当前位置:文档之家› 线性稳压电源(LDO)与开关电源的区别

线性稳压电源(LDO)与开关电源的区别

线性稳压电源(LDO)与开关电源的区别

线性稳压电源(LDO)与开关电源的区别

线性稳压电源(LDO)是通过改变晶体管的导通程度来改变和控制其输出

的电压和电流,在线性稳压电源(LDO)中晶体管相当于一个可变电阻,串接

在供电回路中。由于可变电阻与负载流过相同的电流,因此要消耗掉大量的能量并导致升温,电压转换效率低。线性稳压电源(LDO)有一个共同的特点

就是它的功率器件调整管工作在线性区,靠调整管极间的电压降来稳定输出。由于调整管静态损耗大,需要安装一个很大的散热器给它散热。由于线性电源的变压器工作在工频(50Hz)上,所以质量较大。

?

?线性稳压电源(LDO)常用于低压场合,像LDO需要满足一定的电压差。输出电压调整率和纹波比较好,效率比较低,需要的外围元器件比较少,成本低。电路比较简单。

?

?线性稳压电源(LDO)优点是稳定性高,纹波小,可靠性高,易做成多路输

出连续可调的电源。缺点是体积大、较笨重、效率相对较低。这类稳压电源又有很多种,从输出性质可分为稳压电源、稳流电源和集稳压、稳流于一身的稳压稳流(双稳)电源。从输出值来看可分固定输出电源、波段开关调整式

和电位器连续可调式几种。从输出指示上可分指针指示型和数字显示式型等。

?

?开关电源适用于全电压范围,不需要压差,可以采用不同的电路拓扑实现不同的输出要求。调整率和输出纹波不如线性电源,效率高。需要外围元件多,成本高。电路相对复杂。开关型直流稳压电源它的电路型式主要有单端

开关电源和线性电源的优点和缺点对比(特制材料)

开关电源和线性电源的优点和缺点对比 开关电源是相对线性电源而言的,线性电源是利用功率半导体器件的线性工作区,通过调节线性阻抗来达到调节输出的目的;而开关电源是利用功率半导体器件的饱和区通过调整他的开通时间或频率来达到调节输出的目的。 其优点是: 1、效率较高,体积小。由于开关电源的电压控制是利用功率半导体器件的饱和区通过调整他的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,比较变压器而言效率较高;由于它只有元器件和电路板,因而体积就会很小,重量也较轻。 2、电压输入范围宽。一般可达到160V-270之间。 但它的缺点更是它致命的: 1、开关电源看着小巧,功率和磁心变压器以及控制方式有关,电磁干扰大,纹波系数大。尤其有音频、视频的范畴内,对电磁干扰非常敏感,在音频表现为音色不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细小的纹波,不细腻。 2、设计复杂,维护维修不方便。往往越是复杂的设备出现的问题的可能性就越大,而且开关电源一旦出现问题,一般非专业人士是维修不了的,找别人维修,费用又太高,还不如废弃掉。 3、体积小是开关电源的优点,但设计不好就成为它的缺点了。为了追求更小,一大把元器件挤在一个小壳子里,散热不好,我们以前用的当中也出现过外壳变形的现象。 4、开关电源的元器件在选择上也不是很规范,这是国产开关电源的通病。国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进口开关电源。

5、最大的一点就是抗雷击能力非常低。在监控系统中,遭遇雷击的可能也非常大,主要表现为从电源串入,直接雷击的可能性非常小。一旦220V的电压突然变高,开关电源在瞬间就被烧毁。前段时间的一个监控系统中,在一个雷过后,监控总闸跳了,再合上闸后,大部分摄像机还正常工作,一部分监视器显示无视频信号。经检查发现,无视频信号的全部都是开关电源(施工时有的地方安装不方便,就用了开关电源),最后又在摄像机杆上安装上了电源箱,换上了变压器电源。 变压器电源(也就是线性电源)也有以下几个优缺点: 其缺点是: 1、效率低。由于变压器是一个“电——磁——电”的转换过程,避免不了存在铁损和铜损,效率低。 2、输入范围窄。一般只有200V—240V之间吧,小于这个范围,输出电压不够,大于这个范围,变压器可能就会烧毁。这个电压范围绝大多数的场合是够用的,不必去过多的考虑。再者变压器体积较开关电源大,笨重。 优点: 1、线性的看着笨重,功率完全取决于变压器和调整管,效率虽低但是不会引入额外的干扰,也就是说电磁干扰小,纹波系数很低,可忽略不计。对于监控来说,没有比这个优点还要好的了,图像质量的好坏与电源的关系非常大。尤其对于小幅值的模拟信号(音频源和视频源等)对电源的要求非常高,所以一些发烧音响中的电源都采用变压器而不用开关电源。 2、稳压率高、设计简单,维修维护非常方便,出现故障,稍懂电子的技术人员就能维修,维修成本比开关电源少得多。

开关稳压电源和线性稳压电源

开关稳压电源和线性稳压电源 根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。 线性稳压电源,是指调整管工作在线性状态下的稳压电源。而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。 开关电源是一种比较新型的电源。它具有效率高,重量轻,可升、降压,输出功率大等优点。但是由于电路工作在开关状态,所以噪声比较大。通过下图,我们来简单的说说降压型开关电源的工作原理。如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。 在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。 在实际的开关电源中,开关K由三极管或场效应管代替。当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。这就是开关电源效率高的原因。 看过完两个关于电源的FAQ后,大家可能对电源的效率计算还不了解。在后面的FAQ中,我们将专门给大家介绍。 常见的用于开关电源的芯片有:TL494,LM2575,LM2673,34063,51414等等。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源与线性电源的区别

开关电源和线性电源的区别 线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦。 开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50Hz变为高频那开关电源就没有意义!!开关变压器也不神秘.就是一个普通的变压器!这就是开关电源。 开关电源,是通过电子技术实现的,主要环节:整流成直流电——逆变成所需电压的交流电(主要来调整电压)——再经过整流成直流电压输出。 开关电源的结构中由于中间没有变压器和散热片,因而体积非常小。同时,开关电源内部都是电子元件,效率高、发热小。虽然,具有电磁干扰等缺点,但现在的屏蔽技术已经非常到位。 开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必 一定有。 简单地说,开关电源的工作原理是: 1.交流电源输入经整流滤波成直流; 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3.开关变压器次级感应出高频电压,经整流滤波供给负载; 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的 干扰;在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;开关变

线性电源、相控电源和开关电源对比

电源技术 课程中期作业 姓名: 班级: 学号: 邮箱:@https://www.doczj.com/doc/7e3025361.html, 2014.11

线性电源、相控电源与开关电源对比 一、三种电源原理简述 线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。如图1所示,线性电源的工作机理是误差放大器抓取反馈信号来控制MOSFET(或者三极管) Q1的门极信号来管控Q1的阻抗,通过Q1与R1,R2的分压来实现需要的V out。Q1此时工作在线性状态,可以看成一个可调电阻,所以这种电源叫线性电源。 图1 线性电源工作原理图 相控电源(Phase controlled power supply)是指采用晶闸管作为整流器件的电源系统,其原理是交流输入电压经工频变压器降压,然后采用晶闸管进行整流。并通过移相控制以保持输出电压的稳定。 开关电源(Switching power supply)是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。简单地说,开关电源的工作原理是交流电源输入经整流滤波成直流,再通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上,开关变压器次级感应出高频电压,经整流滤波供给负载,最后输出部分通过一定的电路反馈给控制电路,控制PWM占空比稳定输出。如图2所示,开关电源的工作机理是误差放大器抓取反馈信号来控制MOSFET(或者三极管)Q1的门极信号来管控Q1的开关,通过Q1的开关以及Lo,Co的储能一起事先设定的V o。Q1此时工作在开关状态,可以看成一个开关,所以这种电源叫开关电源。

直流稳压电源工作原理

一、直流稳压电源的工作原理 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要经过变压、整流、滤波、稳压四个环节才能完成。 四个环节的工作原理如下: (1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。 (2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 (3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。 (4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过渡、过热和安全工作区保护,最大输出电流为1.5A。其典型电路如下图,其中电阻R1与电位器R2组成输出电压调节器,输出电压Uo的表达式为:Uo=1.25(1+R2/R1)式中R1一般取120-240欧姆,输出端与调整端的压差为稳压器的基准电压(典型值为1.25V)。 二、直流稳压电源的应用 直流稳压电源是电子技术领域不可缺少的设备,常见的直流稳压电源,大都采用串联式反馈式稳压原理,通过调整输出端取样电阻支路中的电位器来调整输出电压。由于电位器阻值变化的非线性和调整范围窄,使普通直流稳压电源难以实现输出电压的精确调整。 三、直流稳压电源的前景 近几年随着科技的发展,直流稳压电源的工作频率有原来的几十千赫发展到现在的几百千,但是和西方的发达国家还是有一定的差距;以美国为首的几个发达国家在这方面的研究已经转向高频下电源的拓扑理论、工作原理、建模分析等等方面技术领先;因此,直流稳压电源的研制及应用在此方面与之也从在很大的差距。

变压器开关电源致命原理

变压器开关电源致命原理 在Toff期间,控制开关K关断,流过变压器初级线圈的电流突然为0。由于变压器初级线圈回路中的电流产生突变,而变压器铁心中的磁通量不能突变,因此,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。 如果变压器铁心中的磁通ф产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流在线圈中产生的磁力线又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。 因此,在控制开关K关断的Toff期间,变压器铁心中的磁通主要由变压器次级线圈回路中的电流来决定,即: e2 =-N2*dф/dt =-L2*di2/dt = i2R —— K关断期间 (1-64) 式中负号表示反电动势e2的极性与(1-62)式中的符号相反,即:K接通与关断时变压器次级线圈产生的感应电动势的极性正好相反。对(1-64)式阶微分方程求解得: 式中C为常数,把初始条件代入上式,就很容易求出C,由于控制开关K由接通状态突然转为关断时,变压器初级线圈回路中的电流突然为0,而变压器铁心中的磁通量不能突变,因此,变压器次级线圈回路中的电流i2一定正好等于控制开关K接通期间的电流i2(Ton+),与变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路电流之和。所以(1-65)式可以写为: (1-66)式中,括弧中的第一项表示变压器次级线圈回路中的电流,第二项表示变压器初级线圈回路中励磁电流被折算到变压器次级线圈回路的电流。 图1-16-a单激式变压器开关电源输出电压uo等于: (1-68)式中的Up-就是反击式输出电压的峰值,或输出电压最大值。由此可知,在控制开关K关断瞬间,当变压器次级线圈回路负载开路时,变压器次级线圈回路会产生非常高的反电动势。理论上需要时间t等于无限大时,变压器次级线圈回路输出电压才为0,但这种情况一般不会发生,因为控制开关K的关断时间等不了那么长。 从(1-63)和(1-67)式可以看出,开关电源变压器的工作原理与普通变压器的工作原理是不一样的。当开关电源工作于正激时,开关电源变压器的工作原理与普通变压器的工作原理基本相同;当开关电源工作于反激时,开关电源变压器的工作原理相当于一个储能电感。 如果我们把输出电压uo的正、负半波分别用平均值Upa、Upa-来表示,则有: 分别对(1-71)和(1-72)两式进行积分得: 由此我们可以求得,单激式变压器开关电源输出电压正半波的面积与负半波的面积完全相等,即: Upa×Ton = Upa-×Toff —— 一个周期内单激式输出 (1-75) (1-75)式就是用来计算单激式变压器开关电源输出电压半波平均值Upa和Upa-的表达式。

正激变压器开关电源的优缺点

正激式变压器开关电源的优缺点 2010年04月08日 15:18 电源网作者:陶显芳用户评论(0) 关键字:变压器(453)开关(111)正激式(3) 正激式变压器开关电源的优缺点 为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。 因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为: Sv = Up/Ua ——电压脉动系数(1-84) Si = Im/Ia ——电流脉动系数(1-85) Kv =Ud/Ua ——电压波形系数(1-86) Ki = Id/Ia ——电流波形系数(1-87) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。 另外,由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

(完整版)开关电源与线性电源区别

是直流电按要求不同使用不同,线性电源最好他输出的是线性直流电,可以用在要求高的场合,开关电源次之,他是由很高的开关速度的变压器和开关管,特点是重量小,容量大,输出质量高,相控电原用在要求不高,电流特大的场合 线性电源,开关电源区别 线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。 开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是开关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦 开关电源和线性电源在内部结构上是完全不一样的,开关电源顾名思义有开关动作,它利用变占空比或变频的方法实现不同的电压,实现较为复杂,最大的优点是高效率,一般在90%以上,缺点是文波和开关噪声较大,适用于对文波和噪声要求不高的场合;而线性电源没有开关动作,属于连续模拟控制,内部结构相对简单,芯片面积也较小,成本较低,优点是成本低,文波噪声小,最大的缺点是效率低。它们各有有缺点在应用上互补共存! 一、线性电源的原理: 线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。线性电源是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压,这种电源技术很成熟,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音。但是它的缺点是需要庞大而笨重的变压器,所需的滤波电容的体积和

(整理)开关电源变压器测试标准

开关电源变压器测试标准 正常的试验大气条件(除有规定条件除外,均应在正常试验条件下进行试验): 温 度: 15~35℃ 相对湿度: 45%~75% 气 压: 86~106kPa 一、直流铜阻 目的:保证每一绕组使用正确的漆包线规格。 仪器:TH2511低直流电阻测试仪。 方法:变压器各绕组在温度为20℃时的直流电阻,应符合产品规格书的标准。 若测量环境温度不等于20℃时,应按下面的公式换算 R 20=θ +5.2345 .254R θ 式中: R 20——温度为20时的直流电阻,Ω; R θ——温度为θ时测得的直流电阻,Ω; θ——测量时的环境温度,℃。 二、电感量 目的:确保使用正确的磁性材料及绕组圈数的正确性。 仪器:WK3255B 电桥。 方法:对变压器测试端施加额定条件的电桥,测试电感量。见图1 图1 开 路

三、直流叠加 目的:检验磁芯的磁饱和特性或实际工作条件下的磁芯特性。 仪器:WK3255B 电桥;FJ1772A 直流磁化电源。 方法:对变压器测试端施加规定的直流电流,用电桥测试电感量。见图2 图2 图中I 0 —— 在测试端N1绕组施加的直流电流 四、漏感 目的:保证绕组处于骨架上正确的位置以及磁性材料的气隙大小的正确性。 仪器:WK3255B 电桥。 方法:将所测变压器次级端短路,在初级端施加额定条件的电桥测试电感量。 见图3 图3 五、绝缘电阻 目的:保证每一绕组对磁芯、静电屏蔽及各绕组间绝缘电阻性能满足所需的 技术指标。 仪器:2679绝缘电阻测试仪。 方法:用绝缘电阻测试仪对变压器的初次级绕组间或绕组和磁芯、静电屏蔽 短 路

开关电源原理与设计 连载13 正激式变压器开关电源

开关电源原理与设计连载13 正激式变压器开关电源 1-6.正激式变压器开关电源 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。

图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。

(整理)开关电源与变压器电源的分析

现在的电源大致分两大类:电子开关电源和变压器电源。 开关电源:: 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。 开关电源的三个条件 1、开关:电力电子器件工作在开关状态而不是线性状态 2、高频:电力电子器件工作在高频而不是接近工频的低频 3、直流:开关电源输出的是直流而不是交流 变压器电源: 线性电源(Liner power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。 线性电源与开关电源对比 线性电源的电压反馈电路是工作在线性状态。 线性电源一般是将输出电压取样然后与参考电压送入比较电压放大器,此电压放大器的输出作为电压调整管的输入,用以控制调整管使其结电压随输入的变化而变化,从而调整其输出电压。 从其主要特点上看:线性电源技术很成熟,制作成本较低,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音,但其体积相对开关电源来说,比较庞大,且输入电压范围要求高;而开关电源与之相反。 线性电源用途 线性电源产品可广泛应用于科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等。 从以上两个解释大家应该知道开关电源与变压器电源(线性)的大致区别了吧。 很多朋友都会碰到一个问题,就是现在的低廉变压器电源为什么不能满足一般大、中功率的红外摄像机供电使用,而开关电源侧存在漏电的情况,这样,我把我所认识的两款电源和大家说说。 电源的优缺点: 开关电源优点:

开关电源变压器基础知识

开关电源变压器基础知识 开关电源变压器现代电子设备对电源的工作效率、体积 以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁 通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用 ,周围的物体也都会被感应产生磁通。现代磁学研究表明: 切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在

磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。 在电磁场理论中,磁场强度H 的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F 跟电流I 和导线长度的乘积I 的比值,称为通电直导线所在处的磁场强度。或:在真空中垂直于磁场方向的1 米长的导线,通过1 安培的电流,受到磁场的作用力为1 牛顿时,通过导线所在处的磁场强度就是1 奥斯特(Oersted) 。电磁感应强度一般也称为磁感应强度。由于在真空中磁感应强度与磁场强度在数

开关电源与线性电源的优缺点和区别

开关电源与线性电源的优缺点和区别 电源是电路设计中的重要部分,电源的稳定性在很大程度上决定了电路的稳定性。线性电源和开关电源是比较常见的两种电源,在原理上有很大的不同,原理上的不同决定了两者应用上的不同。 一、开关电源与线性电源原理上的区别 线性电源的基本原理是市电经过一个工频变压器降压成低压交流电之后,通过整流和滤波形成直流电,最后通过稳压电路输出稳定的低压直流电。电路中调整元件工作在线性状态。 线性电源原理图 开关电源的基本原理是输入端直接将交流电整流变成直流电,再在高频震荡电路的作用下,用开关管控制电流的通断,形成高频脉冲电流。在电感(高频变压器)的帮助下,输出稳定的低压直流电。 开关电源原理图 二、开关电源与线性电源的优缺点

1.开关电源的优缺点 主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。 主要缺点:由于逆变电路中会产生高频电压,对周围设备有一定的干扰。需要良好的屏蔽及接地。交流电经过整流,可以得到直流电。但是,由于交流电压及负载电流的变化,整流后得到的直流电压通常会造成20%到40%的电压变化。为了得到稳定的直流电压,必须采用稳压电路来实现稳压。 2.线性电源的优缺点 优点:线性电源的优点是结构相对简单、输出纹波小、高频干扰小。结构简单给我们带来的最大好处是维修方便,维修一台线性电源的难度往往远远低于开关电源,线性电源的维修成功率也大大高于开关电源。纹波是叠加在直流稳定量上的交流分量。输出纹波越小也就是说输出直流电纯净度越高,这也正是直流电源品质的重要标志。过高纹波的直流电将影响收发信机的正常工作。目前高档线性电源纹波可以达到0.5mV的水平,一般产品可以做到5mV水平。线性电源没有工作在高频状态下的器件所以如果输入滤波做得好的话几乎没有高频干扰/高频噪声。 缺点:需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率

线性稳压器的基本原理

线性稳压器的基本原理 文章出处:发布时间:2009/06/18 | 2169 次阅读| 0次推荐| 0条留言 业界领先的TEMPO评估服务高分段能力,高性能贴片保险丝专为OE M设计师和工程师而设计的产品Samtec连接器完整的信号来源每天新产品时刻新体验完整的15A开关模式电源 线性稳压器主要包括普通线性稳压器和L DO(Low D ropout Regulator,低压差线性稳压器)两种类型,它们的主要区别是:普通线性稳压器(如常见的78系列三端稳压器)工作时要求输入与输出之间的压差值较大(一般要求在2~3V以上),功耗较高;而L DO工作时要求输入与输出之间的压差值较小(可以为IV以下甚至更低),功耗较低。 (1)线性稳压器基本工作原理 线性稳压器是通过输出电压反馈,经误差放大器等组成的控制电路来控制调整管的管压降VDD(即压差)来达到稳压的目的,其原理框图如图1所示。特点是VIN必须大于VOUT,调整管工作在线性区(线性稳压器从此得名)。输入电压的变动或负载电流的变化引起输出电压变动时,通过反馈及控制电路,改变V DO的大小,使输出电压VOUT基本不变。 普通线性稳压器和L D0的工作原理是一致的,不同的是,二者采用的调整管结构不同,从而使LD0比普通线性稳压器压差更小,功耗更低。 有些液晶显示器中使用的线性稳压器i设有输出控制端,也就是说,这种稳压器输出电压受控制端的控制。图2所示是可控稳压器的内部框图。 图1 线性稳压器原理框图

图2 可控稳压器的内部框图 图2中,E N(有时也用符号SHDN表示)为输出控制端,一般由微处理器加低电平(或高电平)使LD O关闭(或工作),在关闭电源状态时,电流约为1μA。 (2)线性稳压器的特点 线性稳压器具有成本低、封装小、外围器件少和噪声小的特点。线性稳压器的封装类型很多,非常适合在液晶显示器中使用。对于固定电压输出的场合,外围只需2~3个很小的电容即可构成整个电路。 超低的输出电压噪声是线性稳压器最大的优势。输出电压的纹波不到35μV(R MS),又有极高的信噪抑制比,非常适合用做对噪声敏感的小信号处理电路供电。同时,由于没有开关时大的电流变化所引发的电磁干扰(E MI),所以便于设计。 但线性稳压器的缺点是效率不高,且只能用于降压的场合。线性稳压器的效率取决于输出电压与输入电压之比η=Vo:Vio例如,对于普通线性稳压器,在输入电压为 5V的情况下,输出电压为2.5V时,效率只有50%,也就是约有50%的电能被转化成热量流失掉了,这也是普通线性稳压器工作时易发热的主要原因:对于L DO,由于是低压差,因此效率要高得多。例如,在输入电压为3.3V的情况下,输出电压为2.5V时,效率可达76%。所以,在液晶显示器中,为了提高电能的利用率,较少采用普通线性稳压器,而多采用LD O。

最新开关电源基础知识

开关电源基础知识

?开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 ? ?开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. ? ? ? ?开关电源的工作原理是: ? ? ? ? 1.交流电源输入经整流滤波成直流; ? ? 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; ? ? 3.开关变压器次级感应出高频电压,经整流滤波供给负载; ? ? 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. ? ? ?

?交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; ? ?在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; ? ?开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; ? ?一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ? ? ? ? ? ?ATX电源的主要组成部分 ? ?EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 ? ? ? ?一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,

开关电源与线性电源的区别及用途

开关电源和线性电源的区别,各用在什么场合? 线性电源的调整管工作在放大状态,因而发热量大,效 率低(35%左右),需要加体积庞大的散热片,而且还需要同样 也是大体积的工频变压器,当要制作多组电压输出时变压器会 更庞大。开关电源的调整管工作在饱和和截至状态,因而发热 量小,效率高(75%以上)而且省掉了大体积的变压器。但开 关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关 管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁 珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可 以做的很小(5mV以下)。 对于电源效率和安装体积有要求的地方用开关电源为 佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电 检测)多选用线性电源。另外当电路中需要作隔离的时候现在 多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说 就是开关电源)。还有,开关电源中用到的高频变压器可能绕 制起来比较麻烦。 开关电源介绍 开关电源设计 1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数 设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为 任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源 产品可靠性设计的重要性。 2 开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电 质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因 供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能 源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式 供电系统可以满足高可靠性设备的要求。 2.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激 式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式 的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推 挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平 衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大 输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这 两类电路拓扑。 2.3 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优 点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与 短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压 控制型小得多。生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电 压控制型。 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振

线性直流稳压电源电路设计方案详解

线性直流稳压电源电路设计方案详解 ————《https://www.doczj.com/doc/7e3025361.html,》 线性稳压电源是指调整管工作在线性状态下时的直流稳压电源,它是一种电源变换电路,也是电子系统的重要组成部分,其功能主要是为电子电路提供它所需要的电能。电子设备通常需要电压稳定的直流电源对负载进行供电。线性稳压电源被广泛的应用于电子电路中,虽然各种新型的稳压电路结构层出不穷,但线性稳压电源却始终是无法代替的。 一、线性直流稳压电源的工作原理 普通电源的工作原理 现在随着电子技术的高速发展,电子系统的应用领域也变得越来越广泛,电子设备的种类也在逐渐的不断更新、不断增多,电子设备与人们日常的工作、生活的关系也是日益密切。任何的电子设备都离不开安全有效的电源,电源是一切电力电子设备的动力源,因此它被形象地称之为“电路的心脏”。现在的生活中,各种高科技产品对电源的技术性能指标的要求更是越来越高。 电源通常可以分为交流电源和直流电源,它是任何电子设备都不可缺少的组成部分。直流电源又可分为两类[8],即:一类是能直接供给直流电流或电压的,如电池、蓄电池、太阳能电池、硅光电池、生物电池等,;另一类是能将交流电变换成所需要的稳定的直流电流或电压的,这类变换电路统称为直流稳压电源。

现代电子设备的电路中使用了大量的半导体器件,这些半导体一般需要几伏到几十伏的直流供电电源,以便于得到其正常工作时所必需的能源。现代电子设备中使用的直流稳压电源主要分为两大类:线性稳压电源和开关性稳压电源。 线性稳压电源亦称为直流线性稳压电源,它的稳压性能很好,而且输出纹波很小,其缺点是需要使用体积和重量都比较大的工频变压器,而且稳定效率也比较低。开关型稳压电源按照不同分类方式可以分成多种类型。按照其输出是否调整元(开关元件)等构成的其他部分隔离,这种隔离可以分为非隔离型和隔离型两类;按照开关元件的激励方式,又可以将其分成自激励和他激励两种类型;而按照电源的输入,又可分为AC/DC和DC/DC 两种类型;按照开关元件的连接形式,可分成串联型和并列型两种类型。它的优点是效率高,体积小,重量轻,但却存在着线路结构复杂、维修技术难度大等的一系列的缺点。 开关电源和线性电源的成本都随着其输出功率的增加而增长,但二者的增长速率各异。一般,当输出功率较小时,线性电源的成本相对较低。但是,当线性电源成本在某一输出功率点上时,反而高于开关电源,这一点称为成本反转点。 直流稳压电源的发展方向:智能化、数字化、模块化、绿色化[11]。20世纪末,各种有源滤波器和有源补偿器的诞生也为21世纪批量生产各种绿色直流稳压电源产品奠定了基础。

相关主题
文本预览
相关文档 最新文档