当前位置:文档之家› 注塑模具生产流程及内容

注塑模具生产流程及内容

注塑模具生产流程及内容
注塑模具生产流程及内容

模具的概述

(一)模具的概念 ................................................................................................................................................ (二)模具生产的特点 ........................................................................................................................................ (三)模具的类型 ................................................................................................................................................ (四)模具制作的流程 ....................................................................................................................... 模具设计

一接受任务................................................................................................................................... 二分析、消化制品最新数据....................................................................................................... (一)分析制品的用途及工艺 ......................................................................................................

1 分析制品的几何特征................................................................................................................

2 分析制品的尺寸精度................................................................................................................

3 分析制品的表面质量................................................................................................................ (二)消化制品的工艺资料,确定成型方法、设备及工艺 ......................................................

1 成型方法的确定........................................................................................................................

2 成型设备的确定........................................................................................................................

3 成型工艺的确定........................................................................................................................ 三模结构方案的确定................................................................................................................... (一)模腔制品数量及排列方式的确定 ......................................................................................

1 模腔制品数量的确定................................................................................................................

2 制品在模具中排列方式............................................................................................................ (二)制品分型面的确定 .............................................................................................................. (三)浇注系统的确定 ..................................................................................................................

1 冷流道的概述............................................................................................................................ (1).浇注系统的基本结构............................................................................................................ (2).浇注系统的设计要求............................................................................................................ (3)主流道和主流道衬套(浇口套)的设计............................................................................. (4)分流道的设计......................................................................................................................... (5)浇口的设计............................................................................................................................. (6)冷料井的设计.........................................................................................................................

2 热流道的简单概述.................................................................................................................... (四)成型零件结构的确定 ..........................................................................................................

1 型腔、型芯的设计....................................................................................................................

2 滑块、抽芯、斜顶的确定........................................................................................................ (五)顶出系统的确定 ..................................................................................................................

1 顶出系统的设计要求有............................................................................................................

(六)冷却、加热系统的确定 ...................................................................................................... (七)排气系统的确定 .................................................................................................................. (八)模具其他系统的确定 ..........................................................................................................

1 模架大小的确定........................................................................................................................

2 导向机构的确定........................................................................................................................

3 定位机构的确定........................................................................................................................ 4其他辅助机构的确定................................................................................................................ (九)成型零件及其他结构的尺寸、强度进行计算、校核 ......................................................

1 成型零件的刚度、强度的计算和校核....................................................................................

2 其他结构的尺寸、强度的计算和校核.................................................................................... 四制品的CAE分析(模流分析) .................................................................................................. 五模具详细二维总装图的绘制、确定及主材料的订购........................................................... (一)绘制总装图的内容 .............................................................................................................. (二)绘制总装图的步骤 .............................................................................................................. (三)订购主材料........................................................................................................................... 六模具三维的建模、确定及下发............................................................................................... (一)建模过程的简单讲述 .......................................................................................................... (二)模具三维图的确定及下发加工 .......................................................................................... 七绘制所有零件图、更新总装图及小料、标准件的订购 ......................................................... (一)绘制零件图........................................................................................................................... (二)更新最终总装图数据 .......................................................................................................... (三)订购小料及标准件 ..............................................................................................................

模具加工

一零件加工工艺的编制............................................................................................................... (一)加工工艺的内容及作用 ...................................................................................................... (二)编制工艺文件的原则、原始资料 ...................................................................................... (三)编制零件加工工艺文件的步骤 ..........................................................................................

1 零件图的分析............................................................................................................................

2 拟订加工工艺路线.................................................................................................................... 二模具零件加工...........................................................................................................................

零件检验

模具装配

模具试模

模具验收

模具的概述

(一)模具的概念:

在一定的工艺条件下,将其特定的形状和尺寸赋予材料的工具。 广义:用来生产模型的工具。 (二)模具生产的特点:

1.生产能力高

2.制品质量的一致性好

3.原材料的利用率高,成本低 4.适用于批量生产 (三)模具的类型

1.按塑料制品:注射、挤出、吹塑、压制、泡沫成型、浇注、热成型、滚塑(搪塑) 2.按成型方法:压制、压铸、挤出、注射 (四)模具制作的流程

模具设计

一.接受任务

所谓的任务就是根据客户提供的数据为依据,设计所需要模具的工作。

数据的内容包括:

1.经审签的正规制件图纸,注明有关制品采用塑料的牌号、透明度、表面要求等信息。

2.最新符合装配要求的三维数据。(没有三维数据的需要制品造型)

3.客户提供的制品样件。

4.制品说明书或技术要求:包括生产产量、模具类型、模腔数量、适用机型、模具材料等要求。

(在我公司会提供一份有关制品信息的模具开发依据表)

二.分析、消化制品最新数据

接受任务后收集整理有关制件设计、成型工艺、成型设备、机械加工及特殊加工的有关资料,对制品进行详细的分析。

(一). 分析制品的用途及工艺。

属于内饰件还是外观件(对于模具的选材很有讲究)

1.分析制品的几何特征:

(1)结构:制品是否需要有滑块、斜顶、互换镶件、抽芯、嵌件等。

(2)斜度:确定制品的出模方向和顶出方向,考虑制品的脱模斜度,一般斜度落差大于0.15mm 外观面取1°—3°,有蚀纹的表面斜度一般取3°—6°。

(3)形状:根据经验分析有些制品长宽比大时是否会出现容易产生变形、进料不满足、缺料、不容易打挺等问题。这是需要考虑模具分模设计前是否要设计预变性、增加筋等结构。

2. 分析制品的尺寸精度

制品的尺寸包括:体积大小、外轮廓尺寸、壁厚。

(1)塑件的体积V制(与注射机的理论注射容积V注的关系式):

0.2V注≤V制≤0.8V注

(2)制品尺寸的公差等级,是否影响装配要求,是否方便于模具的修改。

计算制品成型面积S投和所需要的和模力F合

F合=S投×P涨

(3)壁厚:制品是否有太厚太薄不均匀,容易产生表面缩痕的地方;会产生缩痕的筋的厚度不允许超过1/2的制品壁厚,需要考虑制品局部增加壁厚还是还是减小该处筋的厚度。

3. 分析制品的表面质量

分析制品在外表形状、颜色、透明度(透明度越高对模具材料的要求越高,成型零件表面光洁度的要求也越高)、使用性能方面的要求,有无二次加工如涂装、电镀、胶接、钻孔、嵌件等,对于熔接痕、缩痕等成型缺陷的允许程度及解决方案。

(通过以上对制品综合分析的过程中发现有关对制品、模具不利的结构,需要对制品设计更改的问题点一一列出,并提出修改方案与接下来的制品的分型线,浇口位置一起作出相应的反馈文件,以邮件的形式向客户提出,经客户确认修改后才能更改。制品的分析这一步在模具设计中起着很关键的作用,只有当你把制品分析透了,才能使接下来的设计工作顺利进行,避免出现很多不必要的修改。)

(二)消化制品的工艺资料,确定成型方法、设备及工艺

很多客户提供的制品数据中包含了模具类型(采用冷流道/热流道)、模腔数量、注塑机屯位、模具适用寿命、制品成型周期等要求,模具设计时就要以符合客户的要求为先。分析任务中提出的模具结构类型、模腔数量、适用机型、生产产量、材料规格等要求是否恰当,能否落实。

制品成型材料应当满足塑料制件的强度要求,具有好的流动性、均匀性和各向同性、热稳定性。根据塑料制件的用途,成型材料应满足染色、镀金属的条件、装饰性能、必要的弹性和塑性、透明性或者相反的反射性能、胶接性或者焊接性等要求。

1. 成型方法的确定

采用直压法、铸压法还是注射法。这里我们讲述的是注塑模具的设计,采用的是最常用的注塑机(注塑机的形式也有很多有单头注塑机、平行双头注塑机、交叉双头注塑机),所以根据制品的特性考虑一次注射成型/还是多次注射成型(采用的是双色模:有两副模具结合的、在一副模具上完成两种材料的注塑)

2. 成型设备的确定

根据制品的结构、成型方法及任务的要求,合理的选择或校对成型设备的种类、大小、规格,因此必须熟知各种成型设备的性能、规格、特点。对于注射机来说,在规格方面应当了解以下内容:注射容量、锁模压力、注射压力、模具安装尺寸、顶出装置及尺寸、喷嘴孔直径及喷嘴球面半径、浇口套定位圈尺寸、模具最大厚度和最小厚度、模板行程等,具体见相关参数。

附本:注塑机规格(海天).dwg

3. 成型工艺的确定

对于制品的成型工艺,可以根据制品的大小、材料及选择的成型设备来查阅有关的资料或参考公司以往的经验。一般需要查阅的数据有以下内容:

(1)原材料的预先烘干温度设备:干燥机

(2)设备料筒的温度根据成型设备分段选择所需温度值

(3)设备喷嘴的温度

(4)压力的大小:注射压力及保压大小

(5)时间的设定:溶料时间、注射时间、保压时间、冷却时间

以上的工艺参数只是一个初定的数值,合理的数值还需在实际试模过称中调试出来。

注意:在开始模具结构方案确定的同时也是利用CAD软件开始进行二维总装图初步的绘制。进行二维总装图初步绘制时要将制品图的收缩率根据使用材料的不同进行设置。

三.模具结构方案的确定

确定合理的模具结构在于对制品的成型工艺的分析、成型设备的确定及型腔数量的确定后,在绝对可靠、易于加工的条件下能使模具本身的工作满足该塑料制品的工艺技术要求和生产经济的要求。

制品的的工艺技术要求是要保证塑料制件的几何形状,表面光洁度和尺寸精度。

生产经济要求是要使塑料制件的成本低,生产效率高,模具能连续地工作,使用寿命长,节省劳动力。

(一).模腔制品数量及排列方式的确定

根据任务的要求或制品的几何特性及结构形式确定合理的模腔数量,及排列方式。

1. 模腔制品数量的确定

1)与任务的要求有关

2)关系到接下来成型设备的选择,与设备的最大注塑量、最大锁模力等有关联

3)根据塑件的精度要求来确定

4) 根据模具生产的经济性来确定

2. 制品在模具中排列方式

应注意以下几点定位原则:

1)制品或制品组件(含嵌件)的正视图应相对注塑机的轴线对称分布,有利于成型。

2)制品的方位应便于脱模,注塑机开模后,制品应尽量留在注塑机的动模侧,这样便于利用成型设备的顶出系统。

3)制品在模具中有互相垂直的活动成型零件成型孔、槽、凸台时,制品的位置应着眼于使成型零件的水平位移最简单、最可靠,使抽芯机构操作方便。

4)制品的取件方式、方向,人工取件或机械手取件(全自动生产),考虑取件的可靠性。

5)最后制品位置的选定应结合浇注系统的浇口位置,冷却系统和加热系统的布置,以及制品的外观要求等综合考虑。

(二).制品分型面的确定

分型面选取原则:应有利于制品的顺利脱模、模具结构的简单,利于模具的加工、排气、成型操作,保证制品的质量、外观及设备的合理利用。

分型面之间的定位很重要。在模具的合模过程中,动定模不能靠导柱导套来定位,因为导柱导套的主要是起导向作用,而且导柱导套之间是间隙配合,存在一定的公差,所以靠导柱导套来起动定模间的定位会有很大误差。为了起到好的定位效果,尽量在分型面上设计直接定位面,没有足够空间的时候可以在模板四周安装标准的辅助定位键。

分型面上设计加工工艺基准面、基准孔。基准的设计可以方便零件在机加工过程中的对刀,减少加工误差。

分型面的位置要合理尽量避免尖角的出现,因为出现尖角会影响模具的强度。考虑是否可以更改制品的设计。

设计分型面时,除了考虑以上的内容外,还要考虑到加工,钳工的装配等。

(三).浇注系统的确定

浇注系统在模具中具有非常重要的作用,它的设计合理性直接影响制品的成型质量,所以在模具制作过程中,浇注系统的设计也是一个非常重要的环节。根据制品的结构、模腔的数量等有关要求,合理的选择进料方式、进料点的位置和形式。浇注系统的基本类型有冷流道和热流道两种形式。 1. 冷流道的概述;

(1).浇注系统的基本结构:

1)主流道:引料入模,将熔料引入模具的分型面;

2)分流道:将来自主流道的熔料进行分流、转向,引导各型腔或型腔的各部分; 3)浇 口:熔料由分流道流入型腔的通道;

4)冷料井(端):容纳两次注射间歇中喷嘴头部的冷料。 (2).浇注系统的设计要求:

1) 物料通过浇注系统时,压力损失要小;2) 热损失要小;3) 用料要少。 4) 便于模具的加工、脱模及清除料把; 5) 在制品上产生的工艺缺陷要少; (3)主流道和主流道衬套(浇口套)的设计:

1) 进口端要与喷嘴端密合,不能漏料。如下图所示:

R=R1+1; d=d1+1

2) 流道要有脱模斜度α=(2o ~4o ) 和足够的粗糙度;

3) 浇口套工作时不能出现轴向移动和径向转动,需要设计定位结构。 (4)分流道的设计:

1) 截面形状和尺寸:取决于塑件大小、模具结构和物料。 常用截面形状:(圆形)、梯形

3.7L W D 4?=

W :塑件重量(g ) L :分流道长度(mm )

2)长度:在结构允许的前提下,尽量短;

3)布置:总的要求型腔同时充满,且用料要少,均衡布置。

(5)浇口的设计:

1)浇口的位置选择:

选择标准:有利于型腔的排气;尽量选在(或靠近)壁最厚的部位;尽量设在无损制品外观的位置;要有利于物料在模内分流后的熔合;要防止产生充模喷流的现象;尽量减小型芯的变形;采用纤维状的填充料时,首先分析制件的受力方向,设计时让料流方向与其一致。

2)浇口的形式与尺寸:

1) 直浇口:

特点:充模速度快、压力损失小、清除浇口难、且制件上留有大块痕迹;

适用:用于加工热敏性及高粘度物料,成型大型薄壁容器型制品;常用于一模一件。

设计:与主流道的设计一样,同时一定要注意轴径向定位(校核螺钉/圆柱销,不要产生轴径向移动和转动)。

2) 侧浇口(边缘浇口):

特点:加工修整简单、去除容易、制件上留有明显痕迹;常用于多型腔或一腔多点进料。容易出现充模喷流现象影响制品的表面质量。

适用:所有料;板条类的小型制品。

设计:面长C:小制品0.5~1.8 大制品2~4

h = n .t30A

n b ?

= t:制品壁厚A:凹模的表面积

喷流现象

注塑填充式塑料从一受限区域(如浇口、喷嘴),到一较厚的和开阔的区域中,形成的弯曲S 型的流痕的现象陈为喷流现象。

3)伞形浇口:

特点:充模速度快、压力损失小、留痕大、清除浇口困难;

适用:板条类的大面积的制品。

L=2-5mm 30A

n W ?

=

A:凹模的表面积h1 = n .t h2= W h1/D :制品壁厚

4)搭接式浇口:

特点:可防止粗大制品的充模喷流现象,但加工、修整、去除困难,制件上留有明显痕迹。

设计:面长c :小制品 0.5~1.8 大制品 2~4

b /2h

c 1+=

5)盘形浇口:

特点:塑件无熔合线,对强度无影响,但加工、修整、去除困难,制件上留有明显痕迹。 清除麻烦,需用切刀。

适用:单型腔、管状薄壁制品。 设计:面长c :0.75~1

t

n h ?=75.0

t

n h c ?==1

6)点浇口:

特点:留痕小,不需清除,二次加工少;位置选择比较自由;成本高。 适用:多型腔中心进料/一腔多点进料。

7)潜伏浇口(隧道式浇口):

特点:浇口没有位于分型面处,解决了点浇口必须三板的结构和顶部进料的问题。 适用:多型腔模具、成型弹性材料。

2

50

2.5)

(0.76)(3130)(1050)(2020)

(5max max ==-=-=-=-=-=y x d d o

o o

φφγβα

外侧进料 内侧进料

8) 秤钩浇口(香蕉式浇口):

特点:留痕小,不需清除,二次加工少;位置选择要求比较高;成本高。适用:一般用于成品向外面不能有浇口痕,而亦不能用潜伏进料的情况下。

H

H > L

根据实际的设计需要,秤钩浇口的结构形式也有所不同。

(6)冷料井的设计:

冷料井

2. 热流道的简单概述

热流道又称无流道是指在每次注射完毕后流道中的塑料不凝固,塑胶产品脱模时就不必将流道中的水口脱出。由于流道中的塑料没有凝固,所以在下一次注射的时候流道仍然畅通。

简要言之,热流道就是注塑机喷咀的延伸。

(1)热流道使用的优点

1)缩短制件成型周期

2)节省塑料原料

3)减少费品,提高产品质量

4)消除后续工序,有利于生产自动化

5)扩大注塑成型工艺应用笵围

(2)热流道使用的缺点

模具成本上升

热流道模具制作工艺设备要求高

操作维修复杂

(3)热流道系统的组成

1)热流道板(MANIFOLD)

2)喷嘴(NOZZLE)

3)温度控制器

4)辅助零件

热流道模具已被成功地用于加工各种塑料材料。如PP,PE,PS,ABS,PBT,PA,PSU,PC,POM,LCP,PVC,PET,PMMA,PEI,ABS/PC等。任何可以用冷流道模具加工的塑料材料都可以用热流道模具生产

(四)成型零件结构的确定

根据制品的结构形状对成型零件尺寸、结构的确定

要在现有的加工手段和条件下,解决模具的加工问题。设计的结构要适用可靠、方便加工、易于装配、经济。

1.型腔、型芯的设计

(1) 根据任务中提出的要求/结构的合理的选着结构方式:

1) 整体式:将行腔部分直接设计在模架的定模板上的结构形式,这样材料费很高,相对来说能

保证模具有足够的强度、不易变形、加工困难,加工过程中有利于制品的位置精度。

2)

方便加工、修改,对装配的要求的较高

3) 局部镶芯式:将型腔的局部形状在行腔板中以镶嵌的结构形式,易于加工、方便更换,安装、使用可靠,加工精度要求高。

(2) 成型零件的尺寸大小的确定

结构方式的确定后,需要确定成型零件尺寸的大小,取决于制品的大小、高度,其次还要考虑滑块,斜顶,水路的位置。理论上市需要进行强度和刚度的计算,但很计算工作很繁琐,目前还是以经验来确定的。

2. 滑块、抽芯、斜顶的确定

当制品上有和出模方向干涉的凹凸部位时,需要设计滑块、抽芯、斜顶的结构形式。根据制品结构的不同,具体结构形式及尺寸的大小需要在实际设计的时候结合以往的经验全面考虑。设计要有足够的行程空间,保证能顺利出模、足够的使用强度、结构尽量简单、活动可靠、加工方便、便于安装。活动面之间都要结合耐磨块的使用,这样可以便于调整及更换,能使用标准件的地方,尽量使用标准件。如斜导柱、固定块,限位机构、耐磨块、导向块、油缸等标准件的使用。

(五)顶出系统的确定

根据制品的结构、布局的设计,设计合理的顶出系统。

1. 顶出系统的设计要求有:

(1)保证制品的不因推出而变形、损坏(顺利脱模);

(2)顶出系统要有足够的顶出距离、强度;结构尽量简单、动作可靠;

(3)合模时能准确、可靠的复位;

2. 顶出方式的选择

方式很多、很灵活也很重要,要结合制品的有关分析进行合理的选择:

推杆、推管、推板、顶块、斜顶、组合式顶出(如推板加滑、抽芯)、延迟顶出、气顶等方式。如桶类制品的顶出方式有推板或者推杆和顶块的结合,这时推杆就需要增加延迟的设计,或者二次顶出的方式。

(六)冷却、加热系统的确定

模具的冷却和加热的方式取决于制品的要求,为了缩短模具的制作周期,对于模具的冷却系统很关键,因为冷却系统的效果直接影响到模具的制作周期与制品的质量。

大多数的模具只需要冷却系统,当只有制品表面有很高的高光要求时需要用到加热系统,如:液晶电视、显示器的前盖,冰箱上的面板等很多表面要求高的制品。模具上还需要添加温度调节系统,使模具的温度保证在一定的温度。

一般制品的成型温度在200°C左右,而制品固化后,从模具中取出的温度在60°C左右。热塑性塑料在成型后必须对模具进行有效的冷却,使熔融塑料的热量必须很快的传给模具,使塑料迅速的冷却以便脱模。冷却、加热系统的排列方式有喷管,翻水孔等形式。

喷管翻水孔

基本的水路尺寸如下图所示:

D: 直径根据制品的大小决定(也有客户指定),一般¢6—¢18mm

d: 深度跟据水路直径的大小取1.5D—3D

P: 距离也根据水路直径的大小取3D—5D

设计要点:

水路的与制品面的距离最好相同。也就是说,水路排列的形状尽量与制品形状吻合。

浇口附近加强冷却。

正常生产中,水路出入口的温差尽量低。如果温差太大,说明模具的的温度分布不均匀;设计出合理的排列方式可以解决温差太大的问题。对于要求高的制品生产而言,出入口的温差最好控制

在6°C左右。

(七)排气系统的确定

制品的成型过程中,塑料进入模穴后有一定的空气必须容易排出,塑料才能顺利快速的填充。排气开设在制品周围的分型面上;在制品允许的条件下镶件的形式能很好的起到排气的作用。排气不良时,制品会因困气造成的表面气泡、焦痕甚至缺料。

很多排气不良的问题是因为浇注系统的的不合理造成的;制品设计的不合理也会有一定的影响。

产品说明书及工艺描述

附件G 出口食品生产企业产品说明书 填写说明:1.产品名称应采用能反映产品真实属性的专用名称; 2.所用原、辅料应填写 配料清单;3.产品特性指水分活度a w, pH等;4.产品规格指内、外包装的材料及包装形式;5.保存方式指贮藏温度及其他贮藏条件; 6.预期用途指产品预期使用者和使用方法(如 即食或进一步加工处理后食用等);7.产品卫生质量标准包括国际标准、国家标准、进口国标准、行业标准、企业标准的标准名称和标准编号。 附件3 出口食品生产企业生产加工工艺 产品名称

保温 保温是巧克力生产的重要工 序。保温的作用在于控制可可脂在 不同的温度下相态的转换,从而达 到调质的作用。 保温的温度一般控制在45 C 60 C 浇摸 冷凝冲摸 涂层 浇模用的巧克力料要严格控制 温度和粘度。温度过高会破坏已经 形成稳定晶型的可可脂晶型。使成 品质构松散,缺乏收缩特性,难于 脱模,在贮存中易出现花斑或发暗 现象。温度过低,物料粘稠,浇模 时定量分配困难, 且物料内汽泡难 以排除,制品易出现蜂窝。所以在 成型过程中,物料应始终保持准确 的温度,并要求保持在最小的温差 范围内。 浇摸后的巧克力要求及时送 螺旋速冻机冷凝。 从速冻机出来的巧克力,经 传送带运到冲模机,气压冲模 涂衣成型的巧克力称为夹心巧克 力,多是根据夹心而命名的。如花 生夹心巧克力、杏仁夹心巧克力 等。对涂衣成型工艺有下列要求: (1)制心子和对心子的要求:心 子的性质和香味要能与巧克力外衣 和谐地结合,具体要求是口感柔 软,易溶化,不粘滞糊口以及不会 引起形态变化、渗透穿孔、胀缩破 裂、酸败变质、虫驻和霉变等。涂 衣时心子和温度一般要低于外衣温 度5C左右。 (2)制外衣和对外衣的要求: 涂衣用的巧克力料中的可可脂要 室内温度控制在18C?22 r 冷库温度W -18 C ;库内外温差 般不超过10C。 控制气压 心子浆温度》外衣浆温度5C ; 浆料 温度一般控制在40C?55C

制氮机组工作原理

制氮机组工作原理 工作原理:碳分子筛是一种以煤或果壳为原料经特殊加工而成的黑色颗粒。其表面布满了无数的微孔。碳分子筛分离空气的原理,取决于空气中氧分子和氮分子在碳分子筛微孔中的不同扩散速度,或不同的吸附力或两种效应同时起作用。在吸除平衡条件下,碳分子筛对氧、氮分子吸附量接近。但在吸附动力学条件下,氧分子扩散到分子筛微孔隙中速度比氮分子扩散速度快得多。因此,通过适当的控制,在远离平衡条件的时间内,使氧分子吸附于碳分子筛的固相中,而氮分子则在气相中得到富集。同时,碳分子筛吸附氧分子的容量,因其分压升高而增大,因其分压下降而减少。这样,碳分子筛在加压时吸附氧分子使氮分子得到富集,减压时解吸出氧分子排到空气中,如此反复循环操作,达到分离空气的目的。简称PSA制氮。2、工艺流程本装置按工艺流程划分:可分为空气源净化处理部分;变压吸附制氮部分;缓冲罐部分等三部分。 空气源净化处理部分:由冷冻干燥机(气源系统),多级过滤器(气源系统),高效除油器,空气缓冲罐等组成。由无油压缩机压缩的空气(含油量≤0.01mg/m3,压力≥0.65MPa)经过滤器分离滤除杂质,然后进入冷冻干燥机(或冷却器)进行冷冻干燥出水。(冷冻干燥机设有自动排水器能自动排出大量的水份。)然后进入高效除油器除去微量油分。经以上处理后的压缩空气是洁净的无油干燥空气贮于空气缓冲罐中。变压吸附制氮部分(又称组件),由吸附罐B1、B2及相关管路阀门组成。干燥的空气进入B1或B2罐时,空气中氧气和二氧化碳被分子筛吸附,从吸附塔输出的是工业粗氮,经过滤器F2源源不断贮存在氮气缓冲罐C2中。B1和B2罐每隔1分钟自动交换一次,一个工作,一个再生。

炼钢工艺的发展历程

炼钢工艺的发展历程 2008年12月8日摘自冶金自动化网 炼钢方法(1) 最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。 炼钢方法(2) 1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。 炼钢方法(3) 1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。 炼钢方法(4) 1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。 炼钢方法(5) 1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。 炼钢方法(6)

瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法, 如图1所示。 图1 BOF法 炼钢方法(7) 1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP (Quiet BOP) ,如图2所示。 图2 Q-BOP法 炼钢方法(8) 在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。 图3 转炉顶底复合吹炼法 炼钢方法(9) 我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。

4D产品简介与制作工艺

4D产品简介及制作工艺 概述 DLG 、DEM、DOM 、DRG各自作为一种产品历史已经很悠久了。由于受到计算机的发展的限制,主要受到计算机处理速度和硬盘容量的限制,发展的并不十分迅速。90年代计算机技术的飞速发展,给“4D”技术带来了勃勃生机。 在我国国家测绘总局97年10月在召开了“4D生产工作会议”,会议成立技术组,设备组,资料组。11月在召开了“98年数字产品规模化生产管理工作座谈会”。会议主要围绕4D产品的生产进行。从资料的准备,设备的购置,软件的确定,技术规定的制定进行了详细的讨论。98年开始在测绘局,测绘局,测绘局,测绘局等进行数字产品规模化生产。主要以七大江河防洪区域及洪水威胁区、地质勘探为主进行DOM,DEM的生产工作。 一、数字线划地图 数字线划地图(DLG) 数字线划地图(Digital Line Graphic 简称DLG)是现有地形图上基础地理要素的矢量数据集,且保存要素间空间关系和相关的属性信息。 数字高程模型 数字高程模型(DEM) 数字高程模型(Digital Elevation Model 简称DEM)是在高斯投影平面上规则格网点平面坐标(X,Y)及其高程(Z)的数据集。 数字正射影像图 数字正射影像图(Digital Orthophoto Map 简称DOM)是利用数字高程模型对扫描处理的数字化的航空相片/遥感相片(单片/彩色),经逐象元进行纠正,再按影像镶嵌,根据图幅围裁剪生成的影像数据。一般带有公里格网、图廓/外整饰和注记的平面图。 数字栅格地图 数字栅格地图(DRG) 数字栅格地图(Digital Raster Graphic 简称DRG)是纸质地形图的数字化产品。每幅图经扫描、纠正、图幅处理及数据压缩处理后,形成在容、几何精度和色彩上与地形图保持一致的栅格文件。 二、4D产品的特性 DLG 数据量小,便于分层,能快速的生成专题地图所以也称 字矢量专题信息(Digital Thematic Informatiom 简称 DTI)。 基本容:地物、地貌、属性信息、元数据。 数据格式: dwg/dxf、e00、dgn 获取方法:扫描矢量化野外获取摄影测量方法 常用软件:Geoway、Autocad、Arcinfo、Microstation DEM DEM的水平间距可随地貌类型不同而改变。根

PSA制氮机工作原理及工艺流程

PSA制氮机工作原理及工艺流程 一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:N2:78.084%、O2:20.9476%、氩气:0.9364%、CO2:0.0314%、其它还有H2、CH4、N2O、O3、SO2、NO2等,但含量极少),分子量为28,沸点:-195.8℃,冷凝点:-210℃。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂——碳分子筛最佳吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色 碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是N2和Ar的混合气。 由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(最大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。 变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。 三、PSA制氮基本工艺流程 空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。 制氮机的工作流程是由可编程控制器控制三个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。三个二位五通先导电磁阀分别控制左吸、均压、右吸状态。左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,三个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。当流程处于左吸状态时,控制左吸的电磁阀

PSA变压吸附制氮原理资料

制氮机 制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。 根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。 制氮机是按变压吸附技术设计、制造的氮气设备。制氮机以优质进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。 中文名制氮机 含义制取氮气的机械组合 工作原理利用碳分子筛的吸附特性 主要分类深冷空分,膜空分,碳分子筛空分、 1工作原理 1. ? PSA变压吸附制氮原理 2. ?深冷空分制氮原理 3. ?膜空分制氮原理 2主要分类 1. ?深冷空分制氮 2. ?分子筛空分制氮 3. ?膜空分制氮 3设备特点 4系统用途 5技术参数 工作原理 PSA变压吸附制氮原理 碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。

电炉炼钢原理简介

电炉炼钢原理简介 LELE was finally revised on the morning of December 16, 2020

炼钢工艺过程 造渣:调整钢、铁生产中熔渣成分、和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。 出渣:炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。 熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的条件。熔池搅拌可藉助于气体、机械、等方法来实现。 底吹:通过置于炉底的将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,,提高。 熔化期:炼钢的熔化期主要是对平炉和而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的。 氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或中进行。 精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。 还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。 炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉

转炉炼钢原理汇总

2.2 转炉炼钢的原理2.2.1 转炉炼钢原理简介:这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200 摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300 摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化( FeO, SiO2 , MnO ) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15 分钟左右。如果空气是从炉低吹入,那就是低吹转炉。2.2.2 转炉冶炼的具体原理『(1)熔池元素氧化规律Si 的变化规律开吹时[ Si ]大量氧化,并结合为( 2 FeO ? SiO2 ),随石灰溶解转变为稳定化合物( 2CaO ? SiO2 ) Mn 的变化规律吹炼初期迅速氧化,中后期被[ C ]还原,后期由于渣中氧化性提高,[ Mn ]被再次氧化. C 的变化规律熔池中氧与碳生成CO }{气泡上浮,[% C ]×[% O ]=m(常数0.002~0.0025),[ C ]与[ O ] 成反比.吹炼初期由于[ Si ]、[ Mn ]的氧化,脱碳速度小,中期脱碳速度最快,后期[ C ]浓度低,脱碳速度下降. P 的变化规律低温、适宜的高碱度、高氧化性利于脱[P],吹炼前期应使石灰快速成渣,将( 3FeO ? P2 O5 ) 、置换为( 3CaO ? P2 O5 )和(4CaO ? P2 O5 )稳定化合物,使[P]去除. S 的变化规律高温利于脱[ S ],渣中( CaO ) 活度大,利于脱[ S ],但转炉渣的氧化性高,因此转炉的脱[ S ] 效率低.』[1] (2)转炉中各种元素具体的反应机理1 ○ Si 的变化规律钢液中硅的氧化特点在任何一种炼钢方法中,硅的氧化反应都进行得很激烈。因为硅是易氧化元素,在所有的杂质元素中,硅和氧的亲和力最大,硅的氧化产物是只溶于炉渣的酸性氧化物SiO2 ,它的分解压力比碳、锰、磷的氧化物分解压力都低,从而使得生成的SiO2 很稳定。所以,硅极易被氧化,且氧化时放出大量的热量。在氧气转炉中开吹几分钟内硅即被氧化完毕;在超高功率电炉大量用氧的情况下,在熔化末期或氧化初期,硅几乎氧化完毕;在普通电炉中熔化期硅将被氧化掉70%,少量的残余硅在氧化初期也能降低到最低限度;硅的氧化反应的反应产物容易从反应区排出。硅的氧化反应(1)硅的氧化反应方程式当金属炉料未被炉渣覆盖,或氧流直接吹入金属熔池时,炉料中的硅被气态氧直接氧化[ Si ] + {O2 } = ( SiO2 ) + 740645 J (1)当炉渣形成后或金属液滴和气泡与渣接触时,硅的氧化主要在炉渣与金属界面上进行2( FeO) + [ Si ] = ( SiO2 ) + 2[ Fe] + 341224 J (2)金属液中的[Si]和[O]的反应[ Si ] + [O] = ( SiO 2 ) + 817448 J (3)注意:硅的氧化都是较强的放热反应。(2)硅的氧化产物是SiO2 Si 氧化时产生的( SiO2 )起初与( FeO )结合生成硅酸铁( 2 FeO ? SiO2 ):( SiO2 ) + 2( FeO) = (2 FeO ? SiO2 ) (4)在碱性渣炼钢操作中,随着石灰的逐渐熔化, ( 2 FeO ? SiO2 ) 中的FeO 被强碱性的CaO 所置换得到氧化产物硅酸钙:2( FeO ? SiO2 ) + 2(CaO) = (2CaO ? SiO2 ) + 2( FeO) (5)硅酸钙(2CaO·SiO2)很稳定,所以在碱性炼钢操作中,冶炼前期Si 几乎全部被氧化,不会再被还原。硅的还原在酸性炼钢操作中,当熔池温度升高到一定程度后,将发生硅的还原反应。( SiO2 ) + 2[C ] = [ Si ] + 2{CO} (6)从反应式可看出,当有产生CO 气泡核心的条件时,就有可能发生Si 的还原反应。影响硅的氧化和还原反应的因素主要因素是温度、炉渣成分、金属液成分和炉气氧分压。(1) 温度低有利于硅的氧化;(2) 增加CaO、FeO 含量,有利于硅的氧化。(3) 金属液中增加硅元素含量,有利于硅的氧化;(4) 炉气中氧分压越高,越有利于硅的氧化。硅的氧化对冶炼的

轧钢生产工艺流程介绍

轧钢生产工艺流程介绍 1、棒材生产线工艺流程 钢坯验收f加热f轧制f倍尺剪切f冷却f剪切f检验f包装f计量f入库 (1)钢坯验收=钢坯质量是关系到成品质量的关键,必须经过检查验收。 ①、钢坯验收程序包括:物卡核对、外形尺寸测量、表而质量检查、记录等。 ②、钢坯验收依据钢坯技术标准和内控技术条件进行,不合格钢坯不得入炉。 (2)、钢坯加热 钢坯加热是热轧生产工艺过程中的重要工序。 ①、钢坯加热的目的 钢坯加热的目的是提高钢的塑性,降低变形抗力,以便于轧制;正确的加热工艺,还可以消除或减轻钢坯内部组织缺陷。钢的加热工艺与钢材质量、轧机产量、能量消耗、轧机寿命等各项技术经济指标有直接关系。 ②、三段连续式加热炉 所谓的三段即:预热段、加热段和均热段。 预热段的作用:利用加热烟气余热对钢坯进行预加热,以节约燃料。(一般预加热 到 300?450°C) 加热段的作用:对预加热钢坯再加温至1150?1250°C,它是加热炉的主要供热段,决定炉子的加热生产能力。 均热段的作用:减少钢坯内外温差及消除水冷滑道黑印,稳定均匀加热质量。 ③、钢坯加热常见的几种缺陷 a、过热钢坯在高温长时间加热时,极易产生过热现象。钢坯产生过热现象主要表现在钢的组织晶粒过分长大变为粗晶组织,从而降低晶粒间的结合力,降低钢的可塑

性。过热钢在轧制时易产生拉裂,尤其边角部位。轻微过热时钢材表面产生裂纹, 影响钢材表而质M和力学性能。 为了避免产生过热缺陷,必须对加热温度和加热时间进行严格控制。 b、过烧 钢坯在高温长时间加热会变成粗大的结晶组织,同时晶粒边界上的低熔点非金属化 合物氧化而使结晶组织遭到破坏,使钢失去应有的强度和塑性,这种现象称为过 烧。 过烧钢在轧制时会产生严重的破裂。因此过烧是比过热更为严重的一种加热缺陷。 过烧钢除重新冶炼外无法挽救。 避免过烧的办法:合理控制加热温度和炉内氧化气氛,严格执行正确的加热制度和 待轧制度,避免温度过高。 ( C、温度不均 钢坯加热速度过快或轧制机时产量大于加热能力时易产生这种现象。温度不均的钢坯,轧制时轧件尺寸精度难以稳定控制,且易造成轧制事故或设备事故。 避免方法:合理控制炉温和加热速度;做好轧制与加热的联系衔接。 d、氧化烧损 钢坯在室温状态就产生氧化,只是氧化速度较慢而己,随着加热温度的升高氧化速度加快,当钢坯加热到1100-1200°C时,在炉气的作用下进行强烈的氧化而生成氧化铁皮。氧化铁皮的产生,增加了加热烧损,造成成材率指标下降。 减少氧化烧损的措施:合理加热制度并正确操作,控制好炉内气氛。 e、脱碳 钢坯在加热时,表面含碳量减少的现象称脱碳,易脱碳的钢一般是含碳量较高的优

制氮工艺流程

制氮工艺流程 氮气的最大来源、最低成本是空气,空气中的主要成分是氧气和氮气。它们各占约22%与78%。当然还有二氧化碳、水蒸汽及少量的惰性气体。因此,制氮机实质就是“空分”设备,只要把氧气与氮气分开则可。 制氮机应根据其氮气的纯度高低去选择,如纯度要求不高可选用分子筛制氮机,如纯度要求高,则选用冷冻法制氧机。 冷冻法制氮机是利用氧气和氮气的沸点不同(氧气沸点为-183℃,氮气沸点为-196℃),首先把空气预冷、净化(去除空气中的少量水分、二氧化碳、乙炔、碳氢化合物等气体和灰尘等杂质),然后进行压缩、冷却,使之成为液态空气。然后,利用氧和氮的沸点的不同,在精馏塔中把液态空气多次蒸发和冷凝,将氧气和氮气分离开来,得到纯氧(可以达到99.6%的纯度)和纯氮(可以达到99.9%的纯度)。如果增加一些附加装置,还可以提取出氩、氖、氦、氪、氙等在空气中含量极少的稀有惰性气体。由空气分离装置产出的氧气,经过压缩机的压缩,最后将压缩氮气装入高压钢瓶贮存。使用这种方法生产氮气,虽然需要大型的成套设备和严格的安全操作技术,但是产量高,每小时可以产出数干、万立方米的氧气,与氮气,而且所耗用的原料仅仅是不用买、不用运、不用仓库储存的空气,所以从1903年研制出第一台深冷空分制氮(氧)机以来,这种制氧方法一直得到最广泛的应用。 分子筛制氧法(吸附法):氧气进入吸附器内,当吸附器内氧气达到一定量(压力达到一定程度)时,即可打开出氧阀门放出氧气。经过一段时间,分子筛吸附的氮逐渐增多,吸附能力减弱,产出的氧气纯度下降,需要用真空泵抽出吸附在分子筛上面的氮,然后重复上述过程。这种制取氧的方法亦称吸附法。最近,利用吸附法制氧的小型制氧机已经开发出来,便于家庭使用,当然这也是制氮设备。 它是利用氮分子大于氧分子的特性,使用特制的分子筛把空气中的氧离分出来。首先,用压缩机迫使干燥的空气通过分子筛进入抽成真空的吸附器中,空气中的氮分子即被分子筛所吸空分制氧系统包括空压机系统、空冷系统、水冷系统、分子筛纯化系统、增压膨胀机系统、精馏塔系统、加压气化系统、氧气系统、氧压机系统、调压站系统空分制氧系统中精馏塔分离氮气与氧气的原理简介:精馏塔是一种采用精馏的方法,使各组份分离。从而得到高纯度组份的设备。 空气被冷却至接近液化温度后送入精馏塔的下塔,空气自下向上与温度较低的回流液体

炼钢生产线工艺流程

炼钢生产线工艺流程 炼钢生产线工艺流程 氧气顶吹转炉示意图 把生铁冶炼成钢的主要要解决的问题:1、适当的降低生铁里面的含碳量。2、调整钢里合金含量在合理范围之内。3、除去大部分硫、磷等有害杂质。 炼钢的主要反应原理:利用氧化还原反应,在高温下,用氧化剂把生铁里过多的碳和其他杂质氧化成气体或炉渣除去。炼钢时常用的氧化剂一般是空气、纯氧气或者氧化铁。 利用氧气顶吹转炉炼钢设备,按照配料要求先把废钢装到炉内, 然后倒入铁水,并加适量的造渣材料(如生石灰等)。加料后,把氧气喷枪插入炉内,吹入氧气(纯度大于99%的高压氧气流)。氧气直接和高温铁水反应,使部分铁变成氧化亚铁,并放出大量的热:

2Fe + O2 = 2 FeO 生成的氧化亚铁再把铁水里的硅、锰、碳依次氧化,如; FeO + C = CO + Fe 生成的一氧化碳能从铁水里直接排出;生成的二氧化硅、氧化锰以及铁里的硫、磷跟造渣的生石灰在相互作用下形成炉渣排出。因此;生铁炼钢时,铁是一定先与氧气反应(铁相当于还原剂),生成的氧化亚铁再次作氧化剂而被还原成铁。 氧气顶吹转炉炼钢流程;具体包括配料、加料、吹氧、中间控制、出钢几个环节。 1、配料的原则;(当上一炉钢还没有炼完时先配好下一炉钢的配料) 首先中心化验室分别对炼钢原料(废钢、铁块、渣钢、回炉钢)的成分检测、造渣料(石灰、镁球、氧化铁皮、污泥球、生白云石、熟白云石、铁矿石)的成分检测、脱氧合金(硅铁、硅锰、钒铁、硅铝铁、增炭剂、钢水净化剂、铌铁)的成分检测,将检测结果送至炼钢配料处;然后铁水化验室对高炉炼出来的铁水进行温度和成分(C、Si、Mn、S、P)的检测,将检测结果送至炼钢配料处;配料处根据这些检测数据和配料公式来计算炼钢原料、造渣料、脱氧合金的具体加入量。 2、炼钢原料的加入(铁水除外) 当一炉钢水炼完以后,首先加入事先配好的废钢、铁块等炼钢原料,然后转动转炉,以去除废钢中的水蒸气,从而防止倒入铁水时带来的喷溅; 3、铁水的加入 当转炉摇炉以后,倒入预先配好的铁水,准备吹炼; 4、插入氧枪、吹氧、加入造渣料 将氧枪插入炉口开氧点处(一般离炉口2.65米处),同时开始吹氧,吹炼开始。吹氧1,2分钟后加入预先配好的造渣料,吹炼过程中操作工人根据观察炉口火

深冷制氮的工艺流程说明

深冷制氮的工艺流程说明 ---- 深冷空气分离技术 深度冷冻法分离空气是将空气液化后,再利用氧、氮的沸点不同将它们分离。即,造成气、液浓度的差异这一性质,来分离空气的一种方法。因此必须了解气、混合物的一些基本特征:气-液相平衡时浓度间的关系:液态空气蒸发和冷凝的过程及精馏塔的精馏过程。 1. 空气的汽-液相的平衡,物质的聚集状态有气态、液态、固态。每种聚集态内部,具有相同的物理性质和化学性质并完全均匀的部分,称为相。空气在塔内的分离,一般情况下,物料精馏是在汽、液两相进行的。空气中氧和氮占到99.04%,因此,可近似地把空气当作氧和氮的二元混合物。当二元混合物为液态时,叫二元溶液。 氧、氮可以任意比例混合,构成不同浓度的气体混合物及溶液。把氧、氮溶液置于一封闭容器中,在溶液上方也和纯物质一样会产生蒸汽,该蒸汽是由氧、氮蒸汽组成的气态的相混合物。对于氧氮二元溶液当达到汽液平衡时,它的饱和温度不但和压力有关,而且和氧、氮的浓度有关。当压力为1at时,含氮为0%,2%,10%的溶液的沸点列于表1-5。从表可知,随着溶液中低沸点组分(氮)的增加,溶液的组和温度降低,这是氧-氮二元溶液的一个重要特性。 空气中含氩0.93%,其沸点又介于氧、氮之间。 在空气分离的过程中,氩对精馏的影响较大,特别是在制取高纯氧、氮产品时,必须考虑氩的影响。 一般在较精确的计算中,又将空气看作氧-氩-氮三元混合物,其浓度为氧20.95%,氩0.93%,氮78.09(按容积)。 三元系的汽液平衡关系,可根据实验数据表示在相平衡图上。确定三元系的汽液平衡状态时,必须给定三个独立参数,除给定温度、压力外,需再细定一个组分浓度(气相或液相)平衡状态才能确定。 2. 压力-浓度图和温度-浓度图在工业生产中,气液平衡一般在某一不变条件下进行的。在温度一定时可得如图1-13所示的压力-浓度的关系图(P-X图)。

“11问”讲清楚炼钢的原理

“11问”讲清楚炼钢的原理 2008-08-09 00:30:07 作者:admin 来源:制钢参考网浏览次数:158 文字大小:【大】【中】【小】 “11问”讲清楚炼钢的原理 1、什么是超音速氧射流,什么是马赫数,确定马赫数的原则是什么? 速度大于音速的氧流为超音速氧射流。超过音速的程度通常用马赫数量度,即氧流速度与临界条件下音速的比值,用符号Ma代表。显然,马赫数没有单位。 马赫数的大小决定喷头氧气出口速度,也决定氧射流对熔池的冲击能量。马赫数过大则喷溅大,清渣费时,热损失加大,增大渣料消耗及金属损失,而且转炉内衬易损坏;马赫数过低,会造成搅拌作用减弱,氧气利用系数降低,渣中TFe含量增加,也会引起喷溅。当Ma>2.0时,随马赫数的增长氧气的出口速度增加变慢,要求更高理论设计氧压,这样,无疑在技术上不够合理,经济上也不划算。 目前国内推荐Ma=1.9~2.1。 2、氧气射流与熔池的相互作用的规律是怎样的? 超音速氧流其动能与速度的平方成正比,具有很高的动能。当氧流与熔池相互作用时,产生如下效果: (1)形成冲击区。氧流对熔池液面有很高的冲击能量,在金属液面形成一个凹坑,即具有一定冲击深度和冲击面积的冲击区。 (2)形成三相乳化液。氧流与冲击炉液面相互破碎并乳化,形成气、渣、金属三相乳化液。 (3)部分氧流形成反射流股。 3、氧气顶吹转炉的传氧载体有哪些?

氧气顶吹转炉内存在着直接传氧与间接传氧两种途径。直接传氧是氧气被钢液直接吸收,其反应过程是:[Pe]+1/2{O2}=[FeO],[FeO]=[Fe]+[O];间接传氧是氧气通过熔渣传人金属液中,其反应式为(FeO)=[FeO]、[FeO]=[Pe]十[O]。氧气顶吹转炉传氧以间接传氧为主。 氧气顶吹转炉的传氧载体有以下几种。 (1)金属液滴传氧。氧流与金属熔池相互作用,形成许多金属小液滴。被氧化形成带有富氧薄膜的金属液滴,大部分又返回熔池成为氧的主要传递者;熔池中的金属几乎都经历液滴形式,有的甚至多次经历液滴形式,金属液滴比表面积大,反应速度很快。 (2)乳化液传氧。氧流与熔池相互作用,形成气—渣—金属的三相乳化液,极大地增加了接触界面,加快了传氧过程。 (3)熔渣传氧。熔池表面的金属液被大量氧化,而形成高氧化铁熔渣,这样的熔渣是传氧的良好载体。 (4)铁矿石传氧。铁矿石的主要成分是Fe2O3、Fe3O4,在炉内分解并吸收热量,也是熔池氧的传递者。 顶吹转炉的传氧主要靠金属液滴和乳化液进行,所以冶炼速度快,周期短。 4、什么是硬吹,什么是软吹? 硬吹是指枪位低或氧压高的吹炼模式。当采用硬吹时,氧气流股对熔池的冲击力大,形成的冲击深度较深,冲击面积相对较小,因而产生的金属液滴和氧气泡的数量也多,气—熔渣—金属乳化充分,炉内的化学反应速度快,特别是脱碳速度加快,大量的CO气泡排出,熔池搅动强烈,熔渣的TFe含量较低。 软吹是指枪位较高或氧压较低的吹炼模式。在软吹时,氧气流股对熔池的冲击力减小,冲击深度变浅,冲击面积加大,反射流股的数量增多,对于熔池液面搅动有所增强,脱

制氮原理

一.氮气的作用: 在国民经济和日常生活中,氮气有广泛的用途。首先,利用它“性格孤独”的特点,我们将它充灌在电灯泡里,可防止钨丝的氧化和减慢钨丝的挥发速度,延长灯泡的使用寿命。还可用它来代替惰性气体作焊接金属时的保护气。在博物馆里,常将一些贵重而稀有的画页、书卷保存在充满氮气的圆筒里,这样就能使蛀虫在氮气中被闷死。 氮气在各行各业中的应用: 〃金属热处理:为各种工业炉提供氮气保护、渗氮、光亮退火、防氧化。 〃电子工业:用于提供保护气、稀释气、携带氧和自动化系统半导体、电子元件加工等氮气保护。 〃粉末冶金:粉末烧结氮气保护,磁性材料烧结。 〃铝加工业:铝制品加工,铝薄轧制气体保护。 〃石油化工:管道容器贮罐充氮、置换、检漏、可燃气体隔离保护,制造炸药等 〃医药医疗:制药原料、药物充氮包装、运输及保护中草药品防蛀、防腐。 利用液氮给手术刀降温,就成为“冷刀”。医生用“冷刀”做手术,可以减少出血或不出血,手术后病人能更快康复。 ·海运:各种化工产品、油品、液态天然气体充氮运输。 〃易燃易爆品保护:防止库房、贮井尘爆,煤矿灭火。 〃合成纤维:充氮拉丝防止氧化。 〃浮法玻璃:生产过程中气体保护、防锡槽氧化。 〃粮食仓储:杀虫、保鲜、贮藏。 二.工业制氮

以空气为原料,l利用物理的方法,将其中的氧和氮分离而获得。 工业中有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 A.深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。目前,我公司就使用深冷空分制氮. B.分子筛空分制氮 以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 C.膜空分制氮 以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在

钢铁的冶炼原理及生产工艺流程

钢铁的冶炼原理及生产工艺流程 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。 1、高炉炼铁的冶炼原理(应用最多的) 一)炼铁的原理(怎样从铁矿石中炼出铁)用还原剂将铁矿石中的铁氧化物还原成金属铁。铁氧化物(Fe2O3、Fe3O4、FeO)+还原剂(C、CO、H2)铁(Fe) 二)炼铁的方法 (1)直接还原法(非高炉炼铁法) (2)高炉炼铁法(主要方法) 三)高炉炼铁的原料及其作用 (1)铁矿石:(烧结矿、球团矿)提供铁元素。 冶炼一吨铁大约需要1.5—2吨矿石。 (2)焦碳: 冶炼一吨铁大约需要500Kg焦炭。 提供热量;提供还原剂;作料柱的骨架。 (3)熔剂:(石灰石、白云石、萤石)

使炉渣熔化为液体;去除有害元素硫(S)。 (4)空气:为焦碳燃烧提供氧。 2、工艺流程 生铁的冶炼虽原理相同,但由于方法不同、冶炼设备不同,所以工艺流程也不同。下面分别简单予以介绍。 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 生铁是高炉产品(指高炉冶炼生铁),而高炉的产品不只是生铁,还有锰铁等,属于铁合金产品。锰铁高炉不参加炼铁高炉各种指标的计算。高炉炼铁过程中还产生副产品水渣、矿渣棉和高炉煤气等。 高炉炼铁的特点:规模大,不论是世界其它国家还是中国,高炉的容积在不断扩大,如我国宝钢高炉是4063立方米,日产生铁超过10000吨,炉渣4000多吨,日耗焦4000多吨。

转炉炼钢的一般原理

2转炉炼钢的一般原理 2-1什么是超音速氧射流,什么是马赫数,确定马赫数的原则是什么? 速度大于音速的氧流为超音速氧射流。超过音速的程度通常用马赫数量度,即氧流速度与临界条件下音速的比值,用符号Ma代表。显然,马赫数没有单位。 马赫数的大小决定喷头氧气出口速度,也决定氧射流对熔池的冲击能量。马赫数过大则喷溅大,清渣费时,热损失加大,增大渣料消耗及金属损失,而且转炉内衬易损坏;马赫数过低,会造成搅拌作用减弱,氧气利用系数降低,渣中TFe含量增加,也会引起喷溅。当Ma>2.0时,随马赫数的增长氧气的出口速度增加变慢,要求更高理论设计氧压,这样,无疑在技术上不够合理,经济上也不划算。 目前国内推荐Ma=1.9~2.1。 2-2氧气射流与熔池的相互作用的规律是怎样的? 超音速氧流其动能与速度的平方成正比,具有很高的动能。当氧流与熔池相互作用时,产生如下效果: (1)形成冲击区。氧流对熔池液面有很高的冲击能量,在金属液面形成一个凹坑,即具有一定冲击深度和冲击面积的冲击区。 (2)形成三相乳化液。氧流与冲击炉液面相互破碎并乳化,形成气、渣、金属三相乳化液。 (3)部分氧流形成反射流股。 2-3氧气顶吹转炉的传氧载体有哪些? 氧气顶吹转炉内存在着直接传氧与间接传氧两种途径。直接传氧是氧气被钢液直接吸收,其反应过程是:[Pe]+1/2{O2}=[FeO],[FeO]=[Fe]+[O];间接传氧是氧气通过熔渣传人金属液中,其反应式为(FeO)=[FeO]、[FeO]=[Pe]十[O]。氧气顶吹转炉传氧以间接传氧为主。 氧气顶吹转炉的传氧载体有以下几种。 (1)金属液滴传氧。氧流与金属熔池相互作用,形成许多金属小液滴。被氧化形成带有富氧薄膜的金属液滴,大部分又返回熔池成为氧的主要传递者;熔池中的金属几乎都经历液滴形式,有的甚至多次经历液滴形式,金属液滴比表面积大,反应速度很快。 (2)乳化液传氧。氧流与熔池相互作用,形成气—渣—金属的三相乳化液,极大地增加了接触界面,加快了传氧过程。 (3)熔渣传氧。熔池表面的金属液被大量氧化,而形成高氧化铁熔渣,这样的熔渣是传氧的良好载体。 (4)铁矿石传氧。铁矿石的主要成分是Fe2O3、Fe3O4,在炉内分解并吸收热量,也是熔池氧的传递者。 顶吹转炉的传氧主要靠金属液滴和乳化液进行,所以冶炼速度快,周期短。 2-4什么是硬吹,什么是软吹? 硬吹是指枪位低或氧压高的吹炼模式。当采用硬吹时,氧气流股对熔池的冲击力大,形成的冲击深度较深,冲击面积相对较小,因而产生的金属液滴和氧气泡的数量也多,气—熔渣—金属乳化充分,炉内的化学反应速度快,特别是脱碳速度加快,大量的CO气泡排出,熔池搅动强烈,熔渣的TFe含量较低。 软吹是指枪位较高或氧压较低的吹炼模式。在软吹时,氧气流股对熔池的冲击力减小,冲击深度变浅,冲击面积加大,反射流股的数量增多,对于熔池液面搅动有所增强,脱碳速度缓慢,因而对熔池内部的搅动相应减弱,熔渣中的TFe含量有所增加。 软吹和硬吹都是相对的。 2-5转炉内金属液中各元素氧化的顺序是怎样的? 氧化物分解压越小,元素越易氧化。在炼钢温度下,常见氧化物的分解压排列顺序如下:P{O2}(Fe2O3)>P{O2}(FeO)>P{O2}(CO2)>P{O2}(MnO)>P{O2}(P2O5)>P{O2}

变压吸附(PSA)制氮原理及工艺基本知识

变压吸附(PSA)制氮技术原理及工艺基本知识 一、基础知识 1 氮气知识 1.1 氮气基本知识 氮气作为空气中含量最丰富的气休,取之不竭,用之不尽。氮气为双原子气体,组成氮分子的两个原子以共价三键相联系,结合得相当牢固,致使氮分子具有特殊的稳定性,在巳知的双原子气体中,氮气居榜首。氮的离解能(氮分子分解为原子时需要吸收的能量)为941.69kJ?moL-1。氮的化学性质不活泼,在一般状态下表现为很大的惰性。在高温下,氮能与某些金属或非金属化合生成氮化物,并能直接与氧和氢化合。在常温、常压下,氮是无色、无味、无毒、不燃、不爆的气体,使用上很安全。 在常压下,把氮气冷至-196℃将变成无色、透明、易于流动的液氮。液氮将凝结成雪花状的固体物质。 氮气是窒息性气体,能致生命体于死亡。 氮气(N 2)在空气中的含量为78.084%(空气中各种气休的容积组分为:N 2 :78.084%、 O 2:20.9476%、氪气:0.9364%、CO 2 :0.0314%、其它还有H 2 、CH 4 、N 2 0、0 3 、S0 2 、N0 2 等, 但含量极少),分子量为28,沸点:-195.8℃, 冷凝点:-210℃。 1.2 氮气的用途 氮气的惰性和液氮的低温被广之用作保护气体和冷源。以氮气为基本成份的氮基气氛热处理,是为了节能和充分利用自然资源的一种新工艺新技术,它可节省有机原料消耗。氮还有“灵丹妙药”之称而受人青睐,它和人的日常生活密切相关。例如,氮气用于粮食防蛀贮藏时,粮库内充入氮气,蛀虫在36h内可全部因缺氧窒息而死,杀灭1万斤粮食害虫,约只需几角钱。若用磷化锌等剧海药品黑杀,每万斤粮食需耗药费100多元,而且污染粮食,影响人民健康。又如充氮贮存的苹果,8个月后仍香脆爽口,每斤苹果的保鲜费仅需几分钱。茶叶充氮包裝,1年后茶质新鲜,茶汤清澈明亮,滋味淳香。 2 压力知识 变压吸附 (PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂碳分子筛最佳吸附压力为0.75~0.9MPa, 整个制氮系统中气体均是带压的,具有冲

相关主题
文本预览
相关文档 最新文档