当前位置:文档之家› 太阳能电池的种类特点及发展趋势word资料14页

太阳能电池的种类特点及发展趋势word资料14页

太阳能电池的种类特点及发展趋势word资料14页
太阳能电池的种类特点及发展趋势word资料14页

太阳能电池的种类特点及发展趋势

一、种类

按照材料分类

?硅太阳能电池:以硅为基体材料(单晶硅、多晶硅、非晶硅)

?化合物半导体太阳能电池:由两种或两种以上的元素组成具

半导体特性的化合物半导体材料制成的太阳能电池(硫化镉、

砷化稼、碲化镉、硒铟铜、磷化铟)

?有机半导体太阳能电池:用含有一定数量的碳-碳键且导电

能力介于金属和绝缘体之间的半导体材料制成的电池(分子

晶体、电荷转移络合物、高聚物)

单晶硅太阳电池

特点

硅系列太阳能电池中,单晶硅的光电转换效率最高,技术也最成熟,高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。单晶硅太阳能电池的转换效率无疑是最高的,在大规模应用和工业生产中仍旧占据主导地位,但由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下,严重影响了其广泛应用。

单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p型单晶硅为衬底,其上扩散n型杂质的太阳能电池与n型单晶硅为衬底的太阳能电池相比,其光谱特性的峰值更偏向左边(短波长一方)。它对从蓝到紫色的短波长(波长小于0.5μm)的光有较高的灵敏度,但其制

法复杂,成本高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特性。

1.

多晶硅太阳电池

特点 单晶硅太阳能电池的缺点是制造过程复杂,制造电池的能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达20%。这种低成本的多晶硅太阳能电池已经大量生产,目前,它在太阳能电池工业中所占的分额也相当大。 但是多晶硅材料质量比单晶硅差,有许多

晶界存在,电池效率比单晶硅低;

晶向不一致,表面织构化困难。

单晶、多晶与非晶的区别

多晶:短程有序(团体有序),成百上千个原子尺度,通常是在微米的量

铸造多晶硅

?结晶形态分

单晶硅 多晶硅 非晶硅

高纯多晶硅

薄膜多晶硅

带状多晶硅

区熔单晶硅

直拉单晶硅

级;

非晶:局部有序(个体有序),微观尺度,几个原子、分子尺度,一般只有十几埃至几十埃的范围;

单晶:长程有序(整体有序),宏观尺度,通常包含了整块固体材料。 尽管多晶硅材料由于存在晶粒间界而不利于太阳能电池转换效率的提高。但因为制备多晶硅材料比制备单晶硅材料要便宜得多,所以研究人员正致力于减少颗粒间界的影响以期得到低成本多晶硅太阳能电池。

发展趋势

晶硅太阳电池向薄片化方向发展

硅片减薄

硅片是晶硅电池成本构成中的主要部分。

降低硅片厚度是结构电池降低成本的重要

技术方向之一。

迄今为止,多晶硅太阳能电池经过不断的努力,其能量转换效率与单

铸造多晶硅

?结晶形态分

单晶硅 多晶硅 非晶硅

高纯多晶硅

薄膜多晶硅

带状多晶硅

区熔单晶硅

直拉单晶硅

晶硅太阳能电池已基本上在同一个数量级。特别是多晶硅薄膜可以制成方形,在制作太阳能电池组件时面积利用率高。

今后,在如何开发新技术以得到低价格的多晶硅材料,如何得到高效率、大面积多晶硅太阳能电池等方面还有许多工作可做。

虽然晶体硅太阳能电池被广泛应用,占据太阳电池的主要市场。但是,晶体硅的禁带宽度Eg=1.12eV ,太阳能光电转换理论效率相对较低;硅材料是间接能带材料,在可见光范围内,硅的光吸收系数远远低于其它太阳能光电材料,如同样吸收95%以上的太阳光,GaAS 太阳电池只需要5~10μm ,而硅太阳电池在150~200μm 以上,才能有效地吸收太阳能;晶体硅材料需要多次提纯,成本较高;硅太阳电池尺寸相对较小,若组成光伏系统,要用数十个相同的硅太阳电池连接起来,造成系统成本较高。 2. 薄膜太阳电池(非晶硅)

特点

具有重量轻、工艺简单、成本低和耗能少等优点。 太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。因而它在整个半导体太阳能电池领域中的地位正在不断上升。同晶体硅太阳电池相比,

非晶硅太阳电池

硅基薄膜太阳电池 有机电池

?薄膜太阳能电池 砷化稼薄膜太阳电

池 CdTe 薄膜太阳电池

CuInSe 薄膜太阳电

池 化合物半导体薄膜太阳电池 染料敏化太阳电池 多晶硅太阳电池

非晶硅太阳能电池的优点

1非晶硅具有较高的光吸收系数

这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素。

2非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高。

③材料和制造工艺成本低、设备简单;而且非晶硅薄膜厚度仅有数千埃,不足晶体硅太阳电池厚度的百分之一,大大降低了硅原材料的成本;沉积温度为100~300oC。

④由于非晶硅没有晶体所要求的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题。因而它几乎可以淀积在任何衬底上,如不锈钢、塑料甚至廉价的玻璃衬底。

⑤易于形成大规模的生产能力,这是因为非晶硅适合制作特大面积、无结构缺陷的薄膜,生产可全流程自动化,显著提高劳动生产率。(最大1100mm*1250mm单结晶非晶硅太阳电池)

⑥多品种和多用途,不同于晶体硅,在制备非晶硅薄膜时,只要改变原材料的气相成分或气体流量,便可使非晶硅薄膜改性,制备出新型的太阳电池结构;并且根据器件功率、输出电压和输出电流的要求,可以自由设计制造,方便地制作出适合不同需求的多品种产品。

⑦易实现柔性电池,非晶硅可以制备在柔性的衬底上,而且其硅原子网络结构的力学性能特殊,因此,它可以制备成轻型、柔性太阳电池,易于与建筑集成。

⑧制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短得多。

非晶硅太阳能电池的缺点

①与晶体硅相比,非晶硅薄膜太阳电池的效率相对较低,在实验室中电池的稳定最高光电转换效率只有13%左右。在实际生产线中,非晶硅薄膜太阳电池的效率也不超过10%;

②非晶硅薄膜太阳电池的光电转换效率在太阳光的长期照射下有一定的衰减,到目前为止仍然未根本解决。所以,非晶硅薄膜太阳电池主要应用于计算器、手表、玩具等小功耗器件中。

发展趋势

作为非常有希望的低成本太阳能电池,开发新结构,提高效率和稳定性,将会使非晶硅太阳能电池在民用及独立电源系统中获得广泛应用。

特点

多晶硅电池既具有晶体电池的特点,又具有非晶硅电池成本低,设备简单且可以大规模制备等优点。

多晶硅薄膜与非晶硅一样,具有低成本、大面积和制备简单的优势。

它的衬底便宜,硅材料用量少,而且没有光衰减问题,结合了晶体硅和非晶硅材料的优点,但是,由于晶粒较小等原因,其太阳能光电转换效率依然较低,到现在为止,尚未有大规模工业生产。

多晶硅薄膜主要分为两类:一类是晶粒较大,完全由多晶硅颗粒组成;另一类是由部分晶化、晶粒细小的多晶硅镶嵌在非晶硅中组成。

发展趋势 在多晶硅薄膜研发中,目前人们非常关注:如何在廉价的衬底上,能够高速、高质量地生长多晶硅薄膜;多晶硅薄膜的制备温度要尽量低,以便选用低价优质的衬底材料;多晶硅薄膜电学性能的高可控性和高重复性。 因此多晶硅薄膜被认为是理想的新一代的太阳能光电材料

(第7个PPT )

3、GaAs 太阳电池

化合物半导体材料大多是直接带隙半导体材料,光吸收系数较高,因此,仅需要数微米厚的材料就可以制备成高效率的太阳电池。而且,化合物半导体材料的禁带宽度一般较大,其太阳电池的抗辐射性能明显高于硅太阳电池。

由于其生产设备复杂、能耗大、生产周期长,导致生产成本高,难以与硅太阳电池相比,所以仅用于部分不计成本的空间太阳电池上。

着重研究的问题:

? 大面积、大晶粒薄膜的生长技术 ? 进一步提高薄膜的生长速率 ? 薄膜的缺陷控制技术 ? 优质、价廉衬底材料的研发 ? 电池优良设计、表面结构技术及背反射技术的研究

太阳能电池板选择

太阳能电池板选择 太阳能电池的最大功率Pmax=开路电压×短路电流,这是它们的理想功率,而平时大家衡量太阳能电池的是额定功率Pm。实际中额定功率是小于最大功率的,主要是由于太阳能电池的输出效率u只有70%左右。在使用中由于受光强度的不同,所以不同时刻的功率也是不同的,根据实验数据它的实际平均功率P=。如果太阳能电池要直接带动负载,并且要使负载长期稳定的工作,则负载的额定功率为Pr=。如果按照负载的功率选择太阳能电池的功率则电池的功率为:Pm=。就是说太阳能电池的功率要是负载功率的倍。 在选择太阳能电池的功率时,应合理选择负载的耗电功率,这样才能使发电功率与耗电功率处于一种平衡状态。当然太阳能电池的发电功率也会受到季节、气候、地理环境和光照时间等多方面因素的制约。 蓄电池的使用(这里仅以夏季为例,介绍太阳能电池与蓄电池在一般情况下的使用)蓄电池是一种储存电能的容器,常被作为其它电路的“能源基地”。由于太阳能电池所产生的电力有限,因此要尽可能的扩大“基地”的储电容量,但也不能无限扩大,因为太阳能电池只能在白天发电,其日发电量M=发电功率(最大输出功率)×有效光照时间×发电时间,由此它的日电量等于输出电流与有效光照时间的乘积,即:C=IH(Ah)。而蓄电池的容量则使放电时间和放电电流的乘积,因此计算公式为:C=IH(单位Ah,就是额定1A的电流放电一小时)。那么太阳能电池和蓄电池在容量和电量上使如何计算的呢?我们可以通过电功率公式:P=IU演化为:P=Iuh/h=CU/h。

例如:有一块单晶硅电池的组件,最大的输出功率Pm(额定功率)为25W,峰值电压(额定电压)Ump为,峰值电流(额定电流)为,开路电压为21V,短路电流为Isc为,某地区有效光照时间为12小时,求太阳能电池一天的发电量和所需的蓄电池的容量。 已知:Pm=25w,h=12h,U=,太阳能电池的发电效率为:u=,蓄电池的补偿值为n= 太阳能电池的发电量:M=Pm×h×u=25×12×=210W

锂离子电池常用的粘结剂的种类、作用及性能

锂离子电池常用的粘结剂的种类、作用及性能锂离子电池粘结剂一般都是高分子化合物,电池中常用的粘结剂有; (1)PVA(聚乙烯醇)PVA的分子式为卡CH2CHOH手JJ,聚合度”一般为700—2000,PVA是一种亲水性高聚物白色粉末,密度为1,24—1.34g?cm-3。PVA 可与其他水溶性高聚物混溶,如与淀粉、CMC、海藻钠等都有较好的混溶性。 (2)聚四氟乙烯(PTFE)PTFE俗称“塑料王”,是一种白色粉末,密度为2.1—2.3g?CITI+,热分解温度为415℃。PTFE电绝缘性能好,耐酸,耐碱,耐氧化。PTFE的分子式为卡CF2一CF2头。,是由四氟乙烯聚合而成的。nCF2=CF、2一卡CF2=CF2于。常用60%的PTFE乳液作电极粘结剂。 (3)羧甲基纤维素钠(CMC)CMC为白色粉末,易溶于水,并形成透明的溶液,具有良好的分散能力和结合力,并有吸水和保持水分的能力。 (4)聚烯烃类(PP,PE以及其他的共聚物); (5)(PVDF/NMP)或其他的溶剂体系; (6)粘接性能良好的改性SBR橡胶; (7)氟化橡胶; (8)聚胺酯。 锂电池用粘接剂;锂离子电池中,由于使用电导率低的有机电解液,因而要求电极的面积大,而且电池装配采用卷式结构,电池的性能的提高不仅对电极材料提出了新的要求,而且对电极制造过程中使用的粘接剂也提出了新的要求。 1、粘接剂的作用及性能; (1)保证活性物质制浆时的均匀性和安全性; (2)对活性物质颗粒间起到粘接作用; (3)将活性物质粘接在集流体上;

(4)保持活性物质间以及和集流体间的粘接作用; (5)有利于在碳材料(石墨)表面上形成SEI膜。 2、对粘接剂的性能要求; (1)在干燥和除水过程中加热到130—180~C情况下能保持热稳定性; (2)能被有机电解液所润湿; (3)具有良好的加工性能; (4)不易燃烧; (5)对电解液中的I.iClQ,I.iPP、6等以及副产物I.iOH,㈠2C03等稳定; (6)具有比较高的电子离子导电性; (7)用量少,价格低廉; 以往的镍镉、镍氢电池,使用的电解液是水溶液体系,粘接剂可以使用PVA,CMC等水溶性高分子材料,或PTFE的水分散乳液。锂离子蓄电池电解液是极性大(因此溶解能力和溶胀能力高)的碳酸酯类有机溶剂体系,粘接剂必须能耐碳酸酯(至少是不溶解),而且必须满足上述的几点要求,特别是必须满足在电化学环境中的稳定性,在负极中处于锂的负电位下不被还原,在正极中发生过充电等有氧产生的情况下不发生氧化。 锂离子电池中的特点是伴随充放电过程,锂在活性物质中的嵌入—脱出引起活性物质的膨胀—收缩(如石墨的层间距变化达到10%一11%),要求粘接剂对此能够起到缓冲作用。锂离子电池的电极在干燥过程中加热温度最高可以达到200℃,粘接剂必须能够耐受这样高的温度。 由此可见,粘接剂性能好坏对电池性能的影响很大,锂离子电池电极制备是采用涂布工艺,一般采用刮刀或辊涂布的方式,通过刀口间隙调节活性物质层的厚度。锂离子电池活性物质层的厚度很小,因此涂布刀口的间隙也很小,这样就要求在浆料中不能有大的团聚颗粒存在。制作电极需要经过辊压、分

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能电池漏电流种类

PROGRESS IN PHOTOVOLTAICS:RESEARCH AND APPLICATIONS Prog.Photovolt:Res.Appl.2004;12:529–538 Published online 29July 2004in Wiley InterScience (https://www.doczj.com/doc/7e2234754.html,).DOI:10.1002/pip.544 Shunt Types in Crystalline Silicon Solar Cells O.Breitenstein*,y ,J.P.Rakotoniaina,M.H.Al Rifai and M.Werner Max Planck Institute of Microstructure Physics,Weinberg 2,D-06120Halle,Germany Nine different types of shunt have been found in state-of-the-art mono-and multi- crystalline solar cells by lock-in thermography and identi?ed by SEM investigation (including EBIC),TEM and EDX.These shunts differ by the type of their I –V char- acteristics (linear or nonlinear)and by their physical origin.Six shunt types are pro- cess-induced,and three are caused by grown-in defects of the material.The most important process-induced shunts are residues of the emitter at the edge of the cells, cracks,recombination sites at the cell edge,Schottky-type shunts below grid lines, scratches,and aluminum particles at the surface.The material-induced shunts are strong recombination sites at grown-in defects (e.g.,metal-decorated small-angle grain boundaries),grown-in macroscopic Si 3N 4inclusions,and inversion layers caused by microscopic SiC precipitates on grain boundaries crossing the wafer. Copyright #2004John Wiley &Sons,Ltd. key words :shunts;thermography;lock-in;silicon;monocrystalline;multicrystalline INTRODUCTION A solar cell,as simulated by essentially one-dimensional models,is assumed to show a homogeneous current ?ow across the whole area,both under illumination and in the dark.In the traditional inter-pretation of I –V characteristics of solar cells all nonlinear currents belonged to the cell,and only ohmic current paths across the pn junction have been attributed to ‘shunts’.With the availibility of precision lock-in thermography techniques these shunts can be made visible,so in the following all bright features visible in thermography have been called ‘shunts’.However,by later investigations it has turned out that there are not only ohmic shunts,but also diode-like ones,e.g.,caused by local recombination sites.So the question,what is a shunt and what belongs to the undisturbed cell,has a philosophical dimension:can,e.g.,a region of lower crystal quality be called a shunt?This question is still under discussion,but throughout this work we will use the term ‘shunt’for any position in a solar cell showing under forward or reverse-bias a dark-current contribution additional to the diffusion current.In this sense edge leakage currents are shunting currents,but a region of lower crystal quality,where only the saturation current density of the diffusion current is increased,is not.Future discussions will show whether this de?nition will survive or has to be replaced by a more precise one. Received 20August 2003 Copyright #2004John Wiley &Sons,Ltd. Revised 3December 2003*Correspondence to:O.Breitenstein,Max Planck Institute of Microstructure Physics,Weinberg 2,D-06120Halle,Germany.y E-mail:breiten@mpi-halle.de Contract/grant sponsor:BMWi;contract/grant number:0329846D (ASIS). Contract/grant sponsor:EU;contract/grant number:ENK6-CT-2001-00573. Research

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

太阳能电池板选择

太阳能电池板选择
太阳能电池的最大功率 Pmax=开路电压×短路电流, 这是它们的理想功率, 而平时大家衡量太阳能电池的是额定功率 Pm。实际中额定功率是小于最大功率 的,主要是由于太阳能电池的输出效率 u 只有 70%左右。在使用中由于受光强 度的不同,所以不同时刻的功率也是不同的,根据实验数据它的实际平均功率 P=0.7Pm。如果太阳能电池要直接带动负载,并且要使负载长期稳定的工作, 则负载的额定功率为 Pr=0.7Pm。 如果按照负载的功率选择太阳能电池的功率则 电池的功率为: Pm=1.43Pr。 就是说太阳能电池的功率要是负载功率的 1.43 倍。 在选择太阳能电池的功率时,应合理选择负载的耗电功率,这样才能使发电功 率与耗电功率处于一种平衡状态。当然太阳能电池的发电功率也会受到季节、气 候、地理环境和光照时间等多方面因素的制约。
蓄电池的使用(这里仅以夏季为例,介绍太阳能电池与蓄电池在一般情况下的使用)
蓄电池是一种储存电能的容器,常被作为其它电路的“能源基地”。由于太 阳能电池所产生的电力有限,因此要尽可能的扩大“基地”的储电容量,但也不 能无限扩大,因为太阳能电池只能在白天发电,其日发电量 M=发电功率(最 大输出功率)×有效光照时间×发电时间,由此它的日电量等于输出电流与有效 光照时间的乘积,即:C=IH(Ah)。而蓄电池的容量则使放电时间和放电电流的乘 积,因此计算公式为:C=IH(单位 Ah,就是额定 1A 的电流放电一小时)。那么 太阳能电池和蓄电池在容量和电量上使如何计算的呢?我们可以通过电功率公 式:P=IU 演化为:P=Iuh/h=CU/h。

太阳能电池分类

太阳能电池分类 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds 系)和磷化锌 (Zn 3 p 2 )等。 太阳能电池根所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位。 1、太阳能电池硅太阳能 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2011,为17%)。因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。 2、太阳能电池多晶体薄膜 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板详细参数:单晶硅太阳能板100W 尺寸:963x805x35MM 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24v 二、产品特点: 采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合 IEC61215 和电气保护 II 级标准。太阳能电池转换效率高。 而且太阳能电池板阵列一次性性能佳。太阳能电池板阵列的表面 采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。 阳极氧化铝边框:机械强 度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。太阳能电池板在制造时, 先进行化学处理, 表面做成了一个象金字塔一样的绒面, 能减少反射,更好地吸收光能。采用双栅线,使组件的封装的可靠性更高。 太阳能电池板阵列抗冲击性能佳, 符合 IEC 国际标准。 太阳能电池板阵列层之间采用双层 EVA 材料以及 TPT 复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。直流接线盒:采 用密封防水、高可靠性多功能 ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头, 使用安全、方便、可靠。带有旁路二极管能减少局部阴影而引起的损害。 工作温度:-40℃~+90℃使用寿命可达 20 年以上,衰减小于 20%。三、 问题集锦:1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射 直接转换为电能的半导体器件。 现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳 能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶太阳能电池需要高纯度的硅原料,一般要求纯度至少是 99. 99998%,也就是一千万个硅原子中最多允许 2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子作为原料, 将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片, 涉及多个生

电池的原理及电池种类

电池(习题) 一、电池:利用产生的装置。 1.(1)电池:─→。 (2)电解:─→。 2. 电池的种类: (1)伏打电池:电池、电池。 (2)干电池:电池。 (3) 电池。 (4) 电池:电池、锂电池、镍氢电池、镍镉电池。 (5) 电池。 二、伏打电池: 1.起源:贾法尼以铜制解剖刀碰触到放在铁盘上的蛙腿,发现蛙腿立刻 发生抽搐 2.伏打认为:在两种不同的金属间放置非金属物质,可能是提供 的原因 3.全世界第一个电池: (1)以含盐水的湿布夹在和的圆形版中间 (2)原理:将不同的以导线连接,中间隔 有,就可产生电流。 4. 锌铜电池 放电:─→ (1)盐桥未放入前,电路断路, 毫安计读数 (2)盐桥放入后,毫安计发生偏转。 半反应式:负极: 正极:

全反应式: (3)负极上的会溶解,重量; 正极上有析出,重量。 甲杯中〔Zn2+〕↑,乙杯中〔Cu2+〕↓ ∴乙杯溶液由 溶液中负离子移向负极,正离子移向正极。 (4):内装有易解离的盐类水溶液。 例如: 功能:○1可将不同的两种溶液连接起来,并避免其混 合。 ○2可作为电流的桥梁。 ○3可使水溶液保持。 (5)因为减少,反应速率变慢,所以电流变小,检流计读数变小。 (6)整个电流的移动: 电池外部: 电池内部: (7)上述反应因为电子被释放出来,经过导线至另一金属板 ,被称为 (8)因为电池的化学反应中,伴随电子的转移,因此科学家 以电子的得失来定义氧化还原反应,物质失去电子称为 ,物质获得电子的反应为 三、电池的种类 一次电池:使用完后,无法再充电的电池,如、 等。 二次电池:使用完后,可以再充电的电池,又称为, 如铅蓄电池、锂电池等。

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

太阳能电池板规格表.doc

光伏组件(太阳能电池板)规格表 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40 APM36P35W82x36多晶硅35 17.5 2.00 21.5 2.26 356*816*28

(整理)薄膜太阳能电池种类

薄膜太阳能电池种类 为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。 磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。 GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中 MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为 24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

电池种类介绍

AAAA型号少见,一次性的AAAA劲量碱性电池偶尔还能见到,一般是电脑笔里面用的。标准的AAAA(平头)电池高度41.5±0.5mm,直径8.1±0.2mm。 AAA型号电池就比较常见,一般的MP3用的都是AAA电池,标准的AAA(平头)电池高度43.6±0.5mm,直径10.1±0.2mm。 AA型号电池就更是人尽皆知,数码相机,电动玩具都少不了AA电池,标准的AA(平头)电池高度48.0±0.5mm,直径14.1±0.2mm。 只有一个A表示型号的电池不常见,这一系列通常作电池组里面的电池芯,我经常给别人换老摄像机的镍镉,镍氢电池,几乎都是4/5A,或者4/5SC的电池芯。标准的A(平头)电池高度49.0±0.5mm,直径16.8±0.2mm。 SC型号也不常见,一般是电池组里面的电池芯,多在电动工具和摄像机以及进口设备上能见到,标准的SC(平头)电池高度42.0±0.5mm,直径22.1±0.2mm。 C型号也就是二号电池,用途不少,标准的C(平头)电池高度49.5±0.5mm,直径25.3±0.2mm。 D型号就是一号电池,用途广泛,民用,军工,特异型直流电源都能找到D型电池,标准的D(平头)电池高度59.0±0.5mm,直径32.3±0.2mm。 N型号不常见,我还不知道啥东西里面用,标准的N(平头)电池高度28.5±0.5mm,直径11.7±0.2mm。 F型号电池,现在是电动助力车,动力电池的新一代产品,大有取代铅酸免维护蓄电池的趋势,一般都是作电池芯(个人见解:其实个太大,不好单独使用,呵呵)。标准的N(平头)电池高度89.0±0.5mm,直径32.3±0.2mm。 大家注意到,(平头)字样,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。以此类推,我不逐一解释。还有,电池很多的时候并不是规规矩矩的“AAA,AA,A,SC,C,D,N,F”这些主型号,前面还时常有分数“1/3,2/3,1/2,2/3,4/5,5/4,7/5”,这些分数表示的是池体相应的高度,例如“2/3AA”就是表示高是一般AA电池的2/3的充电电池;再如“4/5A”就是表示高是一般A电池的4/5的充电电池。 还有一种型号表示方法,是五位数字,例如,14500,17490,26500,前两位数字是指池体直径,后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高,此类一般为充电锂电池。 附: 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池)铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、

太阳能电池分类知识总结

太阳能电池分类知识总结太阳能电池,也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。由这种器件封装成太阳能电池组件,再按需要将一定数量的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流—交流变换装置等相配套,即构成太阳电池发电系统,也称为光伏发电系统。更多资讯请关注光伏英才网,最权威专业的光伏人才招聘太阳能求职网。 太阳能光伏发电最核心的器件是太阳能电池。而太阳能电池的发展历史已经经过了160多年的漫长的发展历史。从总的发展来看,基础研究和技术进步都起到了积极推进的作用,至今为止,太阳能电池的基本结构和机理没有发生改变。 1.按结构分类:同质节太阳能电池、异质节太阳能电池、肖特基太阳能电池 2.按材料分类:硅太阳能电池、多元化合物薄膜太阳能电池、有机化合物太阳能电池、敏化纳米晶太阳能电池、聚合物多层修饰电极型太阳能电池 3.按工作方式分类:平板太阳能电池、聚光太阳能电池、分光太阳能电池 第一代:单晶硅和多晶硅两种,大约占太阳能电池产品市场的89.9%。第一代太阳能电池基于硅晶片基础之上,主要采用单晶体硅、多晶体硅为材料。其中,单晶硅电池转换效率最高,可达到18-20%,但生产成本高。 第二代:薄膜太阳能电池,占太阳能电池产品市场的9.9%,第二代太阳能电池基于薄膜技术基础之上,主要采用非晶硅及氧化物等为材料。效率比第一代低,最高的的转化效率为13%,但生产成本最低。 第三代:铜铟硒(CIS)等化合物薄膜太阳能电池及薄膜Si系太阳能电池。主要

处于实验室生产状态,由于其的高效率,低成本而存在潜在庞大的经济效应。 1.硅太阳能电池可分为:单晶硅太阳能电池、多晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池 单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,其转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的热加工处理工艺基础上。 非晶硅薄膜太阳能电池所采用的硅为a-Si。其基本结构不是pn结而是pin结。掺硼形成p区,掺磷形成n区,i为非杂质或轻掺杂的本征层。 突出特点:材料和制造工艺成本低、制作工艺为低温工艺(100-300℃),耗能较低、易于形成大规模生产能力,生产可全流程自动化、品种多,用途广。 存在问题:光学带隙为1.7eV→对长波区域不敏感→转换效率低。光致衰退效

电池分类及应用领域知识讲解

电池分类及应用领域: 按用途可分为: 1, 起动型:用于汽车、摩托车等 2, 浮充型:用于 UPS 、应急灯、风能太阳能、船用 3, 循环型:用于电动车等 按生产材料可分为: 1, AGM 电池:用于动力车、基站(电信、移动、网通)等 2, GEL 电池:用于太阳能、风能、船用等 公司电池系列有: 1, RT Series (0.8Ah ?28Ah);, 2, RA Series (33Ah ?260Ah); 3, RL Series (50Ah ? 3000Ah); 4, AGM Deep Cycle Series; 5, High Rate Discharge Series; 6, Front Terminal Gel Series; 7, Gel Series; 电池中英文名称: 1, AGM (Absorptive Glass Mat ) Deep Cycle Series :深循环超细玻璃纤维系列 2, High Rate Discharge Series :高倍率放电系列 3, Front Terminal Gel Series :前端子胶体系列 4, Gel Series :胶体系列 1) ,胶体浮充: Gel Standby 2) ,胶体深循环: Gel deep cycle 铅酸蓄电池历史悠久,性能稳定,占据了二次电池市场的 75%。它作为稳定电源和主要的 直流电源,与我们的社会生活息息相关。普遍应用于汽车、通讯、广电、 IT 、电力、铁路、 航空、港口、军事、金融、能源等领域,需求广泛,用量巨大。仅 2002 年,国内铅酸蓄电 池产量就高达 3000 万 KWH ,产值近 80 亿元,而且每年还以 30%的速度增长。 但是, 现行各类铅酸蓄电池产品, 无论是国产还是进口, 电困难、容量降低等现象,过早失效报废,无法使用。 b. UPS :年销售1000万台,销售额24亿元,蓄电池作为核心部件, 年需求294.6 万kw ?h (其 中,金融 30.0%,电信28.62%,政府6.15 %,邮政5.21I %,家庭3.25 %,税 务2.9%,交通 2.14%,其它 17.91%。) c. 通信:年需求将达到 212.6万kw-h ,其中,邮电通信用 173.5万kw-h ,通信 专网用11.4万kw-h ,用户接人网用 27.7万kw ?h 。 d. 金融:初步调研,在中、农、工、建四大银行蓄电池年更换量达到 民币 通常在使用期限内就易产生充 在行业用户中: a. 电力系统:铅酸蓄电池可望以 1 0%- 20%的年均增长率发展 3 亿元人

相关主题
文本预览
相关文档 最新文档