当前位置:文档之家› 金樱子多糖的分离纯化及药理作用研究进展

金樱子多糖的分离纯化及药理作用研究进展

金樱子多糖的分离纯化及药理作用研究进展
金樱子多糖的分离纯化及药理作用研究进展

金樱子多糖的分离纯化及药理作用研究进展

关键词:金樱子;多糖;分离;纯化;提取;药理

中药金樱子为蔷薇科蔷薇属的传统药食两用野生植物金樱子(Rosa laevigata Michx)的果实,始载于《蜀本草》,又名刺榆子、刺梨子、金罂子、山石榴、糖罐子等,我国分布广泛、资源丰富。《本草纲目》中记载金樱子:性酸、涩、平、无毒;主治脾泻下痢、止小便利、涩精气;久服,令人耐寒轻身,补血益精,有奇效[1]。现代研究表明,金樱子具有调节免疫、降糖降脂、抗炎抗菌等药理作用[2],其有效成分主要为黄酮、三萜、乌索酸、齐墩果酸、多糖等[3]。本文就金樱子多糖的分离纯化以及药理作用进行综述。

1 金樱子多糖的提取

金樱子多糖为白色粉末,不溶于正丁醇、丙酮等有机溶剂,由葡萄糖、甘露糖、半乳糖、鼠李糖、阿拉伯糖、木糖组成[4],果实中总糖含量约24 %,多糖含量达13.73%[5]。多糖分子结构中羟基较多、极性大,因此通常采用不同温度的水、稀碱溶液或稀酸溶液提取,常用的方法有:溶剂法、微波法和酶法。

1.1溶剂法为植物多糖提取的常用方法。多糖极性大,根据相似相溶原则,可采用水等强极性溶剂提取。由于采用碱或稀酸水溶液提取多糖,容易破坏糖苷键及水解多糖链上的基团如硫酸酯基、磷酸酯基等,因此金樱子多糖提取的溶剂法常采用水提醇沉法。王瑞兰等[6]将金樱子干燥,粉碎,用无水乙醇与无水乙醚混合液(体积比为1:l)浸泡12h去脂,布氏漏斗抽滤,滤渣风干后用80℃左右热水浸提3次,每次5h,合并提取液,浓缩,用sevag法脱蛋白,H2O2脱色,透析,旋转蒸发浓缩,加人4倍体积的95%的乙醇沉淀过夜,离心,沉淀物连续用无水乙醇和丙酮洗涤,冷冻干燥得近似金黄色金樱子粗多糖。

1.2微波法微波是频率介于300MHz-300GHz之间的电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部。由于溶剂及细胞液吸收微波能,细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶

解。此法提取时间短,提取率高。薛梅等[7]使用石油醚脱脂后,辅以微波,用乙醇提取金樱子黄酮,去黄酮后挥干剩余物的乙醇,继辅以微波,水回流提取、浓缩,得金樱子多糖。

1.3其他提取法植物多糖还有多种尚未用于金樱子多糖的提取方法。如酶法、超滤法、超声法。以上方法各有优势,酶技术是近年来广泛应用的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,比较温和的分解植物组织,加速多糖的释放或提取;超滤法所采用的超滤膜能够从水中分离出多糖分子,具有浓缩条件温和,多糖损失小,速度快,节约能源,浓缩的同时可除去小分子杂质和色素等优点;超声法是应用超声波强化提取植物多糖的方法,具有缩短提取时间,提高提取率等优点,目前已应用于南瓜总糖、还原糖和多糖、海带多糖、甘草多糖、海藻多糖的提取。

2 金樱子多糖的纯化

多糖中常含有无机盐、大分子蛋白质、木质素、色素及醇不溶物的小分子有机物,提取过程中常用使用Sevag法,三氟三氯乙烷法,三氯乙酸法,酶法,等电点沉淀法去除杂质[8]。此外,通过上述方法所得到的是多糖混合物,如果要得到单一的多糖,还必须对该混合物进行纯化。常用的纯化方法有:分级沉淀法,季铵盐沉淀法,层析法,盐析法等[8].。

柱层析在多糖的纯化中较为常用,常分为两类:一是只有分子筛作用的凝胶柱层析,它根据多糖分子的大小和形状不同而达到分离目的,常用的凝胶有葡聚糖凝胶及琼脂糖凝胶,以及性能更佳的Sephacryl等。洗脱剂为各种浓度的盐溶液及缓冲液,其离子强度不应低于0.02mol/L。二是离子交换层析,它不仅根据分子极性的不同,同时也具有分子筛的作用,常用的交换剂有DEAE-纤维素、DEAE-葡聚糖和DEAE-琼脂糖等,此法适合于分离各种酸性,中性多糖和粘多糖。多糖的纯化还可用其他方法,如制备性高效液相层析、制备性区带电泳,亲和层析等,这些方法适用于制备少量纯品供分析用。多糖的检测可用比旋度、示差折射及紫外检测等方法,也可以用苯酚-硫酸法测定多糖。纯度的鉴定可以用超离心法、高压电泳法、凝胶过滤法、高效液相法、示差折射法、紫外检测法等。

王瑞兰等[6] 制备性高效液相层析分离纯化金樱子多糖,其方法是:通过DEAE-Sepharose Fast Flow柱层析,盐梯度洗脱,用苯酚一硫酸法检测。收集

到2个洗脱曲线主峰的多糖组分,经检测分子量分别为22712和16051,其中之一由D-半乳糖、D-甘露糖和木糖组成。

3 金樱子多糖的药理作用

植物多糖与免疫功能的调节、细胞与细胞的识别、细胞间物质的运输、癌症的诊断与治疗等有着密切的关系。此外它还能控制细胞的分裂和分化,调节细胞的生长和衰老等[9]。目前,对多糖的化学研究以及生物功能的研究方兴未艾,不同来源多糖的潜在功能尚须进一步研究。专家预测,随着对多糖结构和功能关系的研究,将会产生生物学的新领域[10]。

金樱子具有多种药理和保健功能,金樱子多糖是其主要有效成分之一,具有多种生物活性,而且金樱子果实中多糖含量很高,探索金樱子多糖的生理和药理活性具有一定的意义。

3.1抗氧化作用超氧阴离子自由基、羟自由基等含氧自由基,在人体中含量过多会引起机体损伤,其中·OH 对细胞的危害最大,可直接损伤各种生物大分子和生物膜,导致多种疾病的发生。赵云涛[11]等人探讨了金樱子多糖体外抗氧化作用。采用邻苯三酚自氧化法测定金樱子多糖清除超氧阴离子自由基效果;比色法测定金樱子多糖对羟自由基诱导红细胞溶血、脂质过氧化反应的影响。结果表明金樱子多糖能显著清除超氧阴离子自由基、抑制羟自由基对细胞膜的破坏而引起的溶血和脂质过氧化产物的形成,从而具有显著的抗氧化作用。陈晓麟[12]等人将金樱子多糖加入到猪油当中,测定其对猪油的抗氧化作用。研究显示,一定浓度的金樱子多糖对猪油的抗氧化能力与丁基羟基甲苯(BHT)相当。李铭[13]观察到金樱子多糖抑制体外肝匀浆脂质过氧化的作用,表现出较强的抗氧化活性。

3.2调脂降糖作用金樱子多糖具有较强的降脂作用,马云[14]等人研究了金樱子对高糖高脂兔腹部脂肪及血糖、血脂含量的影响。结果显示:模型兔血糖、血脂均降低,提示金樱子多糖有降低血糖、甘油三酯和减少肝及肠系膜中脂肪堆积的作用。张庭廷[5]等人观察了金樱子多糖对实验性小鼠高脂血症的作用。实验发现,金樱子多糖对实验性小鼠的高胆固醇血症具有明显的预防和治疗作用,其机制主要是抑制了肠道胆固醇的吸收。

3.3免疫活性免疫调节功能是维护机体健康的重要保证,多糖化合物特别是从高等动植物中提取的多糖对巨噬细胞、网状内皮细胞、T、B淋巴细胞都有激活

作用,因而可提高机体的免疫调节功能。张庭廷[15]等人探索了金樱子多糖的免疫活性。实验中让小鼠服用金樱子多糖,测定服用后的小鼠的巨噬细胞清除血中刚果红能力以及金樱子多糖对以鸡红细胞为抗原的溶血素生成、2, 4-2二硝基氟苯所致迟发型超敏反应的影响和对卡介苗和脂多糖致免疫性肝损伤的保护作用。研究结果显示一定浓度的金樱子多糖可提高小鼠巨噬细胞对血中刚果红的吞噬能力、增加小鼠溶血素的生成、显著恢复免疫功能低下小鼠的DTH反应并能降低血中转氨酶活性,逆转肝、脾指数。说明金樱子多糖具有增强小鼠非特异性免疫、体液免疫和细胞免疫作用,还有免疫调节作用。

3.4抑菌和抗炎作用近年来的研究发现金樱子煎剂对金黄色葡萄球菌、大肠杆菌、绿脓杆菌、痢疾杆菌、破伤风杆菌及钩端螺旋体均有抑制作用,对流感病毒也有较强的抑制作用,其中金樱子多糖为主要活性成分。张庭廷[16]等人研究了金樱子多糖的抗菌活性和抗炎作用。实验表明金樱子多糖对大肠杆菌、副伤寒杆菌、白葡萄球菌以及金黄色葡萄球菌具有抑制作用,特别是对前3种细菌的抑制作用很强,其抑菌圈直径随多糖的浓度增大而有所增加,当多糖浓度达到10~15 mg/ml时,其抑菌效果就已超过了50 ppm的链霉素。金樱子多糖对酿酒酵母和放线菌也有较强的抑制作用,但对霉菌则没有显示抑制活性。金樱子多糖还能抑制二甲苯引起小鼠的耳肿胀,与NS组比较有明显差异( P < 0. 01) ,具有一定的抗炎作用。但对金樱子多糖的抑菌谱和效价、抗炎作用的机理等还有待进一步研究。

3.结论与展望:

在世界药物研究趋势由化学合成药物转向天然药物的今天,人们对植物多糖的研究正方兴未艾。到目前为止已对100余种中药多糖进行了活性研究,发现植物多糖具有抗肿瘤、保肝、延缓衰老、免疫调节[17]、抗病毒和治疗心血管疾病等活性[18]。多糖类化合物作为一种新药物,它具有毒副作用小、安全性高、疗效好等优点,因此在临床应用中显示越来越广阔的前景。

金樱子果实中多糖含量十分丰富,现已发现它有抗氧化、免疫活性、抑菌抗炎、降糖降脂等作用,但对其抑制肿瘤、增强免疫力等药理作用和与此相关的金樱子多糖的分离纯化尚未见报道。另外,应该加强对金樱子多糖与生物大分子或小分子的识别机制,以及它的高级结构———构象问题和多糖单晶的研究,这是

加快其生理活性研究的重要途径,一方面有利于进一步寻找未被发现的药理活性,特别是研究金樱子多糖是否能够作为治疗或辅助治疗药对肿瘤和艾滋病等顽症。另一方面,还有利于针对性地对金樱子多糖及其衍生物进行结构改造如硫酸化、乙酰化等以提高多糖活性。这一问题的解决能最终解决寻找高活性免疫多糖的盲目性,加快多糖的研究进程。金樱子多糖的潜在功能尚需进一步研究,随着多糖的结构和功能关系的研究,将会产生生物学的新领域,导致医学上高速发展和工农业新的应用。

参考文献:

[1]李时珍.《本草纲目》下册[M].北京:人民卫生出版社.

[2] 闵俊,李燕燕,余华.药理作用及临床应用研究进展[J].环球中医药,2008,2:16-8.

[3]刘焱, 高智席.药用植物金樱子有效化学成分研究进展.遵义师范学院学报,2008,10(3):49-52.

[4]张庭廷,李蜀萍,聂刘旺.金樱子多糖的分离纯化及组成分析[J].生物学杂志, 2002, 19(3): 27-9.

[5]张庭延,聂刘旺,吴宝军.金樱子多糖的抑脂作用[J].中国公共卫生,2004,20(7):829-30.

[6]王瑞兰,易俗,陈康贵.金樱子果实中多糖的提取与分离纯化[J].湘潭师范学院学报(自然科学版), 2003, 25(2): 77-79.

[7]薛梅,王自军,闫豫君,等.金樱子中总黄酮和多糖的微波提取与含量测定[J]食品工业科技,2005,26(10):134-7.

[8]张彤.多糖的研究方法概述[J].化学工程与装备,2008(5):86-8.

[9]Kodama N,Komuta K,Sakai N,et al.Effects of D-fraction,a olysaccharide from Grifola frondosa on tumor growth involve activation of NK cells[J].Biol Pharm Bull,2002,25(12):1647.

[10]孔繁祚.糖化学[M].北京:科学出版社,2005.

[11]赵云涛,国兴明,李付振.金樱子多糖的抗氧化作用[J].生物学杂志, 2003, 20 (2) : 23-4.

[12]陈晓麟,丁小雯. 金樱子提取液对猪油自动氧化作用的影响[J]. 重庆教育学院学报, 2002,15 (3):53-7.

[13]李铭,丁小雯,谭建东. 金樱子、木瓜对肝匀浆脂质过氧化抑制作用的研究[J]. 重庆教育学院学报,1999,12(3):44-6.

[14]马云,董小英,刘四春,等. 金樱子和鸡内金对饲高糖高脂兔腹部脂肪及血糖血脂的影响[J].现代中西医结合杂志,2003,12(16):1703-5.

[15]张庭延,聂刘旺,刘爱民,等. 金樱子多糖的免疫活性研究[J]. 中国实验方剂学杂志,

2005,11(40):55-8.

[16]张庭延,潘继红, 聂刘旺,等. 金樱子多糖的抑菌和抗炎作用研究[J]. 生物学杂志, 2005,22(2):41-2.

[17]吴华振,植物多糖的药理作用及应用进展[J].实用医技杂志,2005.

[18] 彭会军,邹群.植物多糖的生物活性研究进展[J].西北药学杂志,2008,23(6):406-7.

蒺藜化学成分及其药理作用研究进展_褚书地

收稿日期:2002-11-25 *通讯作者蒺藜化学成分及其药理作用研究进展褚书地 瞿伟菁* 李 穆 曹群华 (华东师范大学生命科学学院,上海200062) 摘 要 蒺藜全草中含有皂甙、生物碱、黄酮、多糖、基氨酸等化学成分,其活性成分对动物及人体的心脑血管系统、中枢神经系统、性功能及肌肉体系等有一定程度的作用,为此就其化学成分及其相应药理研究进展作一综述。关键词 蒺藜,活性成分,药理研究 Research Advance on Chemical Component and Pharmacological Action of Tribulus terrestris Chu Shudi,Qu W eijing,Li Mu,Cao Qunhua (Schoo l o f Life Science,E ast China Normal Univ ersity,Shanghai200062) Abstract The whole plant of Tribulus ter restris L.co ntains activ e substances as sapo nin,alka-loid,flav o ne,poly saccharide and amino acid,which hav e sev eral effects o n cardio-cerebral vas-cula r system,central neural sy stem,sex functio n and muscula r system in animal a nd human body.In this pa per,the dev elopment o f the study on its chemical com po nents and pharmacologi-ca l research was review ed. Key words Tribulus terrestris L.,Activ e substance,Pharmaco logica l research 中药蒺藜,国家《药典》记载为蒺藜科植物蒺藜(Tribulus terrestris L.)的干燥成熟果实,别名刺蒺藜、硬蒺藜、白蒺藜,生药学拉丁名为“FRU CTU S T RIBU LI”,功能“平肝解郁,活血祛风,明目,止痒。用于头痛眩晕,胸胁胀痛,乳闭乳痈,目赤翳障,风疹瘙痒”。蒺藜的花、苗、根,也有药用记载[1,2]。蒺藜化学成分的研究始于20世纪60年代,自80年代以来,我国对蒺藜也进行了研究,以蒺藜总皂甙为主要成分的制剂心脑舒通已用于临床。迄今已证实蒺藜主要含有皂甙类、黄酮类、生物碱、多糖类等化合物,其它尚含甾醇类、氨基酸类、萜类、脂肪酸、无机盐等成分[3,4]。蒺藜有“草中名药”之称,对其研究方兴未艾,笔者就其化学成分及其相应的药理研究进展作一综述,以利对其深入研究。 1 化学成分 1.1 蒺藜多糖 蒺藜全草、果实、根中都含有多糖,且全草中糖的含量略高于果实、炮制后的果实(碾去刺、清炒)多糖含量则较低[5]。蒺藜多糖对CP(环磷酰胺)造成的遗传损伤有明显的防护作用,其机理可能是通过清除自由基、抗脂质氧化作用来保护细胞膜,防止CP 的代谢产物进入细胞内直接损伤DN A,或减少产生的自由基直接攻击DN A[6]。 1.2 生物碱 目前从蒺藜中分离、鉴定出的生物碱有哈尔满(harmane)、哈尔碱(harmine)、哈尔醇(ha rmol)、β-ca rboline、imdo leamines、norharmane、N-对羟基苯乙酮基-3甲氧基-4羟基取代桂皮酰胺、TribulusamidesA、TribulusamidesB、N-trans-feruloy ltyramine、terrestrisamide、N-trans-co uma roylty ramine,经研究发现它们对原代培养的肝细胞有保护作用,但关于其作用机理有待于进一步研究[3,7]。 1.3 黄酮 自印度1969年报道分离出黄酮甙后,1981年埃及学者系统地报道了蒺藜叶子中黄酮类化学成分 第22卷第4期 2003年8月 中国野生植物资源 Chinese Wild Plant Res ources V o l.22No.4 Aug.2003

真菌多糖药理作用及其提取_纯化研究进展

第29卷第2期河南工业大学学报(自然科学版) Vol .29,No .2 2008年4月Journal of Henan University of Technol ogy (Natural Science Editi on )Ap r .2008 收稿日期:20080227 基金项目:河南工业大学引进人才专项(2007BS023) 作者简介:李磊(1985),男,河南平舆人,硕士研究生,研究方向为微生物与生化药学3通讯作者 文章编号:16732383(2008)02008706 真菌多糖药理作用及其提取、纯化研究进展 李 磊,王卫国 3 (河南工业大学生物工程学院,河南郑州450001) 摘要:真菌多糖由于其独特的生理活性及结构,有望成为保健食品与药品行业重点开发的新资 源之一.本文综述了近年来国内外关于真菌多糖药理作用的研究现状及其提取与纯化的基本方法与过程,并结合当前实际分析了真菌多糖在医疗保健、动物养殖及其他行业的应用与发展前景. 关键词:真菌多糖;药理作用;发酵;提取;纯化中图分类号:TS201.2 文献标识码:B 0 前言 多糖也称聚糖,是一类广泛存在于动物细胞膜、植物及微生物细胞壁中,由醛糖或酮糖通过糖苷键连接在一起的天然高分子化合物.多糖是自然界中糖类的主要存在形式,根据生物来源的不同,可将其分为植物多糖、动物多糖、微生物多糖,其中微生物多糖(尤其是真菌多糖)是至今研究的较为深入和广泛的一类多糖. 真菌多糖系真菌中分离出的由10个以上的单糖以糖苷键连接而成的高分子聚合物,是从真菌子实体、菌丝体或发酵液中分离出的,可以控制细胞分裂、分化,调节细胞生长和衰老的一类活性 多糖[1] .研究表明,真菌多糖具有非常广泛的生物学活性,如免疫调节、抗肿瘤、降血压、降血脂、降血糖、抗衰老、抗氧化、抗病毒、抗辐射、抗血栓和抗凝血等作用.因此,真菌多糖的药理作用及其提取、纯化技术已成为国内外众多学科领域研究的热点之一,本文就真菌多糖在该方面的相关研究进行了综述. 1 真菌多糖的主要药理作用 自1958年B rander 报道了酵母细胞壁多糖 (Zy mosan )具有抗肿瘤作用以来,人们对真菌多 糖产生了浓厚的兴趣,并对真菌多糖的化学结构、生物活性进行了深入细致的研究,取得了丰硕的 成果[2-3] .目前,对于真菌多糖的药理作用的研究报道主要集中在以下几个方面:1.1 免疫调节作用 研究表明,真菌多糖主要是通过对淋巴细胞、巨噬细胞、网状内皮系统等的作用来调节机体的免疫功能.作为生物反应调节剂,它不仅能够激活T 、B 淋巴细胞、巨噬细胞、自然杀伤细胞(NK )等免疫细胞,还能活化补体,促进细胞因子的生成, 全面发挥对机体的调节作用[4] . Nanba [5] 曾研究了灰树花多糖(PGF )D -组分对各种免疫细胞的激活作用,结果发现小鼠i p0.5mg/kg 或ig1.0mg/kg 灰树花D -组分10d 后,自然杀伤细胞(NK )、细胞毒T 细胞、迟敏T 细胞分别增至1.5~2.2倍,白介素-1和超氧负离子的量也得到了提高,白介素-2提高至1.7 倍.另外,李海花[6] 在实验中发现灰树花多糖在180mg/kg 和120mg/kg 剂量下,可明显增强小鼠吞噬细胞的吞噬功能,增强小鼠的体液免疫能力, 并能提高小鼠免疫器官的重量;而Fang 等[7] 研究发现金针菇多糖也能增加荷瘤小鼠脾脏重量、NK 细胞活性和淋巴细胞转化刺激指数,恢复和增强小鼠的免疫功能.1.2 抗肿瘤作用 实验表明,大多数真菌多糖的抗肿瘤作用是通过增强宿主免疫调节功能来实现的,它可以从根本上提高机体免疫功能,如能激活机体的免疫

植物多糖分离纯化

食品分离技术作业 姓名_______________ 院系_______________ 专业班级_______________ 学号_______________ 时间___年___月___日

摘要 本文简要地介绍了植物多糖提取的两种方法:溶液提取法和部分沉淀法,对于影响多糖提取的不同因子选取不同方法;从多个方面介绍了多糖提取后的分离、纯化方法,及其分离纯化原理和主要步骤,并在最后对分离方法的可行性做出评价。 关键词:植物多糖分离纯化溶剂提取法部分沉淀法 植物多糖的分离纯化 一、多糖的物化性质 A.分子结构:多糖在溶液状态下有着高级结构,代表活性状态。不同植物提取的多糖, 一级结构上有很太差异,采用酸解、色谱、质谱、红外光谱、核磁共振等手段,可以确定单糖的组成及取代基团。 B.溶解性:难溶于冷水,在热水或碱液中可溶。不溶于丙酮、乙醇、正丁酵、乙醚、醋 酸乙酯等有机溶剂 C.热稳定性:热不稳定,当温度大于4O℃时,分解加快。 D.酸碱稳定性:pH小于5时开始降解,小于3时有20%降解;大于7时氧化加快。 E.化学性质:与硫酸蒽酮、硫酸苯酚反应阳性,常用于定量分析;可与部分有机、无机 离子络合,如与十六烷基三溴化铵(CTAB)、氢氧化钡等结合沉淀 F. 二、植物多糖的提取 多糖不同的植物中,有着不同的含量和贮存位置,因此针对不同的植物有着不同的分离方法。 图1:不同植物中多糖的提取方法

A.溶剂提取法 a)水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 图2:加水比对多糖提取的影响[1] b)酸碱提法[2] 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。 图3:热碱提取多糖结果[3] c)生物酶提取法[4] 酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。 B.部分沉淀法 a)金属盐沉淀法

多糖的分离纯化及生理作用

多糖的分离纯化及生理作用 多糖包括植物多糖、动物多糖和微生物多糖。人们已发现多糖不仅是机体的能量来源和骨架成分,而月还具有多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用等多种生物活性。 多糖的提取和纯化 1. 多糖的提取 1.1 热水浸提法:其步骤为:原料→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥 首先除去表面脂肪。原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M氢氧化钠作为提取溶剂)提取多糖。温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。得到的多糖提取液大多较粘稠,可进行吸滤。也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。然后依次用乙醇、丙酮和乙醚洗涤。将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥),干燥后可得粉末状的粗多糖。 1.2 微波辅助提取法: 其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中。由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清。聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(28.46%)。 1.3 超声辅助法: 其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]。超声波辅助法与常规提取法相比,具有提取时间短、产率高、无需加热等优点[17]。 1.4 索氏提取法: 将植物粉末置于索氏提取器中,加入石油醚,60℃-90℃条件下提取至无色(一般为6小时)。过滤,滤渣挥发干燥完溶媒后加入80%乙醇,再提取6小时,过滤,滤渣乙醇挥发干燥后加蒸馏水。回流提取2次,趁热过滤,滤液减压浓缩,再除蛋白,醇沉,除色素。60℃干燥,称重。 1.5 醇提法: 先后将90%和50%乙醇加入植物粉末中,振荡充分再抽滤。滤液中加入足量无水乙醇,至于4℃冰箱中过夜。减压抽滤,再除去色素,得多糖粗品,在60℃通风干燥箱中干燥,再置干燥皿中恒重保存。 醇提法方法简单,易于操作,但提取率较低,乙醇使用量大,不宜大规模提取使用。 2.多糖的纯化方法纯化是将多糖混合物分离为单一多糖的过程,纯化的方法主要有以下几种: 2.1 分部沉淀法根据各种多糖在不同浓度的低级醇或丙酮中具有不同溶解度的性质,逐次按比例由小到大加入甲醇或乙醇或丙酮,收集不同浓度下析出的沉淀,经反复溶解与沉淀后,直到测得的物理常数恒定(最常用的是比旋光度测定或电泳检查)。这种方法适合于分离各种溶解度相差较大的多糖。为

三七中有效成分与药理作用研究进展综述

三七中有效成分与药理作用研究进展 摘要:目的:探讨近年来三七中有效成分与药理作用研究进展,为今后三七的深入研究提供一定的理论依据。方法:通过查阅近十年三七的相关著作与文献,对三七的有效成分的研究进行分析总结。结果:三七具有散瘀止血、消肿定痛之功效,还能抗炎、保肝、抗肿瘤、镇痛等[1]。结论:研究表明三七的现代药理作用与化学成分的研究与其传统中医临床疗效相对应,有利于三七的进一步开发与利用。 关键词:三七、有效成分、药理作用、研究进展 1 前言 三七为五加科植物三七Panax notoginseng(Burk.)F.H.Chen的干燥根,主要产于广西、云南、四川、贵州等地[2]。本品性温、味甘、微苦,归肝、胃、心、大肠经,具有散瘀止血,消肿定痛之功效。用于咯血,吐血,衄血,便血,崩漏,外伤出血,胸腹剌痛,跌扑肿痛。笔者通过对近年来三七的现代药理作用与化学成分的研究进展综述,为进一步研究与开发三七提供参考。 2 有效成分: 三七根的主要有效成分是人参皂苷,并含有黄酮苷、田七氨酸、黄酮等化合物。三七根主要含人参皂苷,总皂苷含量达三七化学成分的8%~12%,以人参皂苷Rb1和Rg1为主。皂苷元为人参二醇和人参三醇,以后者含量为高。与人参所含皂苷不同的是缺少齐墩果酸。三七中的人参皂苷绝大多数属于达玛甾烷型四环三萜,在达玛甾烷骨架的C3和C12位均有羟基取代。达玛烷型皂苷(1)20(s)原人参二醇型(20(s)-potopanaxadiol)该类皂苷包括人参皂苷Rb1、Rb2、Rc、Rd、K、L、R7、F2,丝石竹皂苷IX、XVⅡ,三七皂苷Fa、Fc、Fe、F1-F413种[3]。20(s)-原人参二醇型(2)20(s)原人参三醇型(20(s)-protopanaxatriol)包括人参皂苷Re、RM、R、Rg1、R1、Rg2、Rf、Rh1、R2、R310种[4]20(s)-原人参三醇型此外[5],用连续色谱柱分离到原人参三醇型皂苷R8和R9,两者分别占总皂苷含量的0.00011%和0.00003%。经光谱分析证明两者为相互表异构物,分子式均为C36H62O10。

多糖分离纯化的基本原则和方法

多糖分离纯化的基本原则和方法 多聚糖(polysaccharide),简称多糖,常由一百个以上甚至几千个单糖基通过糖苷键连接而成的,其性质已大不同于单糖,如甜味和强的还原性已经消失,广泛存在于动物细胞膜和植物、微生物的细胞壁中,是构成生命的四大基本物质之一,与生命功能的维持密切相关。近年来,大量研究表明多糖除了有增强免疫功能、抗肿瘤作用、抗氧化、抗衰老、消化系统保护作用的生物学效应外,还有抗菌、抗病毒、降血糖、降血脂、抗辐射、抗凝血等作用。 1、基本原则 在不破坏多糖活性的前提下进行多糖的分离纯化。尽量不引入新的杂质,或引入的新杂志易于除去,如小分子盐类可经过透析作用除去,铵根离子可通过加热挥发除去等[1]。 2、分离纯化方法 多糖的生物活性倍受关注,但不少多糖的提取方法和工艺尚未成熟,基于效率、成本多方面的考虑,各种方法的开发、比较、分析是研究工作的焦点之一。目前多糖提取方法主要有溶剂提取法、酸提法、碱提法、酶解法、超滤法、超声法、微波法、超临界流体萃取法。首先要根据多糖的存在形式及提取部位不同,决定在提取之前是否做预处理:提取时需注意对一些含脂较高的根、茎、叶、花、果及种子类,在用水提取前,应先加入甲醇或l:l的乙醇乙醚混合溶液或石油醚进行脱脂,而对含色素较高的根、茎、叶、果实类,需进行脱色处理。 2.1多糖的提取与分离方法 由于各类多糖的性质及来源不同,所以提取方法也各有所异,主要归纳为以下几类: 第一类难溶于水,可溶于稀碱液的主要是胶类,如木聚糖及半乳糖等。原料粉碎后用0.5mol/L NaOH水溶液提取,提取液经中和及浓缩等步骤,最后加入乙醇,即得粗糖沉淀物。 第二类易溶于温水,难溶于冷水的多糖,可用70~80℃热水提取,提取液用氯仿:正丁醇(4:1)混合除去蛋白质,经透析、浓缩后再加入乙醇即得粗多糖产物[2]。 第三类粘多糖的提取。在组织中,粘多糖与蛋白质以共价键结合,故提取

微生物多糖的研究进展

微生物多糖的研究进展 生命科学技术学院08级2班杜长蔓 摘要: 就微生物多糖的种类,生物合成、提取与纯化、实现了工业化的微生物多糖及其应用进行了综述, 展望了微生物多糖开发利用的前景。微生物多糖主要指大部分细菌、少量的真菌和藻类产生的多糖。微生物多糖由于具有安全性高、副作用小、理化特性独特等优点而使其在食品和非食品工业备受关注,尤其在医药领域具有巨大的应用潜力。微生物多糖在细胞内主要有三种存在形式: ①黏附在细胞表面上,即胞壁多糖; ②分泌到培养基中,即胞外多糖; ③构成微生物细胞的成分,即胞内多糖。而其中的胞外多糖具有产生量大、易于与菌体分离、可通过深层发酵实现工业化生产。一般微生物多糖的生产主要是利用淀粉为碳源,经过微生物的发酵进行生产,也有通过利用微生物产生的酶作用制成的。能够产生微生物胞外多糖的微生物种类较多,但是真正有应用价值并已进行或接近工业化生产的仅十几种。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量在10 %以上,而一些新兴多糖年增长量在30 %以上。到目前为止,已大量投产的微生物胞外多糖有黄原胶(Xant han gum) 、结冷胶( Gellan gum) 、小核菌葡聚糖(Scleeroglucan) 、短梗霉多糖( Pullulan) 、热凝多糖(Curdlan) 等。微生物多糖和植物多糖相比较具有以下优势:①生产周期短,不受季节、地域、病虫害等条件的限制; ②具有较强的市场竞争力和广阔的发展前景; ③应用广泛,例如已作为胶凝剂、成膜剂、保鲜剂、乳化剂等广泛应用于食品、制药、石油、化工等多个领域。据估计,目前全世界微生物多糖年加工业产值可达80 亿左右。 关键词: 微生物多糖; 生物合成; 提取与纯化;开发应用 0引言 多糖是一种天然的大分子化合物,来源于动物、植物及微生物,在海藻、真菌及高等植物中尤为丰富。它是由醛糖和(或)酮糖通过糖苷键连接成的聚合物,作为有机体必不可少的成分,同维持生命体机能密切相关,具有多种多样的生物学功能。 根据多糖在微生物细胞内的位置,可分为胞内多糖、胞壁多糖和胞外多糖。人们对多糖的初始研究可追溯到1936 年Shear对多糖抗肿瘤活性的发现, 但微生物多糖倍受关注是从20 世纪50 年代开始的. 20 世纪50 年代, J eanes等人筛选、获得了许多黄原胶(Xan than gum ) 的产生菌. 1964 年, 原田等人从土壤中分离到产凝结多糖(Cu rdlan, 又称热凝多糖) 的细菌, 后发现农杆菌(A grobacterium sp. ) 也可以产生该多糖. 1978 年,美国人生产制造了产生于少动鞘脂类单胞菌(S p hing om onas p aucim obilis, 旧称伊乐藻假单胞菌) 的结冷胶(Gellan gum , 又称胶联多糖). 随后, 小核菌葡聚糖(Scleeroglucan)、短梗霉多糖(Pu llu lan, 又称普蓝)、透明质酸( Hyalu ron ic acid)、壳聚糖(Ch i2tasan) 等微生物多糖又相继被人们发现.近年来又兴起一些新型微生物多糖如海藻糖、透明质酸、壳聚糖等的研究。微生物多有广泛的应用价值, 已作为乳化剂、增稠剂、稳定剂、胶凝剂、悬浮剂、润滑剂、食品添药品等应用于石油、化工、食品、医疗、制药保健等多个领域[1 ]. 为了不断开发微生物多糖的潜能, 仍然需要筛选、分离新的多糖产生菌, 了解多糖的生物合成, 研究它们的结构、理化学特性,进一步拓展它们的应用领域. 1微生物多糖的生物合成 多糖有的合成于微生物的整个生长过程, 有的合成于对数生长后期, 而有的则合成于静止期. 它们种类繁多, 可分为同型多糖和异型多糖, 都是由相同或不同的单糖或者和其它基团在特

枸杞多糖分离纯化及性质研究

第25卷 第3期 2008年6月 黑龙江大学自然科学学报JOURNAL OF NAT URAL SC I E NCE OF HE I L ONGJ I A NG UN I V ERSI TY Vol 125No 13 June,2008 枸杞多糖分离纯化及性质研究 张 晶1,2, 韩喜江1, 李艳波2 (1.哈尔滨工业大学化学系,哈尔滨150001;2.哈尔滨学院生化学院,哈尔滨150080) 摘 要:对东北枸杞中提取的多糖,通过DEAE -cellul ose (OH -)色谱柱和Sephadex G -100 凝胶色谱柱进行了分离纯化,通过凝胶色谱和液相色谱对其纯度进行了鉴定,并通过红外光谱初步分析了其基团构成。 关键词:枸杞多糖;分离纯化;纯度鉴定 中图分类号:R28412,TS244文献标志码:A 文章编号:1001-7011(2008)03-0377-04 收稿日期:2008-01-16 作者简介:张 晶(1973-),女,实验师,硕士,主要研究方向:应用化学、食品化学 0 引 言 枸杞是一种食药两用植物,具有多种药理作用和生理功能。枸杞多糖是枸杞中的主要活性成分之一,其中有关枸杞多糖的化学、药理与临床研究十分瞩目,已有不少研究报道枸杞多糖具有增强免疫力、抗癌、防衰 老、抗疲劳、降血压、降血糖、抑制肿瘤生长和细胞突变等作用[1-2]。鉴于枸杞多糖具有多种药理作用和生理 功能,因此,对其提取分离方法及纯化的研究显得尤为重要[3]。本文重点对牡丹江地区枸杞多糖的分离纯 化及组成结构作了初步探讨。 1 实验材料和方法 111 材料与仪器 牡丹江地区枸杞子;其它试剂均为分析纯。自动部分收集器,台式干燥箱,紫外分光光度计,Perkin -El 2mer 红外光谱仪,Aglilent 1100液相色谱仪等。 112 枸杞多糖提取 称取100g 枸杞子60℃烘干,放置干燥器18h 后粉碎,称取10g 干燥的枸杞粉,用氯仿-甲醇(2∶1)300mL,用索氏回流装置于60℃回流脱脂。残渣风干后,加入适量水,在100℃,料水比1∶15条件下水浴提取4h,抽滤,将滤液蒸发浓缩为原体积的1/4后,将浓缩液滴入3倍体积的95%乙醇中,静置,抽滤,固形物 分别用95%乙醇、无水乙醇、丙酮洗涤,水浴加热干燥得枸杞粗多糖[4]。 113 枸杞多糖分离纯化 11311 DEAE -cellul ose (OH -)色谱柱层析 将分离提取的枸杞粗多糖110g 溶于水,上DEAE -cellul ose (OH -)色谱柱,梯度洗脱法洗脱各级分,洗 脱液分别为蒸馏水、011mo1?L -1,0125mol ?L -1和015mol ?L -1NaCl,011mol ?L -1Na OH 各100mL,流 速为30滴每分钟,自动部分收集器收集洗脱液,将收集到的样品溶液分别在280nm 波长下比色,然后用硫 酸一蒽酮法测定总糖含量。以试管数目为横坐标,以吸光度为纵坐标作DE AE -cellul ose (OH -)色谱柱洗脱 曲线图。分别合并各主峰溶液,浓缩,流水透析,冷冻干燥,得LBP -1,LBP -2,LBP -3和LBP -4.11312 Sephadex G -100凝胶色谱柱。 收集多糖含量最多的组分,进行凝胶色谱分离。流速为013mL ?m in -1,每支试管接收3mL 洗脱液,硫 酸一蒽酮法检测多糖洗脱状况。以洗脱管数为横坐标,吸光值为纵坐标作流出曲线,合并主峰溶液,浓缩,流水透析,冷冻干燥。

灵芝多糖的研究进展_张卫国

中图分类号:R979.1 R730.53;文献标识号:A ;文章篇号:1007-2764(2003)03-0036-85  灵芝多糖的研究进展 张卫国1 刘欣2 陈永泉2  (1韶关大学英东生物工程学院 韶关 512005)(2华南农业大学食品学院 广州510642) 摘 要: 灵芝多糖是灵芝中含有的一种高分子活性多糖,具有多种生理功能,国内外对此开展了广泛的研究。本文对其生理功能、结构特点、发酵生产等方面的研究进行了综述。  关键词:多糖;生理功能;结构;发酵    Research advance of G.japonicum polysaccharide Zhang Weiguo1, Liuxin 2, Chen Yongquan2 (1 Food Department , Shaoguan University, Shaoguan ,512005) (2 Food college, South-China Agricultural University, Guangzhou 510642) Abtract: G.japonicum Polysaccharide is a high-molecule active material that has many functions. Its research has done widely at home and abroad. The paper reviews its function, structure and fermenting production.。 Key words: polysaccharide; function; structure; fermentation   1 灵芝及其医疗保健作用  灵芝是一种营养、保健价值极高的大型担子菌。目前已知灵芝属约有100多种,其中以赤芝和紫芝的药理价值最高,临床上主要也是使用这两种灵芝[1]。我国是灵芝真菌资源丰富的国家,它们多生长在浙江、江西、湖南、广西、云南、贵州、福建、海南等地区,紫芝是中国特有的灵芝种类[2]。灵芝含有有机锗、高分子多糖、灵芝酸及腺嘌呤核苷等生物活性成分。 灵芝与人类健康有极其密切的关系。关于灵芝的药效作用,历代本草学家都有所论述,早在2千多年前的春秋战国时期,《列子、汤问》列御寇中云“朽壤之一,有菌之者”,并总结当时利于灵芝治病保健的经验:“煮百沸其味清芳,饮之明目,脑清、心静、肾坚,其宝物也”[3]。 最早的药学著作《专著神农本草经》把灵芝列为上品,谓其“久味苦平,主治胸中结,益心气,补中,增智慧,不忘,久服轻身不老”。 李时珍在《本草纲目》中对灵芝药性和功效作了详尽的记述:赤芝,苦平无毒,主治胸中结、益心收稿日期:2003-5-2 气、补中、增智慧、不忘;紫芝,甘温无毒,好颜色、治虚劳、治痔[4]。 现代医学药理研究和临床上都已证明:灵芝可增强机体对自由基的清除能力,故能减少自由基对机体的损伤,有延缓衰老之功效,还可以提高免疫力、抗炎症、降低血液中胆固醇含量、降血脂、降血糖等药效[6]。 2 活性多糖的研究概述 活性多糖是一种具有某些特殊生理功能的多糖类高分子化合物,广泛存在于植物、动物和微生物组织中。按照来源分类,活性多糖分为植物多糖、动物多糖、微生物多糖等,还可以进一步细分,如微生物多糖再分为细菌多糖和真菌多糖等。按照化学结构分类,多糖分为均多糖和杂多糖[7]。活性多糖作为药物始于1943年,六十年代后,活性多糖作为广谱免疫促进剂引起了人们极大的兴趣[8]。八十年代又发现活性多糖的糖链在分子生物学中具有决定性的作用,能控制细胞分裂和分化,调节细胞的生长和衰老[9]。近年来,多糖结构与功能的关系以及多糖复合物疫苗等研究在国际上受到了较多的关注。 85

多糖类功能性食品生物活性的研究进展

多糖类功能性食品生物活性的研究进展 The research progress of bioactive polysaccharide functional food

摘要 随着社会的进步和人们生活水平的提高,人们越来越注意饮食健康。但随着生活结构的改变和环境恶化因素的影响,导致人们的身体出现各种各样的慢性疾病,影响了人们身体健康,降低了人们生活质量,从而对于供能食品来调节机体有了确切的渴望。本文通过阐述功能性食品的概念,功能性食品现状,多糖的功能特性以及发展趋势等几个方面介绍了功能性食品。 关键词:多糖;功能性食品;前景

ABSTRACT Along with the social progress and people living standard rise,people more and more attention to healthy diet. But with the change of the structure,and the influence of environmental factors,lead to people's body appear all sorts of chronic disease,affected the people healthy body,the lower the quality of life,thus to supply food to regulate the body had a definite desire. This paper explains the concept of functional food and functional food current situation,features and development trend of polysaccharides are introduced in several aspects,such as functional food. Key words:Polysaccharide;Functional food;Outlook

多糖的提取和纯化

多糖的提取和纯化目前,真菌多糖的提取可从子实体和采用深层培养发酵液的菌丝中分离获得,但以从子实体中提取多糖为主。首先是将子实体粉碎,加入甲醇或乙醇乙醚1:1混合液,水浴加热搅拌1一3小时除去表面脂肪。其次是用残渣提取多糖,常用的方法有不同温度下的水提法、稀酸提法、冷热稀碱提法。水提法采用的较多,适合于提取水溶性多糖。稀酸提取法适用于提取酸溶性多糖、时间宜短,温度不超过50℃,以防止糖昔键断裂。稀碱法适合于提取碱溶性糖。然后除去小分子杂质,常采用透析法,将多糖提取液置于半透膜透析袋中,逆向流水透析1一3天。第四步是沉淀多糖。大部分多糖在有机溶剂中的溶解度极小,所以可用有机溶剂来沉淀。常用4一5倍低级醇、丙酮,一般在pH=7.0左右沉淀多糖,制得粗多糖。最后是除去蛋白质。除去多糖中的蛋白质常用的方法是三氯醋酸法。得到的溶液基本上是没有蛋白质与小分子杂质的多糖混合物或单一多糖。 多糖的纯化是将多糖混合物分离为单一的多糖。纯化方法很多,主要纯化方法有:(l)分步沉淀法根据不同多糖在不同浓度的低级醇或酮中具有不同溶解度的性质,逐次按比例由小而大加入这些醇或酮分步沉淀。此法适用于分离各种溶解度相差较大的多糖。(2)盐析法根据不同多糖在不同浓度盐中具有不同溶解度而分离。 纯度鉴定和分子量测定多糖纯度标准不能用通常化合物纯度标准来衡量,因为我们所说的多糖纯品实质上是一定分子量范围内的均一组成。因此,测得的分子量一般为平均分子量。过去常用粘度法、蒸气压渗透计法、沉降法、超速离心法、光散射法等测定高分子化合物分子量的方法测定真菌多糖的分子量,但由于这些方法测定起来比较麻烦,且误差较大,现多数已不采用。目前实验室常用的方法为凝胶过滤法和高压液相色谱法,对于分子量小于1百万的多糖用高压液相法为最好。 1.2.1发酵、提取 取香菇465菌株斜面菌种接人摇瓶培养基中振荡培养,逐级扩大培养至10O0L,25℃下通 气培养72h,压滤,得香菇深层培养菌丝体。 上述菌丝体经水洗涤后,用3倍量热水(90一100℃)浸取3h,浸取液经浓缩加3倍量95肠乙 醇,离心得乙醇沉淀物一Le[‘’。 1.2。2分离、纯化 取Le上样于DEAE一纤维素柱上,用O。Olmol/L pH 6.95 Tris-HCI缓冲液洗脱,洗脱液分 部收集,分别用UV(280nm)和酚硫酸法测定其吸收值(A值),合并吸收峰重叠的洗脱液,经浓 缩、透析、冻干得淡黄色絮状物Le一2· Le一2进一步用DEAE一纤维素(DE52型)分离,先用pH7.8的0.oosmol/L硼酸缓冲液洗脱, 后用含lmol/L NaCI的o.Zmol/L硼酸缓冲液洗脱.各洗脱液按上法用UV230nm和酚硫酸法 检测,分别收集既含肤又含糖的洗脱液.用o.005mol/L硼酸缓冲液洗脱的组分为Le一2一1,用含 lmol/L NaCI的硼酸缓冲液洗脱的组分称Le一2一2o 1.2.3鉴定 1.2.3.1纯度 (l)HPLC法将样品配成1%浓度后进样.进样量20召L。流动相:0.002mol/L NaAc;

多糖的研究进展

多糖的研究进展 摘要:对活性多糖的生物活性及化学结构与构效方面的研究进行了综述分析,并对其发展前景作了介绍。 关键词:活性多糖;生物活性;构效关系 1多糖的生物活性 1.1活性多糖的抗肿瘤作用 在活性多糖的抗肿瘤研究中,人们发现不同生物材料中可以得到多种具有抗肿瘤活性多糖,如从香蕈中得到的香菇多糖(Lentinan)。Ikekawa 等人发现腔腹注射香菇水溶提取物在很大程度对小鼠皮下移植的内瘤S-180 的生长有强抑制作用。但其效果不是直接作用移植 性癌细胞,而是通过宿主调节而发行作用。接着人们又在灵芝、云芝、茯苓、银耳等真菌中得到对小白鼠硬肉瘤和艾氏癌肿有不同抑制作用的活性多糖。 1.2活性多糖的免疫功能 在一般情况下,多糖对机体特异性免疫与非特异免疫,细胞免疫与体液免疫皆有影响。 免疫多糖作为生物效应调节剂,主要影响机体的网状内皮系统(RES)、巨噬细胞、淋巴细胞、白细胞、NK细胞、补体系统以及RNA、DNA、蛋白质的合成,体内cAMP与cGMP的含量,结果是抗体的生成,淋巴因子及干扰素的诱生增强。现已证实不同的多糖具有不同的免疫促进作用。 1.3多糖的抗病毒活性及其作用机制 Goultet 等人(1960)首次指出,在蘑菇中存在抗病毒物质。Tsunoda 和Ishida(1969)发现从香菇的菌丝体和孢子中水溶液的提取物对病毒A/SW15 所引起的感冒有一定的疗效。Tochilura等人发现香菇多糖与3-叠氮-3-脱氧胸嘧啶(AZT)的联合使用对抑制HIV抗原表达比单独使用AZT更强。近年来,对于多糖衍生物的抗病毒活性的研究,主要集中硫酸脂多糖(Sulfacted polysaccharide)或称硫酸多糖,在研究中发现硫酸酯多糖在抗HIV病毒方面有着特殊的功能,香菇多糖硫酸盐当通过被HIV-III 感染的MT-4 细胞验证时表现出了对HIV 的活跃的抗性。从海洋海藻(Aghadhiella tenera)分离的硫酸半乳聚糖能在体外抑制

多糖的分离纯化

多糖的提取和纯化 多糖的提取和纯化 摘要本文较详细地介绍了多糖的提取和纯化方法,为多糖的研究和生产提供参考依据。 关键词多糖;提取;纯化;活性炭 多糖(polysacharides,PS),又称多聚糖,是由10个以上的单糖通过苷键连接而成的,具有广泛生物活性的天然大分子化合物。它广泛分布于自然界高等植物、藻类、微生物(细菌和真菌)与动物体内。20世纪60年代以来,人们逐渐发现多糖具有复杂的、多方面的生物活性和功能[1]:(1)多糖可作为广谱免疫促进剂,具有免疫调节功能,能治疗风湿病、慢性病毒性肝炎、癌症等免疫系统疾病,甚至能抗AIDS病毒[2]。如甘草多糖具有明显的抗病毒和抗肿瘤作用[10],黑木耳多糖、银杏外种皮多糖和芦荟多糖可抗肿瘤和增强人体免疫功能[3-5]。 (2)多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用。如柴胡多糖具有抗辐射,增强免疫功能等生物学作用[6],麦冬多糖具有降血糖及免疫增强作用[7-8],动物黏多糖具有抗凝血、降血脂等功能[9]。(3)多糖能控制细胞分裂和分化,调节细胞的生长与衰老。如爬山虎多糖具有抗病毒和抗衰老作用[10],银杏外种皮粗多糖具有抗衰老、抗过敏、降血脂、止咳祛痰、减肥等功能[11]。 另外,多糖作为药物,其毒性极小,因而多糖的研究已引起人们极大的兴趣。由于多糖具有的生物活性与其结构紧密相关,而多糖的结构又是相当复杂的,所以在这一领域的研究相对缓慢。但人们在多糖的分离提取与纯化方面已做出了不少工作。 1. 多糖的提取[12] 1.1 热水浸提法: 1.1.1多糖提取条件的优选 根据文献报道[13]:影响热水浸提多糖的因素主要有提取时间、提取次数、溶剂体积、浸提温度、pH值、醇析浓度和植物颗粒大小等。在试验前对上述多种因素利用正交实验法做出优选,才能选出最佳提取方案。 1.1.2其步骤为:原料→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥 首先除去表面脂肪。原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M 氢氧化钠作为提取溶剂)提取多糖。温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。得到的多糖提取液大多较粘稠,可进行吸滤。也可用离心法

多糖的生物修饰及调控研究进展

多糖的生物修饰及调控研究进展(转糖苷) 摘要:多糖作为一种重要的生物活性成分,由于具有抗肿瘤、抗凝血和免疫调节活性等多种功能,被引起了广泛关注。大量研究表明,多糖生物修饰和调控后可以显著提高原有的活性或增加新的活性。文章详细阐述了多糖生物修饰的方法及调控改造对多糖生物活性的影响,并对多糖生物修饰的调控应用前景进行了展望。 关键词:生物修饰酶法修饰基因调控转糖苷 Abstract:Polysaccharide as an important bioactive components, is causing widespread concern, as having anti-tumor, anti-clotting and immune modulating activity and other functions, Numerous studies show that biological polysaccharide modification and regulation can significantly improve the activity of the original or new activity. This article examines the impact of regulation methods and biological transformation of polysaccharides modified polysaccharide biological activity and the regulation of the modified polysaccharide biological application prospected. Key words: Biological modification Enzymatic modification Gene Regulation Transglycosidase 多糖(polysaccharides)在自然界蕴藏丰富,种类繁多,主要有植物多糖、动物多糖、海藻多糖和微生物多糖.多糖是一种重要的生物活性成分,具有重要的医疗价值,有抗肿瘤、抗凝血和免疫调节等多种的药理作用.随着糖生物学和糖化学的发展,多糖的生物活性越来越受到人们的重视,有关多糖生物活性的研究有了长足的进步和发展.海带多糖(LaminriaJaponicapolysaccharides)是海带中提取的一种具有生物活性的海藻多糖,经初步鉴定海带多糖具有抗突变活性[1].壳聚糖(chitosan)具有生物粘附性和多种生物活性,且能有效地增强亲水性药物在鼻腔和肠上皮的吸收,作为缓释辅料有着广阔的应用前景[2].据研究,团核褐孔菌(Xanthochrousrheades)液的粗多糖对大鼠有抗胃溃疡活性[3].灵芝(Ganodermalucidum)胞外多糖有抗肿瘤活性,且能明显提高小鼠的免疫力[4].香菇多糖(Lentinan,LNT)是香菇(lentinusedodes)为适应外界环境,在生长过程中形成的一种具有独特生理活性的物质,其化学结构属于吡喃葡聚糖,现代药理学研究证明,香菇多糖具有抗肿瘤,抗凝血和免疫调节活性的重要药理作用,是优良的天然药用活性成分,具有重要的学术价值和广阔的应用前景,也成为了人们研究的重点之一。 近年来多糖的分子修饰研究受到高度重视。多糖的分子修饰是指通过物理、化学生物学等手段对多糖分子进行结构改造,以期获得理化性质改变或产生新的生物学功能的多糖衍生物[5]。 已完成的研究证实,多糖的活性直接或间接地受到其分子结构的影响.多糖的结构包括一级结构、二级结构、三级结构和四级结构.采取一定的方法对多糖分子结构进行适当修饰可以改变多糖的活性.目前对多糖进行修饰的常见方法有硫酸化、磷酸化、乙酰化、烷基化、磺酰化、羧甲基化等.此外,其它修饰方法,如酶法、超声波、酸降解等在多糖分子修饰中也有较好的运用[6,7].多糖经过分子修饰后,其生物活性有一定的提高[8],甚至还增加了新的功能,如天然香菇多糖具有抑制肿瘤的作用,而硫酸化后显示出较高的抗HIV的活性[9].随着对多糖构效关系研究的不断深入,针对多糖的化学修饰也显得越来越重要,本文就近年来多糖分子生物修饰及调控的方法和修饰后的生物活性的变化进行了简单综述 1 多糖分子的生物修饰及调控 多糖生物修饰及调控的方法有很多,主要有酶法修饰、基因调控和转糖苷修饰等方法。 酶法修饰因其专一性强、选择性好、反应条件温和、无副反应、工艺较易控制等优点,已经成为多糖分子修饰的最优方法之一[10]。目前,针对多糖的酶法修饰主要有酶法降解、酶法合成等类型,每种类型的修饰机制各不相同,实际应用也各有特点。如藻酸盐是一种多聚糖

相关主题
文本预览
相关文档 最新文档