x 2+m , 所以(y 1?1)(x 2?2)+(y 2?1)(x 1?2)=(12x 1+m ?1)(x 2?2)+(12x 2+m ?1)(x 1?2)=x 1?x 2+(m ?2)(x 1+x 2)?4(m ?1)=2m 2?4+(m ?2)(?2m)?

圆锥曲线-直线与圆锥曲线的位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

直线与圆锥曲线的综合问题专题二

专题二 直线与圆锥曲线的综合问题 第一课时 一.知识体系小结 22 2222222222 222222 cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y x y a b a b x y y x x a b y a b a b a b y px p y px p 圆锥曲线的标准方程 椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时. 双曲线:焦点在轴上:,;焦点在轴上:,. 抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p ,开口向上时,开口向下时. 2222 2222 2222 222222 222222 221111 1(0)123142x y x y a b a b x y x y a b a b x y x y a b a b mx ny 常用曲线方程设法技巧 共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m 点在轴上,; 焦点在轴上,. 3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标; (2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式; (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 1212|||| |.AB AB x x y y (5)直线与圆锥曲线相交的弦长公式或 222 0002220 222 0002220 2000 1()1()2(0)(). b x x y P x y k a b a y b x x y P x y k a b a y p y px p P x y k y 圆锥曲线中点弦斜率公式 在椭圆中,以,为中点的弦所在直线的斜率; 在双曲线中,以,为中点的弦所在直线的斜率; 在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.

专题直线与圆、圆锥曲线知识点

专题 直线与圆、圆锥曲线 一、直线与方程 1、倾斜角与斜率:1 21 2tan x x y y k --= =α 2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式: 121121y y y y x x x x --=-- ⑷截距式:1x y a b += ⑸一般式:0=++C By Ax 3、对于直线: 222111:,:b x k y l b x k y l +=+=有:⑴???≠=?21 2 121//b b k k l l ; ⑵1l 和2l 相交12k k ?≠;⑶1l 和2l 重合???==?2 12 1b b k k ;⑷12121-=?⊥k k l l . 4、对于直线: 0:, 0:22221111=++=++C y B x A l C y B x A l 有:⑴???≠=?122 11 22121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠?; ⑶1l 和2l 重合?? ?==?1 2211 221C B C B B A B A ;⑷0212121=+?⊥B B A A l l . 5、两点间距离公式: ()()21221221y y x x P P -+-= 6、点到直线距离公式: 2 2 00B A C By Ax d +++= 7、两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2 2 21B A C C d +-= 二、圆与方程 1、圆的方程:⑴标准方程:()()2 2 2 r b y a x =-+-其中圆心为(,)a b ,半径为r . ⑵一般方程:02 2=++++F Ey Dx y x . 其中圆心为(,)22 D E - - ,半径为r = 2、直线与圆的位置关系 直线0=++C By Ax 与圆2 22)()(r b y a x =-+-的位置关系有三种:

圆锥曲线难点知识点

圆锥曲线知识储备汇总 1. 直线方程的形式 (1)直线方程的形式有五个:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 倾斜角与斜率tan ,[0,)k ααπ=∈ 点到直线的距离d = 两平行直线的距离d = (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- =或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ②212121//b b k k l l ≠=?且 2、圆锥曲线基本性质 椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶 点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 双曲线(以2222 1x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为 等轴双曲线,其方程可设为22,0x y k k -=≠;⑤离心率:c e a =,双曲线?1e >,等轴 双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心, 只有一个顶点(0,0);④准线:一条准线2 p x =-。

67基础 知识讲解 直线与圆锥曲线

直线与圆锥曲线 【学习目标】 1.知识与技能: 通过实例了解椭圆、抛物线、双曲线的共同特征;掌握直线与圆锥曲线的位置关系的判定方法,能够把研究直线与圆锥曲线的位置关系的问题转化为研究方程组的解的问题. 2.过程与方法: 通过对圆锥曲线共同特征及点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力. 3.情感态度与价值观: 通过对圆锥曲线共同特征及点、直线与圆锥曲线的位置关系的研究,培养学生解决问题和分析问题的能力. 【要点梳理】 要点一:圆锥曲线的共同特征 椭圆、抛物线、双曲线都是由不同的平面截一个圆锥面得到的,统称为圆锥曲线,从方程的形式看,三种曲线方程都是二次的,它们具有某些共同特征. 圆锥曲线的共同特征: 圆锥曲线上的点到一个定点F与它到一条定直线l的距离之比为定值e.当0<<1 e时,圆锥曲线是椭圆;当1 e时,圆锥曲线是抛物线.e是圆锥曲线的离心率,定点F是圆锥曲线 e 时,圆锥曲线是双曲线;当=1 的焦点,定直线l是圆锥曲线的准线.可以把它看作圆锥曲线的第二定义. 要点诠释: (1)注意点F不在直线l上,即点F在直线l外.

(2)椭圆、双曲线的准线方程分别如下表所示: 证明过程: (以焦点在x 轴的椭圆和双曲线为例) 已知点P 到定点F ()0c ,的距离与它到定直线2 a l x c =:的距离之比为常数()=,0c e a c a c a >≠且,求点 P 的轨迹. 解法步骤如下: (1)设点:设动点()P x y ,. (2)列式:由题意可知 PF e d =() 2 2 2 x c y c a a x c += (3)化简:由上式可得 ()()2 2 2 2 2 2 2 2 +=a c x a y a a c ① 当0a c >>即1e <时,令()222=0b a c b > ,方程①可化为222222+=b x a y a b ,等式两边同除以22a b ,可 得22 221x y a b +=,即焦点在x 轴上的椭圆. 当0c a >>即1e >时,令()222=0b c a b > ,方程①可化为222222=b x a y a b ,等式两边同除以22a b ,可得

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

(全国通用版)201X版高考数学一轮复习 高考达标检测(三十八)圆锥曲线的综合问题——直线与圆锥曲线

高考达标检测(三十八) 圆锥曲线的综合问题——直线与圆锥曲线 的位置关系 一、选择题 1.已知过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,且点A 在第一象限,若|AF |=3,则直线l 的斜率为( ) A .1 B.2 C. 3 D .22 解析:选D 由题意可知焦点F (1,0),设A (x A ,y A ), 由|AF |=3=x A +1,得x A =2,又点A 在第一象限, 故A (2,22),故直线l 的斜率为2 2. 2.若直线y =kx +2与抛物线y 2=x 有一个公共点,则实数k 的值为( ) A. 1 8 B .0 C. 1 8 或0 D .8或0 解析:选C 由??? y =kx +2, y 2=x , 得ky 2-y +2=0, 若k =0,直线与抛物线有一个交点,则y =2, 若k ≠0,则Δ=1-8k =0,∴k =1 8, 综上可知k =0或 1 8 . 3.已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点, 且AB 的中点为N (12,15),则双曲线C 的离心率为( ) A .2 B.32 C.355 D.52 解析:选B 设A (x 1,y 1),B (x 2,y 2), 由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,

由????? x 21a 2-y 21 b 2=1,x 2 2 a 2 -y 22b 2 =1, 两式相减得: x 1+x 2 x 1-x 2 a 2 = y 1+y 2 y 1-y 2 b 2 , 则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 2 5a 2.

2021新高考数学二轮总复习专题突破练25直线与圆及圆锥曲线含解析

专题突破练25 直线与圆及圆锥曲线 1.(2020全国Ⅱ,理19)已知椭圆C 1: x 2a + y 2b =1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心 与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|=4 3|AB|. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程. 2. 已知圆O :x 2+y 2=4,点A (√3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ. (1)求曲线Γ的方程; (2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 3.(2019全国Ⅰ,理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3 2的直线l 与C 的交点为A ,B ,与x 轴的交点为P. (1)若|AF|+|BF|=4,求l 的方程; (2)若AP ????? =3PB ????? ,求|AB|.

4.(2020山东威海一模,20)已知椭圆x2 a2+y2 b2 =1(a>b>0)的左、右焦点分别为F1,F2,点P(-1,3 2 )是椭圆上 一点,|F1F2|是|PF1|和|PF2|的等差中项. (1)求椭圆的标准方程; (2)若A为椭圆的右顶点,直线AP与y轴交于点H,过点H的另一条直线与椭圆交于M,N两点,且S△HMA =6S△PHN,求直线MN的方程. 5.(2020重庆名校联盟高三二诊,19)已知椭圆C:x2 a2+y2 b2 =1(a>b>0),F1,F2为椭圆的左、右焦点,P(1,√2 2 ) 为椭圆上一点,且|PF1|=3√2 2 . (1)求椭圆的标准方程; (2)设直线l:x=-2,过点F2的直线交椭圆于A,B两点,线段AB的垂直平分线分别交直线l、直线AB于M,N两点,当∠MAN最小时,求直线AB的方程.

直线与圆锥曲线

直线与圆锥曲线 考情分析: 本节内容是高中数学的重要内容之一,也是历年高考尝试新题的板块,各种解题方法在这里表现得比较充分,尤其是在近几年高考的新课程卷中.平面向量与解几融合在一起,综合性很强,题目多变,解法灵活多样,能充分体现高考的选拔功能. 1、考查直线的基本概念,求在不同条件下的直线方程、直线的位置关系,此类题大都属中、低档题,以选择、填空题的形式出现,每年必考. 2、二次曲线的基础知识,直线与二次曲线的普通方程、参数方程,以及普通方程与参数方程的互化,常以选择题、填空题的形式出现属于中档题. 3、有关直线与圆、直线与圆锥曲线的综合题,多以解答题的形式出现,这类题主要考查学生几何知识与代数知识的综合应用,对学生分析问题、解决问题的能力要求较高. 二、考点整合 1、第一部分内容:直线的倾斜角、斜率,直线的方程,两条直线的位置关系;简单的线性规划及其实际应用;曲线和方程、圆的方程. 2、第二部分内容包括椭圆、双曲线、抛物线的定义、性质,以及它们与直线的位置关系的判定,弦长的有关计算、证明等,本部分内容为高考命题的热点. 3、椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质. 4、椭圆、双曲线、抛物线统称圆锥曲线,它们的统一性如下: (1)从方程的形式看:在直角坐标系中,这几种曲线的方程都是二元二次方程,所以它们属于二次曲线; (2)从点的集合(或轨迹)的观点看:它们都是与定点和定直线距离的比是常数e 的集合(或轨迹),这个点是它们的焦点,定直线是它们的准线.只是由于离心率e 取值范围的不同,而分为椭圆(10<e )和抛物线(1=e )三种曲线; (3)这三种曲线都是由平面截圆锥面得到的截线. 5、坐标法是研究曲线的一种重要方法,本节进一步研究求曲线方程的一般方法,利用曲线的方程讨论曲线的几何性质,以及用坐标法证明简单的几何问题等. 6、椭圆、双曲线、抛物线是常见的曲线,利用它们的方程及几何性质,可以解决一些简单的实际问题;利用方程可以研究它们与直线的交点、相交弦等有关问题. 解析几何的综合问题,主要是以圆锥曲线为载体,考查直线与圆锥曲线的有关性质以及函数、方程、不等式、三角、向量等知识.考查的数学思想有数形结合的思想、分类整合的思想、换元的思想、等价转化的思想等.常见题型有求曲线方程,由方程研究性质以及定值、最值、范围、探索性问题等.这类题目一般难度较大,常作高考题中的压轴题. 三、典例精讲: 例 1 (1)由动点P 向圆12 2 =+y x 作两条切线、PB PA ,切点分别为、B A , ο60=∠APB ,则动点P 的轨迹方程为______________________. (2)设直线022:=++y x l 关于原点对称的直线为/ l ,若/ l 与椭圆14 2 2 =+y x 的交 点为、B A ,点P 为椭圆上的动点,则使得PAB ?的面积为2 1的点P 的个数为( ) A 、1 B 、2 C 、3 D 、4 (3)已知双曲线的中心在原点,离心率为3,它的一条准线与抛物线x y 42 =的准

(完整版)专题圆锥曲线的离心率(学生版)

专题五 第二讲离心率专题 卡 两 勖心率历年来是圆锥曲线客观题的考查重点,对于求 圆锥曲线离心率的问题,通常有 一是求椭圆和双曲线的离心率;二是求椭圆和双曲线离心率的取值范围, 属于中低 档次的题型,对大多数学生来说是没什么难度的。 一般来说,求椭圆(或双曲线)的离心 率,只需要由条件得到一个关于基本量 a 与 b 或a 与 c 的其次式,从而根据e - . 1 2 a \ a (这是椭圆)e - . 1 b 2 (这是双曲线),就可以从中求出离心率. 但如果选择方法不 a ■ a 恰当,则极可能“小题”大作,误入歧途。许多学生认为用一些所谓的“高级”结论可以 使结果马上水落石出,一针见血,其实不然,对于这类题,用最淳朴的定义来解题是最好 的,此时无招胜有招! 一、求椭圆与双曲线离心率的值: (一)、用定义求离心率问题: 例1、(05全国川)设椭圆的两个焦点分别为 F i 、 F 2,过F 2作椭圆长轴的垂线交椭圆于点 P, 若F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A. 2 B. C. 2 - 2 D. . 2-1 2 2 点C ,则该椭圆的离心率 e ___________ 2、已知正方形 ABCD ,则以A 、B 为焦点,且过 C 、D 两点的椭圆的离心率为 __________________ 3、已知长方形 ABCD , AB = 4, BC = 3,则以A 、B 为焦点,且过 C 、D 两点的椭圆的离 心率为 。 【强化训练】1.在厶ABC 中,AB BC , cosB 18 .若以A ,B 为焦点的椭圆经过 7

x 2 y 4?已知F 1、F 2是双曲线 飞 亍1(a a b MF 1F 2,若边MF 1的中点在双曲线上 , A . 4 2.3 B . . 3 1 2 2 5、如图,F 1和F 2分别是双曲线 笃 爲 1(a 0,b 0)的两个焦点, a b A 和B 是以O 为圆心,以|OF 1为半径的圆与该双曲线左支的两个交 点,且△ F 2AB 是等边三角形,则双曲线的离心率为( ) (A ) 3 ( B ) ■■-- 5 (C ) —— ( D ) 1 , 3 2 (二)、列方程求离心率问题:构造a 、c 的齐次式,解出e 根据题设条件,借助 a 、b 、c 之间的关系,构造 a 、c 的关系(特别是齐二次式),进而 得到关于e 的一元方程,从而解得离心率 e x 2 y 2 例2、如图,在平面直角坐标系 xoy 中,A ,, A 2, B ,,B 2为椭圆二 2 1(a b 0)的四 a b 个顶点,F 为其右焦点,直线AB ?与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰 为线段 OT 的中点,则该椭圆的离心率为 _____________________ . ” 【点评】本题考查了双曲线的渐近线的方程和离心率的概念 ,以及直线与抛物线的位置关系 只有一个公共点,则解方程组有唯一解?本题较好地考查了基本概念基本方法和基本技能 0,b 0)的两焦点,以线段 F 1F 2为边作正三角形 则双曲线的离心率是( 变式:设双曲线 的离心率等于( (A ) .3 b 2 1 (a > 0,b > 0)的渐近线与抛物线 y=x +1相切,则该双曲线 (B ) 2 (C ) 5 6

直线与圆锥曲线的综合问题

教学过程 一、复习预习 圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 二、知识讲解 考点1范围问题 求范围和最值的方法: 几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 考点2对称问题 要抓住对称包含的三个条件: (1)中点在对称轴上 (2)两个对称点的连线与轴垂直

(3)两点连线与曲线有两个交点(0>?),通过该不等式求范围 考点/易错点3定点、定值、最值等问题 定点与定值问题的处理一般有两种方法: (1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值). 三、例题精析 【例题1】 【题干】已知椭圆1:22221=+b y a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当 椭圆的离心率e 满足2 223≤≤e ,且0=?OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】 []6,5 【解析】由???=-+=+0 12 22222y x b a y a x b ,得()()012222222=-+-+b a x a x b a 由( ) 0122222>-+=?b a b a ,得12 2 >+b a 此时222212b a a x x +=+,() 2 22 2211b a b a x x +-= 由0=?OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x 即022 2 2 2 =-+b a b a ,故1 222 2 -=a a b 由2 22222 a b a a c e -==,得2 222e a a b -= ∴2 2 11 12e a -+ = 由 2 223≤≤e 得23452 ≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为 []6,5 【例题2】

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

圆锥曲线三大难点解读

圆锥曲线三大难点 难点一、最值与定值(定点)问题 圆锥曲线的最值与定值(定点)问题一直是高考的一大难点. 最值问题求解策略是:几何法与代数法,前者用于条件与结论有明显几何意义,利用图形性质来解决的类型;后者则将结论转化为目标函数,结合配方法、判别式法、基本不等式及函数的单调性等知识求解. 定值(定点)问题求解策略是:从特殊入手,求出定点或定值,再证明这个点(值)与变量无关.也可以在推理、计算过程中消去变量,直接得到定点(或定值). 例1 (江西卷理21)如图1,椭圆 22 22:1(0)x y Q a b a b +=>>的右焦点(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 是线段AB 的中点. (1)求点P 的轨迹H 的方程; (2)在Q 的方程中,令21cos sin a θθ=++, 2sin 0b θθπ? ?=< ?2??≤,确定θ的值,使原点距椭圆Q 的右准线l 最远, 此时,设l 与x 轴交点为D .当直线m 绕点F 转动到什么位置时, ABD △的面积最大? 分析:求轨迹方程可用“设而不求”法,考虑AB 的斜率是否存在,注意到AB 与PF 共线,得方程为222220b x a y b cx +-=;在第(2)问中,由2a 、2b 不难得到满足要求的1c =,为避免讨论直线m 的斜率是

否存在,可设m 的方程为1x ky =+,再利用三角函数求出θ,ABD △的面积用A B ,纵坐标可表示为121 2 S y y = -,当直线m 垂直于x 轴时,ABD △的面积最大. 点评:本题集轨迹方程、最值问题、动态几何于一身,运用了点差法、分类讨论思想、二次方程根与系数的关系、三角函数的有界性、分离变量法、均值不等式法等,对各种能力的综合要求非常高. 例2 (全国卷Ⅱ理21文22)已知抛物线24x y =的焦点为F , A B ,是抛物线上的两动点,且(0)AF FB λλ=>.过A B ,两点分别作抛物线的切线,设其交点为M . (1)证明FM ·AB 为定值; (2)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值. 简解:(1)(01)F , ,设点A B ,的横坐标为12x x ,,则过点A B ,的切线分别为2111()42 x x y x x -=-,2 222()42x x y x x -=-,结合AF FB λ=,求得 0FM AB =为定值; (2) FM AB =,则 ABM △的面积 3 3 124 2 22FM AB S 1= =?=≥. 难点二、求参数范围(或值)问题 求参数范围问题的求解策略是:根据题意结合图形列出所讨论参数适合的不等式(组),利用线性规划得出参数的取值范围.有时候

相关主题
文本预览
相关文档 最新文档