当前位置:文档之家› 浅谈纤维素纳米纤维增强聚合物复合材料

浅谈纤维素纳米纤维增强聚合物复合材料

浅谈纤维素纳米纤维增强聚合物复合材料
浅谈纤维素纳米纤维增强聚合物复合材料

龙源期刊网 https://www.doczj.com/doc/7e2540919.html,

浅谈纤维素纳米纤维增强聚合物复合材料

作者:王雨朦顾锋雷汪迪良刘文峰刘金凤余阳洋

来源:《石油研究》2019年第04期

摘要:由于纖维素纳米纤维有着比较特殊的结构以及性能特征,所以在对增强聚合物,制作复合材料方面有着十分广泛的运用。本文主要阐述了纤维素纳米纤维的特点,以及对纤维素纳米纤维进行化学改性分析并简述纤维素纳米纤维增强聚合物的研究进展。

关键词:纤维素纳米纤维;增强;复合材料

一、CNF的表面化学改性

CNF有着一定的纳米尺度,并且含有着数量较多的羟基,所以经常会产生团聚的情况,

而且CNF和非极性聚合物的相容效果并不理想。通过对研究CNF进行化学改性,控制CNF

表面的极性以及自由能,有效地加强了CNF和增强聚合物的相容性,制备了性能非常优秀的复合材料。一般用到的CNF表面化学改性方式主要包括将CNF表面进行衍生化和表面接枝等。

(一)表面衍生化

CNF的表面衍生化改性通常都是针对CNF中的羟基所产生的相关衍生化反应,其中,最常见的便是CNF的表面酯化和醚化改性。和一些低分子醇类材料相同,CNF也能与酸产生反应并产生纳米纤维素酯,而和烷基化剂发生反应产生纳米纤维素醚等。CNF的酯化改性一般

包含乙酰化等,其反应过程可以在多种溶液中进行,产生相关的取代度不一的物质。而醚化改性通常是按照对CNF极性的需求,通过各种醚化剂的使用,使其和CNF中的羟基发生脱水成谜反应,实现减少CNF表面极性的目标。CNF进行衍生化改性之后,表面极性大大降低,表面的羟基变为非极性基团,并且加强了CNF和非极性聚合物的反应效果以及相容性。

(二)表面枝接

CNF的表面枝接改性一般都是利用游离基聚合和加成反应,来把聚合物中体积较大的分

子移接到CNF中,使CNF的直接聚合物既可以拥有CNF原本优秀的特征,还能够具有合成

聚合物的新特性,比如稳定性和吸水性等。把聚己内酯在催化剂的催化下通过开环聚合反应的方式移接到CNF中,加强CNF在非极性有机溶液中的散布能力。移接到CNF中的聚合物分

子不但能为CNF提高性能活性,而且还可以在横向上产生反应,相互结合,也提高了CNF分子的结构密集性。

二、CNF对聚合物复合材料的增强效果

(一)CNF对环氧树脂复合材料的增强

碳纤维增强复合材料分层缺陷的检测研究

碳纤维增强型复合材料分层缺陷的检测研究 贾继红【1】,许爱芬【1】,路学成【2】,谢霞【2】 摘要:碳纤维增强型复合材料由于其高温下仍保持高硬度、高强度,质量轻等 性能被广泛应用于军事工业,但复杂的制造过程使得缺陷不可避免并影响使用。本 文采用正交小波对碳纤维复合材料的探伤信号进行多尺度分析,通过对小波基、分 解层数地选取以及对细节信息地处理和分析,总结出判定分层缺陷的损伤程度的方 法,使得材料在失效前被提早发现。实验表明该方法有效。 关键词:碳纤维;复合材料;小波分析;无损检测 Tisting Study On Lamination Of Carbon fibrerein forced composite material Jia Ji Hong[1],Xu Ai Fen[1],Lu Xue Cheng[2],Xie Xia[2] Abstract: Carbon fibrerein Composite materials was widely used in war industry for keeping high-hardness、high-strength,and light weight etc,but the defect could not be helped after complicated manufacturing,and influenced use. Applied the orthogonal wavelet to explore carbon fibre reinforced composite material for the multiple-dimensioned analysis, put forward a method for estimating damaging degree by selecting basic wavelet、decomposing layer-number and detail signal processing. It’s advantage is that prevent the materal from invalidating,,and this method was proved effective. Key words:Carbon fibrerein ;Composite materials;Wavelet analys;nondestructive test 1.引言 近年来,碳纤维增强型复合材料在工业甚至国防建设中有了长足发展,特别是在飞机制造上,机体结构的复合材料化程度是衡量飞机先进性的一个重要指标。然而,碳纤维复合材料是复杂的各项异性多相体系,其质量存在离散性,成型过程与服役条件极其复杂,环境控制、制造工艺、运输以及操作等都可能造成材料缺陷【2】,使得结构失效。因此,结构材料的无损检测(NDT)无论是在制造上还是在实时应用上都显得尤为重要。 分层缺陷是碳纤维复合材料中最常见的缺陷形式,复合材料层合板在压缩载荷作用下将依次发生脱粘分层、分层扩展、再屈曲、最后压缩破坏。含分层损伤的复合材料层合板在面内压缩载荷作用下,其圆形分层缺陷上下端点的局部区域内材料受横向拉应力作用为主;分层缺陷大小对复合材料层合板的抗压强度和屈曲临界载荷影响显著;分层缺陷大小对复合材料层合板的压缩弹性模量影响不显著;对于4.40 mm厚复合材料层合板,当分层缺陷尺寸达到孔隙30 %就要考虑修补【3】。 超声检测是目前无损检测中应用最广泛的一种。在超声缺陷检测中,回波信号通常是一种被探头中心频率调制的宽带信号,该信号是属于时频有限的非平稳信号,因此选用具有时频局部放大能力的小波变换技术对信号进行处理和分析非常适宜。

纳米纤维素晶体及复合材料的研究进展_王铈汶

2013年第58卷第24期:2385~2392 https://www.doczj.com/doc/7e2540919.html, https://www.doczj.com/doc/7e2540919.html, 引用格式: 王铈汶, 陈雯雯, 孙佳姝, 等. 纳米纤维素晶体及复合材料的研究进展. 科学通报, 2013, 58: 2385–2392 Wang S W, Chen W W, Sun J S, et al. Recent research progress of nanocellulose crystal and its composites with polymers (in Chinese). Chin Sci Bull (Chin Ver), 2013, 58: 2385–2392, doi: 10.1360/972012-1684 《中国科学》杂志社 SCIENCE CHINA PRESS 进展 纳米纤维素晶体及复合材料的研究进展 王铈汶①②, 陈雯雯②, 孙佳姝②, 黎国康③, 李孝红①*, 蒋兴宇②* ①西南交通大学材料科学与工程学院, 先进材料技术教育部重点实验室, 成都 610031; ②国家纳米科学中心, 中国科学院纳米生物安全性与生物效应重点实验室, 北京 100190; ③中国科学院广州化学研究所, 广州 510650 *联系人, E-mail: xhli@https://www.doczj.com/doc/7e2540919.html,; xingyujiang@https://www.doczj.com/doc/7e2540919.html, 2013-01-14收稿, 2013-05-06接受, 2013-07-08网络版发表 国家自然科学基金(21025520)和北京市自然科学基金(2122058)资助 摘要综述了纳米纤维素晶体(NCC)与高分子复合材料近些年发展的制备方法与潜在应用, 重点介绍了NCC与非极性高分子材料复合物在制备过程中相容性问题的解决办法及复合材 料的成型方法, 并指出无需任何表面修饰和溶剂分散、直接使用工业化的加工方法制备NCC/ 高分子复合物, 才能真正为NCC复合材料打开通往生活应用的大门. 关键词 纳米纤维素晶体 复合材料 表面修饰 相容性 生物质类材料是可再生、可生物降解且储量丰富 的绿色材料. 随着能源问题的日益严峻, 生物质类材 料越来越受到工业和科研人员的关注. 天然纤维素 是生物质的一个大类. 在我国, 最早的天然纤维素类 材料(木材和麻)的加工历史可以追溯到旧石器时代 以前. 然而, 这种宏观的纤维素类材料早已不能满足 现代人类社会对材料性能的要求. 从20世纪80年代 开始, 人们已经开始研究并掌握木材等天然纤维素 在纳米尺度的增强单元——纤维素纳米晶体(NCC)的 提取方法. 作为天然纤维素最基本的增强单元, NCC 通常呈棒状, 具有比凯芙拉纤维高的杨氏模量和比 一般陶瓷低的热膨胀系数. 因此, 近些年来利用天然 纤维素中提取的NCC制造高性能的复合材料引起了 科研人员的极大兴趣. 本文将聚焦近十年来以NCC 为第二相、高分子材料为基体的复合材料的研究进展, 重点综述复合物的界面相容性的制备及改善方法. 1 纤维素纳米晶体的制备 NCC广泛存在于植物(见图1所示)、动物和微生 物天然合成的纤维素中. 由于非晶体区域纤维素分 子排列松散, 从天然纤维素中提取、制备NCC的原 理是在酸、酶、氧化剂等的作用下, 非晶体区域优先 于晶体区域发生反应, 生成小分子而被去除, 留下纳 米尺度的纤维素晶体. 从20世纪80年代到现在, NCC的制备已经发展 出了酸解、酶解和氧化三大类方法, 其中硫酸水解是 最主流的制备方法. 值得注意的是, 不同的制备方法 得到NCC的表面性质不尽相同, 且对NCC的表面修 饰和后续应用影响较大. 如图2所示, 用浓硫酸水解 法制备NCC, 会在NCC表面留下磺酸酯基团[2], 而 盐酸水解制备的NCC表面有更多羟基. 磺酸酯基团 电离后使NCC表面带负电, 不仅有利于NCC在水溶 液中的稳定分散, 而且可以利用其表面带负电的性 质进行后续的层层自组装(LBL)、阳离子表面活性剂 或金属阳离子沉积等表面修饰. 在Fischer-Speier酯 化法中, 常使用醋酸作为水解试剂和催化剂, NCC表 面会修饰上乙酰基[3]. 随着NCC表面乙酰化程度提 高, NCC疏水性增强, 当乙酰化程度足够高时, NCC 可以很好地分散在乙酸乙酯和甲苯中, 通过这种方 法获得的NCC将能够与疏水性高分子基体有更好的 相容性. 过硫酸铵氧化法制备NCC是新近发展的一 种方法, 其优势在于用于制备NCC的原料不要求一

聚丙烯微晶纤维素复合材料的制备与性能研究

聚丙烯/微晶纤维素复合材料 的制备与性能研究 摘要 聚丙烯(PP)/微晶纤维素(MCC)复合材料是以PP为基体和新型绿色环保材料。由于MCC是亲水的极性材料,而PP是疏水的非极性材料,两者的相容性较差,复合材料中加入相容剂和MCC硅烷化处理是改善两者相容性的两种可行的途径。本文通过万能试验机、冲击试验机、偏光显微镜测试PP/MCC复合材料的力学性能和其结晶形貌,并且用美国TA公司生产的示差扫描量热分析仪和热重分析仪研究复合材料的热稳定性和结晶性能。通过对比分析不同处理方法对材料性能的影响,得出以下结果: (1)复合材料的拉伸强度,冲击强度随MCC含量的增加而降低,加入相容剂后,复合材料的拉伸强度,弯曲强度、冲击强度和硬度值都有明显的提高,MCC的热分解温度也有所提高,并且复合材料的残碳率比不加增容剂的高3%左右。 (2)随着改性MCC含量的增加,复合材料的拉伸强度和冲击强度降低,弯曲强度提高,并且强度上要高于微晶处理的MCC/PP复合材料,断裂伸长率有显著的降低。改性MCC的热分解温度比MCC高20~25℃,改性后的复合材料的结晶度和熔融温度随改性MCC含量的增加而提高。 (3)未经处理的PP/MCC复合材料的结晶形貌要优于处理后的复合材料。随着MCC含量的增多,大量模糊的折射光斑在MCC周围生成。 关键词:聚丙烯;微晶纤维素;聚丙烯接枝马来酸酐;复合材料;表面改性

ABSTRACT Polypropylene (PP) / microcrystalline cellulose (MCC) composite is a new type of green environmental protection material based on PP.Since MCC is a hydrophilic material, and PP is a hydrophobic non polar material, the compatibility of the two is poor, and the addition of the compatible agent and MCC silane treatment is the two possible ways to improve the compatibility of the two.The universal mechanical performance testing machine, impact testing machine, polarized light microscopy PP/MCC composite and its crystal morphology, and TA are shown by differential scanning calorimetry and thermal gravimetric analyzer to study composite thermal stability and crystallization properties.By comparing and analyzing the effect of different treatment methods on the properties of the materials, the following results are obtained. (1)The tensile strength of the composite material, impact strength increased with the content of MCC decreased after adding compatibilizer. The tensile strength of the composite, flexural strength, impact strength and hardness values are significantly improved and thermal decomposition temperature of the MCC also increased and residual carbon composite rate without compatibilizer of up to 3%. (2)Along with the changes of the MCC content increasing, the tensile strength and impact strength of the composite decreased, improve flexural strength and strength to higher than microcrystalline processing MCC/PP composite, the

复合材料的分层研究(谷风文书)

复合材料的分层缺陷 引言 目前被广泛用于飞机承力构件的纤维增强树脂基复合材料(CFRP)主要是层合板与层合结构。在层合板的制造过程中,常由于许多不确定的因素,使复合材料结构发生分层、孔隙、气孔等等不同形式的缺陷;同时,复合材料层合板在装配与服役过程中所受到低能冲击很容易引发各种形式的损伤。由于增强纤维铺设方向的不一致常导致铺层间刚度的不匹配,引发较高的层间应力,而层间应力的主要传递介质是较弱的树脂基体,因此对于复合材料层合板,分层是其主要的损伤形式。有报导统计,复合材料层合板在加工、装配和使用过程中产生的分层损伤,占缺陷件的50%以上[1]。 分层常存在于结构内部,无法根据表面状态检测出来,并且分层的存在极大地降低了结构的刚度,特别在压缩载荷作用下,由于发生局部屈曲而导致分层扩展,使结构在低于其压缩强度时发生破坏。在飞机研制与制造过程中,复合材料层合板的分层损伤问题一直是难以解决的结构问题之一,也是影响CFRP 在结构组分中应用的主要限制因素。因此,如何充分地结合试验测试,利用数值模拟的方法评估分层的许和容限,成为决定飞机结构综合性能的亟待解决的关键问题。 1.1分层产生的原因 Pagano 和Schoeppner [2] 根据复合材料构件的形状,将分层产生的原因分为两类。第一类为曲率构件,工程中常见的曲率构件包括扇形体、管状结构、圆柱形结构、球形结构和压力容器等;第二类为变厚度截面,工程中常见于薄层板与补强件连接区域、自由边界处、粘合连接处及螺栓接合处等。在上述结构件中,临近的两铺层极易在法向和剪切向应力作用下发生脱胶和形成层间裂纹。 以外,温湿效应、层板制备和服役状态等亦是分层产生的原因。由于纤维与树脂的热膨胀系数以及吸湿率均存在差异,因此,不同铺层易在固化过程产生不同程度的收缩并在吸收湿气后产生不同程度的膨胀,不同程度的收缩与膨胀所产

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

纤维素纳米纤维

纤维素纳米纤维 众所周知,植物的基本组成单位是细胞,其主要结构为纤维素纳米纤维,纤维素纳米纤维是拉伸纤维素链的半结晶纤维束。纤维素纳米纤维不仅纤细,而且纤维素分子链可以拉伸和结晶,所以其质量仅为钢铁的1/5,强度却是钢铁的5倍以上。另外,其线性热膨胀系数极小,是玻璃的1/50,而且其弹性模量在-200~200℃范围内基本保持不变。弹性模量约140GPa,强度2~3GPa。不同于石油基材料,作为生物基材料,更环保。 图1 纳米纤维素微观结构作为下一代工业材料或绿色纳米材料,目前已在全世界积极地开展有关制造和利用这种纤维素纳米纤维的研究。用木材浆粕等植物类纤维材料制造纤维素纳米纤维的各种方法相继被开发出来。在低浓度(约百分之几)下进行的浆粕纤维分解技术有高压高速搅拌方法、微射流法、水中逆流碰撞法、研磨机研磨法、冷冻粉碎法、超声波分丝法、高速搅拌法和空心颗粒粉碎法等。纤维素纳米纤维重要的特征是可以用所有的植物资源作为原料。除木材外,还可以从稻杆和麦杆等农业废弃物、废纸、甘蔗和马铃薯的榨渣,以及烧酒气体等的工业废弃物中制得直径为10~50nm的纳米纤维。如果有效利用轻薄且宽域分布的生物资源的特点,则可以制造和利用取自唾手可得资源的高性能纳

米纤维。日本等发达国家已经实现了纤维素纳米纤维的工业化生产。轻量、强度高的纤维素纳米纤维作为复合材料,可制造汽车零部件和家电产品外壳、建筑材料等;利用气体阻隔性可制造屏障薄膜;利用其透明性可制作显示器和彩色滤光器、有机EL基板、太阳能电池板等;利用耐热性可制造半导体封装材料和柔性基板、绝缘材料等;利用黏弹性能,可生产化妆品、药品、食品、伤口敷料如细胞培养基材、分离器和过滤器以及特殊功能纸张等。在石油工程领域,纳米纤维素凝胶可作为井下流体助剂,不发生体积收缩;可用于钻井液降滤失剂、页岩抑制剂、增稠剂等,改善相关流体的性能。《石油工程科技动态》所有信息编译于国外石油公司网站、发表的论文、专利等,若需转载,请注明出处!中国石化石油工程技术研究院战略规划研究所

聚合物纳米复合材料

聚合物纳米复合材料的研究进展 摘要 关键字 Abstract 1.引言 纳米材料是指材料的显微组织中至少有一相的一维尺寸在1-100nm以内的材料。由于平均粒径小,表面原子多,比表面积大,表面能高,因而呈现出独特的小尺寸效应、表面效应、量子隧道等特性,具有许多材料所没有的性能。介于其超凡特性,纳米材料越来越得到广泛的关注。不少学者认为纳米材料将是21世纪最有前途的材料之一,尤其是聚合物纳米材料。本文就聚合物纳米复合材料的分类、制备、改性、应用及问题和未来展望展开叙述。 2.聚合物纳米复合材料定义与分类 2.1定义 聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,纳米单元可以是金属、无机物和高分子等。 2.2分类 根据组分不同,可分为: a)聚合物/聚合物纳米复合材料:由两种或两种以上的聚合物混在一起而其中有一纳米尺寸的聚合物分散于其它聚合物单体所构成的 复合材料。如第三代环氧树脂粘接剂,它是将预聚合的球状交联 橡胶粒子分散于环氧树脂中固化而成的。 b)聚合物/层状纳米无机物复合材料:是将层状的无机物以纳米尺度分散于聚合物中而形成的。通常采用插层法制备。目前用的最多 的是蒙脱土,蒙脱土是以片状晶体而构成的。 c)聚合物/无机纳米复合粒子复合材料:是将纳米级无机粒子填充到聚合物当中去的。由于小尺寸效应使材料具有光、电、声、磁等 功能,赋予材料良好的综合性能。 3.聚合物纳米复合材料制备 3.1插层复合法 插层复合法是目前制备聚合物纳米复合材料的主要方法。根据复合过程,插层复合法可分为两类,1)插层聚合法:原理是将聚合物单体分散,插层进入层状硅酸盐片层中,然后再原位聚合,利用聚合时放出的大量的热量克服硅酸盐片层间的库仑力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合;2)熔体插层法:原理是将插层无机物与高聚物插入层状无机的层间,该方法优

细菌纤维素-纳米银复合材料的制备及其抗菌性能研究

细菌纤维素/纳米银复合材料的制备及其抗菌性能研究 摘要:细菌纤维素(bacterial cellulose, bc)是一种由微生物合成的高纯度纤维素,超细纤维网络结构使其具有高比表面积、高持水能力以及良好的生物相容性和生物可降解性,被认为是一种潜在的“理想”医用敷料材料。然而,细菌纤维素本身不具有抗菌性能,难以应对细菌感染的伤口。纳米银是一种广谱抗菌剂。因此本文以细菌纤维素为模板,采用环境友好的化学还原剂抗坏血酸为还原剂,原位制备细菌纤维素/纳米银复合材料。同时分别采用抑菌圈法和最小抑菌浓度法对复合物的抗菌效果进行评价。 关键词:细菌纤维素纳米银抗菌创伤敷料 一、引言 细菌纤维素是一种由微生物合成的高纯度纤维素,其微纤维直径只有40-60nm,是自然界中天然存在的精细纳米材料。超细纤维网络结构使其具有高比表面积、高持水能力以及良好的生物相容性和生物可降解性,被称作“大自然赋予人类的天然生物医用材料”[1]。大量研究和临床试验表明,细菌纤维素基创伤敷料对于烧伤烫伤以及慢性溃疡疾病具有良好的治愈效果,是一种极具潜力的“理想”创伤敷料材料[2]。 然而,细菌纤维素本身不具有抗菌性能,难以应对细菌感染的伤口。金属银及其化合物是目前最常用的无机抗菌剂,尤其适用于治疗烧伤烫伤以及慢性溃疡创伤[3]。因此,以细菌纤维素为载体负载纳米银粒子将有望获得具有高效保湿抗菌功能的“理想”医用创伤敷料。孙

东平等以细菌纤维素为载体,甲醛为还原剂采用液相化学还原法合成载银细菌纤维素复合材料,所得银纳米粒子平均粒径在45nm左右,对大肠杆菌、酵母菌和白色念珠菌等都有理想的抗菌效果[4]。marques等分别以细菌纤维素和普通植物纤维为基体,采用nabh4原位还原agno3的方法在纤维素膜上合成纳米银单质,结果表明细菌纤维素纤维的银负载量可达到植物纤维的50倍以上,并且对ag+具有更持久的控释作用,是一种良好的纳米银合成基质[5]。上述研究大多采用nabh4、甲醛等化学试剂为还原剂,这些试剂通常具有较高的人体毒性,反应结束后很难解决试剂在纤维膜内的残留问题,尤其不适合应用于生物医用材料产品的制备。据此,我们提出,以细菌纤维素为模板,摒弃有毒化学还原试剂,采用环境友好的抗坏血酸为还原剂,原位制备细菌纤维素/纳米银复合材料。 二、材料与方法 (一)实验材料 木醋杆菌(acetobacter xylinum):本实验室保藏。agno3、抗坏血酸购买于国药集团化学试剂有限公司。其它试剂若无特殊说明,均为市场可售。 (二)细菌纤维素膜的制备和纯化 以木醋杆菌为菌种,将活化后的菌种接种至种子培养液中,在30℃和160rpm的摇床中培养24h。按6%的接种量接种于发酵培养基中,30℃恒温培养箱中静置培养8 d,得细菌纤维素膜。培养基组成为麦芽糖25g/l,蛋白胨3g/l,酵母浸膏5g/l,ph值为5.0,121℃灭菌

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/7e2540919.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

浅谈纤维素纳米纤维增强聚合物复合材料

龙源期刊网 https://www.doczj.com/doc/7e2540919.html, 浅谈纤维素纳米纤维增强聚合物复合材料 作者:王雨朦顾锋雷汪迪良刘文峰刘金凤余阳洋 来源:《石油研究》2019年第04期 摘要:由于纖维素纳米纤维有着比较特殊的结构以及性能特征,所以在对增强聚合物,制作复合材料方面有着十分广泛的运用。本文主要阐述了纤维素纳米纤维的特点,以及对纤维素纳米纤维进行化学改性分析并简述纤维素纳米纤维增强聚合物的研究进展。 关键词:纤维素纳米纤维;增强;复合材料 一、CNF的表面化学改性 CNF有着一定的纳米尺度,并且含有着数量较多的羟基,所以经常会产生团聚的情况, 而且CNF和非极性聚合物的相容效果并不理想。通过对研究CNF进行化学改性,控制CNF 表面的极性以及自由能,有效地加强了CNF和增强聚合物的相容性,制备了性能非常优秀的复合材料。一般用到的CNF表面化学改性方式主要包括将CNF表面进行衍生化和表面接枝等。 (一)表面衍生化 CNF的表面衍生化改性通常都是针对CNF中的羟基所产生的相关衍生化反应,其中,最常见的便是CNF的表面酯化和醚化改性。和一些低分子醇类材料相同,CNF也能与酸产生反应并产生纳米纤维素酯,而和烷基化剂发生反应产生纳米纤维素醚等。CNF的酯化改性一般 包含乙酰化等,其反应过程可以在多种溶液中进行,产生相关的取代度不一的物质。而醚化改性通常是按照对CNF极性的需求,通过各种醚化剂的使用,使其和CNF中的羟基发生脱水成谜反应,实现减少CNF表面极性的目标。CNF进行衍生化改性之后,表面极性大大降低,表面的羟基变为非极性基团,并且加强了CNF和非极性聚合物的反应效果以及相容性。 (二)表面枝接 CNF的表面枝接改性一般都是利用游离基聚合和加成反应,来把聚合物中体积较大的分 子移接到CNF中,使CNF的直接聚合物既可以拥有CNF原本优秀的特征,还能够具有合成 聚合物的新特性,比如稳定性和吸水性等。把聚己内酯在催化剂的催化下通过开环聚合反应的方式移接到CNF中,加强CNF在非极性有机溶液中的散布能力。移接到CNF中的聚合物分 子不但能为CNF提高性能活性,而且还可以在横向上产生反应,相互结合,也提高了CNF分子的结构密集性。 二、CNF对聚合物复合材料的增强效果 (一)CNF对环氧树脂复合材料的增强

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

细菌纤维素-纳米银复合材料的制备及其抗菌性能研究

细菌纤维素/纳M银复合材料地制备及其抗菌性能研究摘要:细菌纤维素

伤敷料.孙东平等以细菌纤维素为载体, 甲醛为还原剂采用液相化 学还原法合成载银细菌纤维素复合材料,所得银纳M粒子平均粒径在45nm左右,对大肠杆菌、酵母菌和白色念珠菌等都有理想地抗菌效果[4].marques 等分别以细菌纤维素和普通植物纤维为基体, 采用nabh4原位还原agno3地方法在纤维素膜上合成纳M银单质,结果表明细菌纤维素纤维地银负载量可达到植物纤维地50 倍以上, 并且对ag+具有更持久地控释作用,是一种良好地纳M银合成基质[5].上述研究大多采用nabh4、甲醛等化学试剂为还原剂,这些试剂通常具有较高地人体毒性, 反应结束后很难解决试剂在纤维膜内地残留问题, 尤其不适合应用于生物医用材料产品地制备. 据此, 我们提出, 以细菌纤维素为模板, 摒弃有毒化学还原试剂, 采用环境友好地抗坏血酸为还原剂,原位制备细菌纤维素/纳M银复合材料. 二、材料与方法 <一)实验材料 木醋杆菌vacetobacter xylinum ):本实验室保藏.agno3、抗坏血酸购买于国药集团化学试剂有限公司. 其它试剂若无特殊说明, 均为市场可售. <二)细菌纤维素膜地制备和纯化 以木醋杆菌为菌种, 将活化后地菌种接种至种子培养液中, 在 30C和160rpm地摇床中培养24h.按6%地接种量接种于发酵培养基中,30 C恒温培养箱中静置培养8 d,得细菌纤维素膜.培养基组成为麦芽糖25g/l,蛋白胨3g/l,酵母浸膏5g/l,ph值为5.0,121 C

聚合物无机物纳米复合材料

聚合物/无机物纳米复合材料 张凌燕 牛艳萍 (武汉理工大学资源与环境工程学院,武汉,430070) E-mail:zhly@https://www.doczj.com/doc/7e2540919.html,或niuyanping2004@https://www.doczj.com/doc/7e2540919.html, 摘 要:本文从聚合物/无机物纳米复合材料的类型、各种制备方法及原理、优异性能及应用等方面,总结了聚合物/无机物纳米复合材料的研究进展。 关键词:聚合物/无机物纳米复合材料;增韧;表面改性 1 前 言 纳米材料是指材料二相显微结构中至少有一相的一维尺度达到纳米级尺寸(100nm以下)的材料。纳米复合材料是指2种或2种以上的吉布斯固相至少在一个方向以纳米级大小(1~100nm)复合而成的复合材料[1]。聚合物/无机物纳米复合材料(简称OINC)是以聚合物为基体(连续相)、无机物以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料[2]。按照无机物纳米粒子形态结构,OINC可分为聚合物/无机粒子纳米复合材料、聚合物/无机纤维纳米复合材料、聚合物/片层状无机物纳米复合材料。用于制备OINC的无机物包括:粘土类如滑石粉、蒙脱土、云母、水辉石等,陶瓷如SiO2、TiO2、Al2O3、AlN、ZrO2、SiC、Si3N4等,聚硅氧烷,CaCO3,分子筛,金属氧化物如V2O5、MoO3、WO3等,层状过渡金属二硫化物或硫代亚磷酸盐如MoS2、TiS2、TaS2、MPS3(M=Mn、Cd等),层状金属盐类化合物、双氢氧化物,以及碳黑、碳纤维等[3]。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。 2 无机纳米粒子的增韧机理及表面修饰 2.1 增韧机理 (1)在变形中,刚性无机粒子不会产生大的伸长变形,在大的拉应力作用下,基体和无机粒子的界面部分脱粘形成空穴,使裂纹钝化,不致发展成破坏性裂缝;无机粒子的存在产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带)。这种界面脱粘和屈服都需要消耗更多的能量,从而起到增韧作用。 (2)由于纳米粒子的比表面积大,表面的物理和化学缺陷越多,粒子与高分子链发生物理或化学结合的机会越多,因而与基体接触面积增大,材料受冲击时,会产生更多的微开裂,吸收更多的冲击能[4]。 2.2 表面修饰 刚性无机粒子的粒径越小,与基体接触面积越大,若能均匀分布,增韧增强的效果就越 1

复合材料层合板分层疲劳性能研究进展

复合材料层合板分层疲劳性能研究进展 发表时间:2019-03-13T16:03:02.393Z 来源:《中国西部科技》2019年第2期作者:陈春露单鹏宇[导读] 介绍了近年来复合材料层合板分层疲劳模型、数值模拟、以及Ⅰ型Ⅱ型和混合型分层疲劳性能试验的研究进展,并对复合材料层合板分层疲劳性能进一步的研究进行了展望。哈尔滨玻璃钢研究院有限公司复合材料层合板具有比强度高、比刚度大、抗疲劳性能好等一系列优点,能满足飞机结构重量轻、寿命长和可靠性高等特殊技术要求,已广泛应用于各航天航空领域。与此同时,许多和复合材料有关的问题逐渐凸显出来,如疲劳和耐久性,以及疲劳下的裂纹扩展及由 此引起的分层现象。由于复合材料层合板在工作中经常受到交变载荷的作用,所以对于层合板的疲劳研究,人们给予越来越多的关注[1],层合板的疲劳性能对复合材料的损伤容限设计、耐久性设计等有重要的意义。1传统疲劳模型 传统的疲劳模型,如剩余刚度模型[2、3、5]、剩余强度模型[3、4]和疲劳寿命模型[6-11],是通过建立材料结构的S-N曲线来估算材料结构的疲劳可靠性。这类宏观模型作为设计工具,已广泛应用于工程结构。但是,宏观模型的估算结果通常是保守的,并且不能够建立损伤和循环数间的关系。 2分层疲劳模型 研究疲劳损伤扩展问题最著名的,也是最为广泛应用的是Paris法则。该法则将疲劳裂纹扩展速率与能量释放率和模式比联系起来。 3 模拟 F.Shen[12]等采用虚拟裂纹闭合技术使用三维有限元模型模拟了含不同厚度圆形分层的编织和非编织复合材料的分层,计算了分层前缘应变能量释放率分布和分层前缘随循环次数的增长,并讨论了对称和非对称边界的情况,结果显示:纤维排布方向对局部应变能释放率分布有很大的影响;为节省计算时间普遍采用的四分之一模型由于边界作用会带来一定的误差。S.C.Pradhan和T.E.Tay[13]采用三维有限元单元用ABAQUS软件模拟了中间带圆孔的聚四氟乙烯分层对碳纤维编织复合材料在压缩疲劳载荷下应变能释放率随分层前缘的变化,并用超声C扫描仪确定分层的扩展状态。模拟与实验结果显示良好的吻合。4三种不同类型试验研究4.1Ⅰ型和Ⅱ型

复合材料的分层缺陷演示教学

复合材料的分层缺陷

复合材料的分层缺陷 引言 目前被广泛用于飞机承力构件的纤维增强树脂基复合材料(CFRP)主要是层合板与层合结构。在层合板的制造过程中,常由于许多不确定的因素,使复合材料结构发生分层、孔隙、气孔等等不同形式的缺陷;同时,复合材料层合板在装配与服役过程中所受到低能冲击很容易引发各种形式的损伤。由于增强纤维铺设方向的不一致常导致铺层间刚度的不匹配,引发较高的层间应力,而层间应力的主要传递介质是较弱的树脂基体,因此对于复合材料层合板,分层是其主要的损伤形式。有报导统计,复合材料层合板在加工、装配和使用过程中产生的分层损伤,占缺陷件的 50%以上[1]。 分层常存在于结构内部,无法根据表面状态检测出来,并且分层的存在极大地降低了结构的刚度,特别在压缩载荷作用下,由于发生局部屈曲而导致分层扩展,使结构在低于其压缩强度时发生破坏。在飞机研制与制造过程中,复合材料层合板的分层损伤问题一直是难以解决的结构问题之一,也是影响CFRP 在结构组分中应用的主要限制因素。因此,如何充分地结合试验测试,利用数值模拟的方法评估分层的许和容限,成为决定飞机结构综合性能的亟待解决的关键问题。 1.1分层产生的原因 Pagano 和 Schoeppner [2] 根据复合材料构件的形状,将分层产生的原因分为两类。第一类为曲率构件,工程中常见的曲率构件包括扇形体、管状结构、圆柱形结构、球形结构和压力容器等;第二类为变厚度截面,工程中常见于薄层板与补强件连接区域、自由边界处、粘合连接处及螺栓接合处等。在上述结构件中,临近的两铺层极易在法向和剪切向应力作用下发生脱胶和形成层间裂纹。 以外,温湿效应、层板制备和服役状态等亦是分层产生的原因。由于纤维与树脂的热膨胀系数以及吸湿率均存在差异,因此,不同铺层易在固化过程产生不同程度的收缩并在吸收湿气后产生不同程度的膨胀,不同程度的收缩与膨

纳米无机粒子_聚合物复合材料界面结构的研究_娄渊华

基金项目:浙江省自然科学基金(编号:Y405472),长江学者和创新团队发展计划(编号:IRT0654)资助; 作者简介:王新平,主要从事高分子表界面和功能性分离膜研究。E -mail :wxinping @yahoo .com . 纳米无机粒子 聚合物复合材料界面结构的研究 娄渊华1,刘梅红2,王新平1* (教育部先进纺织材料与制备技术重点实验室,1.浙江理工大学化学系, 2.浙江理工大学建筑环境与设备工程系,杭州 310018) 摘要:纳米粒子具有许多特性,聚合物中加入纳米粒子可以制备得到性能更加优异的复合材料,其中纳米 粒子和聚合物基体间的界面对决定纳米复合材料的性能起着重要作用。本文综述了近些年来表征纳米无机颗 粒 聚合物复合材料中界面结构的研究手段,如红外光谱(FTIR )、热重(TGA )、电子显微镜、小角中子散射(SANS )及小角X 射线散射(SAXS )等,及界面结构与复合材料力学性能和热稳定性关系的研究进展。同时也介绍了纳 米粒子对复合材料的渗透、光催化、阻燃、介电及导电性能的影响。最后对这一领域的研究进行了展望。 关键词:纳米粒子;界面结构;纳米复合材料 纳米复合材料在力学、光学、磁学性质等方面具有优异性能引起了人们的极大兴趣,已成为材料领域的一个研究热点[1~4]。纳米无机颗粒与基体间的界面结构把不同材料结合成为一个整体,并且对整体的 性能产生着重要的影响。与微观粒子相比,纳米粒子具有更高的比表面积,粒径减少使粒子 聚合物界面区域(中间相)体积分数急剧增加[5]。所以,界面结构在纳米复合材料中显得尤为重要。本文着重就纳米 粒子 聚合物的界面结构研究状况及其对复合材料的性能的影响进行综述。 1 纳米无机颗粒 聚合物界面结构的研究手段 纳米粒子和聚合物间的界面结构比较复杂,通常包括界面层的厚度、化学结构、界面相容性及粗糙程度等。近代分析测试技术的飞速发展,为界面研究提供了越来越多的技术手段。红外光谱(FTIR )、热重(TGA )、电子显微镜、小角中子散射(SANS )及小角X 射线散射(SAXS )等都成为研究纳米复合材料界面结构的有效手段。高分子链在固体颗粒表面的构型通常有三种:尾式(Tails )、环式(Loops )、链轨式(Trains )[6]。纳米粒子和基体间的相互作用程度影响其界面结构特征[7]。弱的作用使分子链向基体伸展,与粒子表面的接触点少,导致分子链以环式存在,形成弥散的界面区;强的作用可以通过聚合物的功能基团和粒子表面的活性中心成键,形成大量的接触点,导致分子链以链轨式在粒子表面形成致密的结构。此外,相互作用强度还可以控制界面区域的聚集态结构,并对纳米颗粒周围较大的区域内产生影响。 Tannenbaum [7]利用FTIR 表征了纳米氧化钴 聚甲基丙烯酸甲酯(PMMA )的界面结构。根据红外吸收峰的变化定量测定纳米粒子和聚合物分子接触点的数目。当PMMA 在纳米氧化物表面形成锚点时(anchoring point )就会产生羧酸根负离子,同时PMMA 和氧化钴表面强相互吸附作用,导致聚合物链在纳 米粒子表面运动受限制引起构象的变化。而PMMA 分子构象的变化可以根据其在1241c m -1和1271cm -1处吸收峰(对应C —C —O 基团的对称和反对称伸缩振动)的变化来研究。二者相结合就可以计算出每条链在粒子表面锚点的数目。结果发现锚点的数目会随PMMA 分子量的增加而增加,从分子量为30000时的9.2,增加到分子量为330,000时的466.1。同样方法研究了Fe 3O 4 P MMA 和Al 2O 3 PMMA 体系[8],发现它们的锚点数目分别为135和137。 FTIR 更是研究纳米颗粒 聚合物界面化学结构变化的有效手段[9,10]。纳米SiO 2依次经氨丙基三乙氧基硅烷(APT MS )、4,4′-氧化二邻苯二甲酸酐(ODP A )处理后发现红外谱图上出现C —N 的伸缩振动峰。然·38·高 分 子 通 报2009年4月 DOI :10.14028/j .cn ki .1003-3726.2009.04.009

相关主题
文本预览
相关文档 最新文档