当前位置:文档之家› 双变量泊松分布参数的极大似然估计

双变量泊松分布参数的极大似然估计

双变量泊松分布参数的极大似然估计
双变量泊松分布参数的极大似然估计

含参数的一元一次不等式组的解集

《含参数的一元一次不等式组的解集》教学设计 万福中心学校余达恒 教材分析:本章内容是苏科版八年级数学(下)第七章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

(完整版)含参数一元一次不等式

含参数一元一次不等式(组)的解法 1、若关于x 的不等式2)1(≥-x a ,可化为a x -≤12,则a 的取值范围是多少? 2 、关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是? 3、关于x 的方程x+2m-3=3x+7的解为不大于2的非负数,则m 的整数值是多少? 4、关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是多少? 5、己知不等式 )2(211)5(21+≥--ax x 的解集是2 1≥x ,试求a 的值?

6、关于x 的不等式2x -a ≤0的正整数解恰好是1、2、3、4,则m 的取值是多少? 7、已知关于x ,y 的方程组?? ?-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围. 8、已知a 是自然数,关于x 的不等式组?? ?>-≥-02,43x a x 的解集是x >2,求a 的值. 对应练习1、不等式组???+>+<+1 ,159m x x x 的解集是x >2,则m 的取值范围是 . 对应练习2、若不等式组? ??>≤-≥-1 23,0x a x 的整数解共有5个,求a 的取值范围.

对应练习:若关于x 的不等式组???????+<+->+a x x x x 3 22,3215只有4个整数解,求a 的取值范围. 10、k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10? 二、 应用题 1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外的安全地区,导火索至少需要多长? 2、某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

第40讲 含参数不等式的解法

第40讲 含参数的不等式 【考点解读】 解含参数的不等式的基本途径——分类讨论思想的应用;(应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论)。 【知识扫描】 含有参数的不等式可渗透到各类不等式中去,在解不等式时随时可见含参数的不等式.而这类含参数的不等式是我们教学和高考中的一个重点和难点.解含参数的不等式往往需要分类讨论求解,寻找讨论点(常见的如零点,等值点等),正确划分区间,是分类讨论解决这类问题的关键.在分类讨论过程中要做到不重,不漏. 【考计点拔】 牛刀小试: 1.设0(2a )a ③(2 a )a >a a ④a a >2a a 其中不成立的有( ) A.0个 B.1个 C.2个 D.3个 【答案】B 2.已知方程mx 2-2(m+2)x+(m+5)=0有两个不同的正根,则m 的取值范围是( ) A.m<4 B.021} C.{x |x>2} D.{x |x<2} 【答案】A 4.若ax 2+bx+c>0的解集为{x |x<-2或x>4},那么对于函数f(x)=ax 2+bx+c 会有( ) A.f(5)???-f(-a),则实数a 的取值范围是 (A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 【答案】C

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

含参数不等式的解法(含答案)

含参数不等式的解法 典题探究 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。 例3:在?ABC 中,已知2|)(|,2cos )2 4 ( sin sin 4)(2 <-++ =m B f B B B B f 且π 恒成立,求实数m 的范围。 例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2 ,0(4,cos sin π π ∈-->x x x a 恒成立的实数a 的范围。 演练方阵 A 档(巩固专练) 1.设函数f (x )=???? ??? ≥-<<-+-≤+)1(11 )11(22)1()1(2x x x x x x ,已知f (a )>1,则a 的取值范围是( ) A.(-∞,-2)∪(-21 ,+∞) B.(-21,2 1) C.(-∞,-2)∪(-2 1 ,1) D.(-2,-2 1 )∪(1,+∞) 2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2 ,b ),g (x )>0的解集是(22a ,2 b ),则f (x )·g (x ) >0的解集是__________. 3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________. 4. 解不等式)0( 01)1 (2 ≠<++ -a x a a x 5. 解不等式0652 2>+-a ax x ,0≠a

泊松分布

泊松分布 ),是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。

泊松分布的概率质量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 性质 服从泊松分布的随机变量,其数学期望与方差相等,同为参数λ: E(X)=V(X)=λ 动差生成函数: 泊松分布的来源 在二项分布的伯努力试验中,如果试验次数n很大,二项分布的概率p很小,而乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松分布来逼近。这在现实世界中是很常见的现象,如DNA 序列的变异、放射性原子核的衰变、电话交换机收到的来电呼叫、公共汽车站候车情况等等。 证明如下。首先,回顾e的定义: 二项分布的定义: 如果令p = λ / n, n趋于无穷时P的极限:

[编辑]最大似然估计 给定n个样本值k i,希望得到从中推测出总体的泊松分布参数λ的估计。为计算最大似然估计值, 列出对数似然函数: 对函数L取相对于λ的导数并令其等于零: 解得λ从而得到一个驻点(stationary point): 检查函数L的二阶导数,发现对所有的λ与k i大于零的情况二阶导数都为负。因此求得的驻点是对数似然函数L的极大值点: [编辑]例子 对某公共汽车站的客流做调查,统计了某天上午10:30到11:47来到候车的乘客情况。假定来到候车的乘客各批(每批可以是1人也可以是多人)是互相独立发生的。观察每20秒区间来到候车的乘客批次,共得到230个观察记录。其中来到0批、1批、2批、3批、4批及4批以上的观察记录分别是100个、81个、34个、9个、6个。使用极大似真估计(MLE),得到λ的估计为0.8696。实际上各批次发生的频率与λ = 0.87的泊松分布吻合的非常好。

含参数不等式的解法

关于含参数(单参)的一元二次不等式的解法探究 高二数学组 盛耀建 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是学生不清楚该如何对参数进行讨论,笔者认为这层“纸”捅破了,问题自然得到了很好的解决,在教学的过程中本人发现参数的讨论实际上就是参数的分类,而参数该如何进行分类有一个非常好的方法,下面我们通过三个例子找出其中的奥妙! 一.二次项系数为常数 例1解关于x 的不等式:.0)2(2>+-+a x a x 解:0)2(2>+-+a x a x )(* ()3243240422 +≥-≤?≥--=?a a a a 或, 此时两根为()2 42)2(2 1a a a x --+ -= ,()2 42)2(2 2a a a x --- -= . (1)当324-?, )(*解集为(2 48)2(,2 +-- -∞-a a a )?( +∞+-+-,2 48)2(2 a a a ); (2)当324-=a 时,0=?,)(*解集为(13,-∞-)?(+∞-,13); (3)当324324+<<-a 时,0a 时,0>?, )(*解集为(2 48)2(,2 +-- -∞-a a a )?( +∞+-+-,2 48)2(2 a a a ). 二.二次项系数含参数 例2解关于x 的不等式:.01)1(2 <++-x a ax 解:若0=a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0>a ,原不等式.0)1)(1(<-- ?x a x )(*

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

含参数不等式解法练习题

高二数学(含参数不等式解法) 一、选择题 1、如果不等式x 2 – log m x < 0在 x ∈( 0, 12 )上恒成立,则实数m 的取值范围是 A 、116≤m < 1 B 、0 < m ≤116 C 、0 < m < 14 D 、m ≥116 2、已知a > 0,b > 0,不等式 – a < 1x < b 的解集是 A 、( - 1a ,0)∪(0,1b ) B 、( - 1b ,1a ) C 、( - 1b ,0)∪(0,1a ) D 、( - ∞,1a )∪(1b ,+ ∞) 3、设集合M = {x | > a 且a 2 – 12a + 20 < 0},N = {x | x < 10},则M ∩N 是 A 、{x | a < x < 10} B 、{x | x > a} C 、{x | 2 < x < 10} D 、N 4、若函数 f(x) = 228x x --的定义域为M ,g(x) = 11|| x a --的定义域为N , 则使M ∩N = ?的实数a 的取值范围是 A 、( - 1,3) B 、(- 3,1) C 、[- 1,3] D 、[- 3,1] 5、若关于x 的方程x 2 + ( a – 3)x + a = 0的两根均为正数,则实数a 的取值范围是 A 、0 < a ≤3 B 、a ≥9 C 、a ≥9或a ≤ 1 D 、0 < a ≤ 1 6、已知函数f(x) = ax 3 + bx 2 + cx + d 的图象如右图,则 A 、b ∈( - ∞,0) B 、b ∈( 0,1) C 、b ∈( 1,2) D 、b ∈(2,+ ∞) 7、不等式ax 2 + bx + 2 > 0的解集是( - 11,23) ,则a – b 等于 A 、- 4 B 、14 C 、- 10 D 、10 8、命题甲:ax 2 + 2ax + 1 > 0的解集是R ,命题乙:0 < a < 1,则命题甲是乙成立的 A 、充分非必要条件 B 、必要非充分条件 C 、充要条件 D 、既非充分又非必要条件 9、若|x – a| < h ,| y – a| < h ,则下列不等式一定成立的是 A 、| x – y| < h B 、| x – y | < 2h C 、| x – y| > h D 、| x – y | > 2h 10、命题p : 若a 、b ∈R ,则| a | + | b | >1是 | a + b| > 1的充分而不必要条件。

含参数不等式的解法

含参数不等式总结 一、通过讨论解带参数不等式 例1:2(1)0x x a a ---> 例2:关于x 的不等式01)1(2<-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。 二、已知解集的参数不等式 例3:已知集合 {}2540A x x x =-+|≤,{}2|220B x x ax a =-++≤,若B A ?,求实数a 的取值范围. 三、使用变量分离方法解带参数不等式 例4:若不等式210x ax ≥++对于一切1 (0,)2 x ∈成立,则a 的取值范围. 例5:设()()()?? ????+-+++=n a n n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数 且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。 例6: 已知定义在R 上函数f(x)为奇函数,且在[)+∞,0上是增函数,对于任意R x ∈求实 数m 范围,使()()0cos 2432cos >-+-θθm m f f 恒成立。 思考:对于(0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的取值范 围。如何求解? 分离参数法适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 四、主参换位法解带参数不等式 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。 一般情况下,如果给出参数的范围,则可以把参数看作主变量,进行研究。 例7:若对于任意a (]1,1-∈,函数()()a x a x x f 2442 -+-+=的值恒大于0,求x 的 取值范围。 分析:此题若把它看成x 的二次函数,由于a, x 都要变,则函数的最小值很难求出,思路 受阻。若视a 为主元,则给解题带来转机。 例8:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

含参数的不等式的解法

教案 教材:含参数的不等式的解法 目的:在解含有参数的不等式时,要求学生能根据参数的“位置”正确分组讨论,解不等式。 过程:一、课题:含有参数的不等式的解法 解:原不等式等价于 x x a a log 1log < 即:0log )1)(log 1(log <-+x x x a a a ∴1log 01log <<-1 a x a x <<< <110或 若0x a a x 或 例二 解关于x 的不等式 )22(223x x x x m --<- 解:原不等式可化为02)1(24<+?+-m m x x 即:0)2)(12(22<--m x x s 当m >1时 m x <<221 ∴m x 2log 2 10< < 当m =1时 0)12(22<-x ∴x ∈φ 当0+-m m mx x 解:原不等式等价于 3|2|+>-m m x 当03>+m 即3->m 时 )3(232+-<-+>-m m x m m x 或 ∴333-<+>m x m x 或 当03=+m 即3-=m 时 0|6|>+x ∴x ≠-6 当03<+m 即3-θ即θ∈(0,4 π)时 0232<-+-x x ∴x >2或x <1

当1cot =θ即θ= 4 π时 x ∈φ 当)1,0(cot ∈θ即θ∈(4π,2π)时 0232>-+-x x ∴11时 B =[1,a ] 当a >2时 A ?B 当1≤a ≤2时 A ?B 当a ≤1时 A ∩B 仅含一个元素 例六 方程)0,10(,02 1cos 21sin 2π≤≤<<=-++x a a x x a 有相异两实根, 求a 的取值范围 解:原不等式可化为01cos cos 22=--x x a 令:x t cos = 则]1,1[-∈t 设12)(2--=t at t f 又∵a >0 ???? ??????????????≥?-<>≥≥->?<<-≥-=≥=->+=?1414110811411022)1(02)1(081a a a a a a a a f a f a 或 三、小结 四、作业: 1.01log )1(log 2 1221<++-x a a x ????? ? ??∈±=<<-<<<<<<<->φx a x a a a x a a a a a a 时时或当时或当1,)21()21(110)21()21(01111 2.}13|{-≥-=x x x A }0,|1||{>>-=a a x x B 若φ=?B A

相关与回归区别与联系

相关与回归区别与联系 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

直线回归与相关的区别和联系 1.区别: ①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。直线相关分析要求服从双变量正态分布; ②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化; ③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=; ⑤取值范围不同:?1≤r ≤1,∞<<∞-b ; ⑥单位不同:r 没有单位,b 有单位。 2.联系: ① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值; ② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反; ③ 回归系数b 与相关系数r 的假设检验等价。即对同一双变量资料, r b t t =。由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验; ④ 用回归解释相关。由于决定系数总回归SS SS R /2=,当总平方和固定时, 回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。例如,当r =,n =100

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0

相关主题
文本预览
相关文档 最新文档