当前位置:文档之家› 人教B版高中数学必修一函数的零点教案

人教B版高中数学必修一函数的零点教案

人教B版高中数学必修一函数的零点教案
人教B版高中数学必修一函数的零点教案

2.4.1 函数的零点 教案

教学目标:

1、知识目标:理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系 .

2、能力目标:体验函数零点概念的形成过程,引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力.

3、情感目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想.

重点、难点:

教学过程:

一.自主达标

1.如果函数y=f(x)在实数处的值等于零,即f(x)=0,则x叫做 . 2.把一个函数的图像与 叫做这个函数的零点.

3.二次函数y=a2x +bx+c(a≠0),当

Δ=2b -4ac>0时,二次函数有 个零点;

Δ=2b -4ac=0时,二次函数有 个零点;

Δ=2b -4ac<0时,二次函数有 个零点.

4.二次函数零点的性质:

(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),

(2)在相邻的两个零点之间所有 .

二。典例解析

例1.若函数f(x)=2x +ax+b的两个零点是2和-4,求a,b的值.

例1、解:函数f(x)=2x +ax+b的两个零点是2和-4,也就是方程2x +ax+b=0的两个根是2和-4,由根与系数的关系可知?

?

?=-?-=-+b a )4(2)4(2得a=2,b=-8.

评析:反常的根与函数零点的关系以及反常的根与系数的关系是本体解决关键.

例2.求证:方程52x -7x-1=0的一个根在(-1,0)上,另一个根在(1,2)上.

例2、证明:设f(x)=52x -7x-1,则f(-1)f(0)=-11<0,f(1)(2)=-15<0.而二次函数f(x)=52x -7x-1是连续的.所以,f(x)在(-1,0)和(1,2)上分别有零点.

即方程52x -7x-1=0的根一个在(-1,0)上,另一个(1,2)在上.

评析:判断函数是否在(a,b)上存在零点,除验证f(a)?f(b)<0是否成立外,还需考察函数是否在(a,b)上连续.若判断根的个数问题,还须结合函数的单调性.

例3:学校请了30名木工,要制作200把椅子和100张桌子.已知制作一张桌子与制作一把椅子的工时数之比为10:7,问30名工人应当如何分组(一组制桌子,另一组制椅子),能使完成全部任务最快?

例3、解:设名x工人制桌子,(30-x)名工人制椅子,一个工人在一个单位时间里可制7张桌子或10把椅子,所以 制作100张桌子所需时间为函数p(x)=x

7100,制作200把椅子所需时间为函数q(x)=)

30(10200x -,完成全部任务所需时间为y(x)=max{p(x),q(x)}. x 7100=)

30(10200x -,解得x=12.5,考虑到人数x N +∈,考察p(12)与q(13),p(12)=84100≈1.19,q(13)=≈17

201.18,即y(12)>y(13).所以用13名工人制作桌子,17名工人制作椅子完成任务最快.

评析:对于本题要用变化的观点分析和探求具体问题中的数量关系,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想建立函数关系式或列出方程,利用函数性质或方程观点来解,则可使应用问题化生为熟,尽快得到解决.

三、达标练习:

1.已知函数f(x)在区间(a,b)上单调且f(a)f(b)<0,则函数f(x)在区间(a,b)上( )

A.至少有一个零点 B.至多有一个零点 C.没有零点 D.必有唯一零点

2.已知f(x)=(x-a)(x-b)-2并且α,β是函数f(x)的两个零点,则实数a,b,α,β的大小关系可能是( )

A.a<α<b<β B.a<α<β<b C.Α<a<b<β

D.a<a<β<b

3.函数f(x)=222(1)2(1)

x x x x x -≥??-

4.如果函数f (x )=2x +mx +(m+3)至多有一个零点,则m的取值范围 .

5.对于函数f(x);若存在0x ∈R,使f(0x )=0x 成立,则称0x 为f(x)的不动点.已知函数f (x )=a 2x +(b +1)x +(b-1)(a≠0).

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

参考答案:

1.D 2.C 3.2

54,89- 4.2-6≤≤m 5.(1)当a=1,b=-2时,f(x)=x 2-x-3,由题意可知x=x 2-x-3

解得x=-1或x=3,故当a=1,b=-2时f(x)的两个相异的不动点为-1,3.

(2)Θf (x )=a x 2+(b +1)x +(b-1)恒有两个相异的不动点.

∴x=a x 2+(b +1)x +(b-1),即ax 2+bx+(b-1)=0恒有两个相异的实数根,得Δ=)(0)1(42R b b a b ∈>--恒成立,即)(0442

R b a ab b ∈>+-恒成立,于是?

1=016162<-a a ,解得0<a<1.故当R b ∈,f(x)恒有两个相异的不动点时,a取值范围为0<a<1.

函数与零点练习题

函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

函数的零点教案

函数的零点 【教学目标】 1、了解函数零点的概念及函数零点的等价描述; 2、能利用二次函数的图象与判别式的符号,判断一元二次方程根的存在性及根的个数; 3、理解判断函数零点存在性的结论并能研究简单的函数零点的存在性问题; 4、体现、感受并理解方程和函数图象在零点问题中的应用,渗透数形结合思想, 运用数形结合来研究和解决数学问题,并能应用从特殊到一般的数学方法去探索和认识数学知识。 【教学重难点】 1、重点:理解零点的概念利用二次函数的图象与判别式的符号,判断一元二次方程根的存在性及根的个数;应用函数零点存在性的结论研究函数零点的存在问题 2、难点:理解判断函数零点的存在性的结论 【教学过程】 一、概念引入 请同学们一起来看投影上的问题 画出下列函数图象并指出x取何值时,y=0 21 (1)y x 2 (2)y=x2x 3 (3)y=1 x (图象保留) 处理:学生上黑板板书(上黑板画出图像并求出x值) 师:(1)所求x就是对应方程的实数根 (2)从图象上来看,我们所求的x就是什么?

师:这里所求的x 就是我们今天要来研究的函数的零点 那么,什么是函数的零点呢? 二、概念认识 一般地,对于函数y=f(x ),若f(x)=0则实数x 称为该函数的零点 师:了解了函数零点的定义,同学们对函数零点有怎样的认识? (1)等价描述:①函数y= f(x )的零点就是方程f(x)=0的实数根 ②函数y= f (x)的零点就是它的图象与x 轴交点的横坐标 (2)函数的零点是实数,不是点(板书) 师:认识了函数零点的定义后,请同学们来求下面几个函数的零点 练习1:求下列函数的零点 x-32x 1(1)y (2)y=log x - 1 (3)y=2x 1 (投影展示) 归纳:求函数零点的步骤:(板书) (1)令f (x )=0 (2)解方程f(x )=0 (3)写出零点 师:通过上面的研究我们认识了函数零点的定义,掌握了函数零点的求法 下面请同学们继续看例1的问题 三、应用例题 例1:求证:二次函数2y x 3x 2有两个不同的零点 练习2:(1)函数2y x 3x k 没有零点,求k 的取值范围 (2)函数2 y x kx 2有零点,求k的取值范围 (3)函数2y kx 3x 2有一个零点,求实数k 的值 (投影展示)(看情况或学生回答) 师:由例1和练习2的研究,请大家总结一下

人教版高中数学《导数》全部教案

导数的背景(5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ?+?=?-?+=-?+=? 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时, t s ??无限趋近于29.4米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做 瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间 内的平均速度为t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.

人教版新课标B版高中数学所有目录和知识点

必修一第一章集合 1.1 集合与集合的表示方法 1.2 集合之间的关系与运算 章复习与测试 本章小结 第二章函数 2.1 函数 2.2 一次函数和二次函数 2.3 函数的应用(I) 2.4 函数与方程 章复习与测试 本章小结 第三章基本初等函数(I) 3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数 3.4 函数的应用(II) 章复习与测试 本章小结 必 修 二 第一章立体几何初步 1.1 空间几何体 1.2 点、线、面之间的位 置关系 章复习与测试 第二章平面解析几何初步 2.1 平面直角坐标系中的 基本公式 2.2 直线方程 2.3 圆的方程 2.4 空间直角坐标系 章复习与测试 必修三 第一章算法初步 1.1 算法与程序框图 1.2 基本算法语句 1.3 中国古代数学中的算法 案例 章复习与测试 本章小结 第二章统计 2.1 随机抽样 2.2 用样本估计总体 2.3 变量的相关性 章复习与测试 本章小结 第三章概率 3.1 随机现象 3.2 古典概型 3.3 随机数的含义与应用 3.4 概率的应用 章复习与测试 本章小结 必 修 四 第一章基本初等函数(Ⅱ) 1.1 任意角的概念与弧度 制 1.2 任意角的三角函数 1.3 三角函数的图象与性 质 章复习与测试 第二章平面向量 2.1 向量的线性运算 2.2 向量的分解与向量的 坐标运算 2.3 平面向量的数量积 2.4 向量的应用 章复习与测试 第三章三角恒等变换 3.1 和角公式 3.2 倍角公式和半角公式 3.3 三角函数的积化和差 与和差化. 章复习与测试

必修五 第一章解斜角三角形 1.1 正弦定理和余弦定理 1.2 应用举例 章复习与测试 第二章数列 2.1 数列 2.2 等差数列 2.3 等比数列 章复习与测试 第三章不等式 3.1 不等关系与不等式 3.2 均值不等式 3.3 一元二次不等式及其解法 3.4 不等式的实际应用 3.5 二元一次不等式(组)与简单 线. 章复习与测试 选修 二 (2-1) 第一章常用逻辑用语 1.1 命题与量词 1.2 基本逻辑联结词 1.3 充分条件、必要条件与命题的. 章综合 第二章圆锥曲线与方程 2.1 曲线与方程 2.2 椭圆 2.3 双曲线 2.4 抛物线 2.5 直线与圆锥曲线 章综合 第三章空间向量与立体几何 3.1 空间向量及其运算 3.2 空间向量在立体几何中的应 用 章综合 选修二(2-2) 第一章导数及其应用 1.1 导数 1.2 导数的运算 1.3 导数的应用 1.4 定积分与微积分基本定 理 章复习与测试 第二章推理与证明 2.1 合情推理与演绎推理 2.2 直接证明与间接证明 2.3 数学归纳法 章复习与测试 第三章数系的扩充与复数 3.1 数系的扩充与复数的概 念 3.2 复数的运算 章复习与测试 选修 二 (2-3) 第一章计数原理 1.1 基本计数原理 1.2 排列与组合 1.3 二项式定理 章复习与测试 第二章概率 2.1 离散型随机变量及其分布列 2.2 条件概率与事件的独立性 2.3 随机变量的数学特征 2.4 正态分布 章复习与测试 第三章统计案例 3.1 独立性检验 3.2 回归分析 章复习与测试 选修4-1 几何证明选修4-4 坐标系与参数方程选修4-5 不等式选讲

嵌套函数与函数的零点问题

嵌套函数与函数的零点问题 1二已知函数f (x )=x +1,x ?0l o g 2x ,x >0{,则y =f (f (x ))+1的零点组成的集合为 .2二?变式?已知函数f (x )=x +1,x ?0l o g 2 x ,x >0{,则y =f (f (x ))-1的零点组成的集合为 .3二函数f (x )=x +1,x ?0,x 2-2x +1,x >0. { ,若关于x 的方程f 2(x )-a f (x )=0恰有5个不同的实数解,则a 的取值范围为 .4二定义域为R 的函数f (x )= |l g x |,x >0,-x 2-2 x ,x ?0.{,关于x 的函数y =2f 2(x )-3f (x )+1的零点个数为 .5二函数f (x )是定义在R 上偶函数,且当x ?0时,f (x )=x |x -2|,若关于x 的方程f 2(x )+a f (x )+b =0恰有1 0个不同的解,则a 的取值范围是 .6二已知函数f (x )=-x 2,x ?0,x 2+2x ,x <0.{ ,则不等式f f x ()()?3的解集是 .7二已知函数f (x )=l o g 2x ,x >0,2x ,x ?0. {,则满足不等式f (f (x ))>1的x 的取值范围是 .8二已知函数f (x )=x 2-2a x +a 2-1若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 9二设函数f (x )是偶函数,当x ?0时,f (x )=x (3-x ),0?x ?3,-3x +1,x >3ì?í???,若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是 .

高中数学函数的零点教学设计

第4讲与函数的零点相关的问题 函数零点的个数问题 1.函数f(x)=xcos 2x在区间[0,2π]上的零点的个数为( D ) (A)2 (B)3 (C)4 (D)5 解析:要使f(x)=xcos 2x=0,则x=0,或cos 2x=0,而在区间[0,2π]上,通过观察y=cos 2x 的函数图象,易得满足cos 2x=0的x的值有,,,,所以零点的个数为5个. 2.(2015南昌二模)已知函数f(x)=函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是( B ) (A)5 (B)6 (C)7 (D)8 解析:函数y=f(x)-g(x)的零点个数就是函数y=f(x)与y=g(x)图象的交点个数.在同一坐标系中画出这两个函数的图象: 由图可得这两个函数的交点为A,O,B,C,D,E,共6个点. 所以原函数共有6个零点.故选B. 3.(2015南昌市一模)已知函数f(x)=若关于x的方程f[f(x)]=0有且只有一个实数解,则实数a的取值范围为. 解析:依题意,得a≠0,令f(x)=0,得lg x=0,即x=1,由f[f(x)]=0,得f(x)=1, 当x>0时,函数y=lg x的图象与直线y=1有且只有一个交点,则当x≤0时,函数y=的图象与直线y=1没有交点,若a>0,结论成立;若a<0,则函数y=的图象与y轴交点的纵坐标-a<1,得-1

答案:(-1,0)∪(0,+∞) 4.(2015北京卷)设函数f(x)= ①若a=1,则f(x)的最小值为; ②若f(x)恰有2个零点,则实数a的取值范围是. 解析:①当a=1时,f(x)=其大致图象如图所示: 由图可知f(x)的最小值为-1. ②当a≤0时,显然函数f(x)无零点; 当01,由二次函数的性质可知,当x≥1时,f(x)有2个零点,则要使f(x)恰有2个零点,则需要f(x)在(-∞,1)上无零点,则2-a≤0,即a≥2.综上可知,满足条件的a的取值范围是[,1)∪[2,+∞). 答案:①-1 ②[,1)∪[2,+∞) 确定函数零点所在的区间 5.(2015四川成都市一诊)方程ln(x+1)-=0(x>0)的根存在的大致区间是( B ) (A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) 解析:设f(x)=ln(x+1)-, 则f(1)=ln 2-2<0,f(2)=ln 3-1>0, 得f(1)f(2)<0,函数f(x)在区间(1,2)有零点,故选B. 6.(2015河南郑州市一模)设函数f(x)=e x+2x-4,g(x)=ln x+2x2-5,若实数a,b分别是 f(x),g(x)的零点,则( A )

2020年人教版高中数学必修三全套教案(全册完整版)

教育精品资料 2020年人教版高中数学必修三全套教案(全册完整版) 按住Ctrl键单击鼠标打开名师教学视频全册播放 第一章算法初步 (1) 1.1算法与程序框图 (2) 1.1 算法与程序框图(共3课时) 1.1.1算法的概念(第1课时) 【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义. 【教学目标】1.理解算法的概念与特点;

2.学会用自然语言描述算法,体会算法思想; 3.培养学生逻辑思维能力与表达能力. 【教学重点】算法概念以及用自然语言描述算法 【教学难点】用自然语言描述算法 【教学过程】 一、序言 算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力. 在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想. 二、实例分析 例1:写出你在家里烧开水过程的一个算法. 解:第一步:把水注入电锅; 第二步:打开电源把水烧开; 第三步:把烧开的水注入热水瓶. (以上算法是解决某一问题的程序或步骤) 例2:给出求1+2+3+4+5的一个算法. 解:算法1 按照逐一相加的程序进行 第一步:计算1+2,得到3; 第二步:将第一步中的运算结果3与3相加,得到6;

导数与函数的零点讲义(非常好,有解析)

函数的零点 【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x = 的图象有三个不同的交点, 求m 的取值范围。 变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则 1234_________. x x x x +++= 【答案】 -8 【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间 []8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知 1212 x x +=-, 344 x x +=. 所以12341248 x x x x +++=-+=-. 6

【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况 【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两个 相异的实根,求实数a 的取值范围(注:1n2≈0.69): 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即:

2.4函数的零点的教学设计

2.4函数的零点 【学情分析】 本节课从学生熟悉的二次函数与二次方程入手,借助对图象的观察获得二次函数的零点与一元二次方程根的关系,并将这种关系推广到了一般情形. 初学者大多不清楚为什么要研究函数的零点,因为在此之前他们都能用公式法直接求方程的根.所以,教学时可首先考虑解决这一问题.通过举例让学生知道,有许多方程都不能用公式法求解,为了研究更多方程的根,就有必要学习函数的零点.如果带着这样的疑问学习,必然会激发其求知欲,从而提高学习的效率.零点知识是陈述性知识,关键不在于学生提出这个概念。而是理解提出零点概念的作用,沟通函数与方程的关系。 【学习内容分析】 本节课是在学生学习了《一次函数和二次函数》的基础上,学习函数与方程的第一课时,通过对二次函数图象的绘制、分析,得到零点的概念及存在个数问题,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求函数零点的近似值》做准备.本节内容有函数零点概念、函数零点与相应方程根的关系、探究函数零点存在性。 函数零点是研究当函数的值为零时,相应的自变量的取

值,反映在函数图象上,也就是函数图象与轴的交点横坐标。 由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程 有解,则函数存在零点,且方程的根就是相应函数的零点,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题。这是函数与方程关系认识的第一步。 零点存在性定理,是函数在某区间上存在零点的充分不必要条件。如果函数在区间[a,b]上的图象是一条不间断的曲线,并且满足f(a)·f(b)<0,则函数在区间(a,b)内至少有一个零点,但零点的个数,需结合函数的单调性等性质进行判断.方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还体现了“数形结合思想”及“转化与化归思想”。 【课程目标】 一.知识与技能目标 通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系, 二.过程与方法目标 体现从特殊到一般的认识规律,通过合作探究理解并掌握方程的根与相应函数零点的关系,通过对现实问题的分析,体会用函数系统

人教B版高中数学必修一函数教案

2.1.1函数 教案(2) 教学目标:理解映射的概念; 用映射的观点建立函数的概念. 教学重点:用映射的观点建立函数的概念. 教学过程: 1.通过对教材上例4、例5、例6的研究,引入映射的概念. 注:1,补充例子:投掷飞标时,每一支飞标射到盘上时,是射到盘上的唯一点上。于是,如果我们把A 看作是飞标组成的集合, B 看作是盘上的点组成的集合,那么,刚才的投飞标相当于集合A 到集合B 的对应,且A 中的元素对应B 中唯一的元素,是特殊的对应. 同样,如果我们把A 看作是实数组成的集合,B 看作是数轴上的点组成的集合,或把A 看作是坐标平面内的点组成的集合,B 看作是有序实数对组成的集合,那么,这两个对应也都是集合A 到集合B 的对应,并且和上述投飞标一样,也都是A 中元素对应B 中唯一元素的特殊对应. 一般地,设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到集合B 的映射,记作f:A →B.其中与A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 2,强调象、原象、定义域、值域、一一对应和一一映射等概念 3.映射观点下的函数概念 如果A ,B 都是非空的数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,记作y=f(x),其中x ∈A ,y ∈B.原象的集合A 叫做函数y=f(x)的定义域,象的集合C (C ?B )叫做函数y=f(x)的值域.函数符号y=f(x)表示“y 是x 的函数”,有时简记作函数f(x). 这种用映射刻划的函数定义我们称之为函数的近代定义. 注:新定义更抽象更一般 如:(狄利克雷函数)是无理数)(是有理数)? ??=x 0x (1)x (f 4.补充例子: 例1.已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射?并说明理由: ⑴ A=N ,B=Z ,对应法则:“取相反数”; ⑵A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”; ⑶A={1,2,3,4,5},B=R ,对应法则:“求平方根”; ⑷A={α|00≤α≤900 },B={x|0≤x ≤1},对应法则:“取正弦”. 例2.(1)(x ,y )在影射f 下的象是(x+y,x-y),则(1,2)在f 下的原象是_________。 (2)已知:f :x →y=x 2是从集合A=R 到B=[0,+∞]的一个映射,则B 中的元素1在A 中的原象是_________。 (3)已知:A={a,b},B={c,d},则从A 到B 的映射有几个 。 【典例解析】 例⒈下列对应是不是从A到B的映射,为什么? ⑴A=(0,+∞),B=R,对应法则是"求平方根"; ⑵A={x|-2≤x≤2},B={y|0≤y≤1},对应法则是f:x→y=4 2 x (其中x

为什么高一数学人教版分A版和B版

为什么高一数学人教版分 A版和B版 The final edition was revised on December 14th, 2020.

为什么高一数学人教版分A版和B版高中数学课程框架1.课程框架 高中数学课程分必修和选修。必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干个模块组成,系列3、系列4由若干专题组成;课程结构如图所示。 2.必修课程 必修课程是每个学生都必须学习的数学内容,包括5个模块。数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。刚上高1的学生很快就接触到了函数知识,其实初中对函数的知识有一些初步的涉猎,但是涉及的内容较少,定义也不完整,高中阶段是学生第一次正式接触函数,此部分知识模块难度较大,大部分学生学到这个知识模块会出现比较多的问题,函数是高中知识最难的3个模块之1也是学生第一个遇到的难题,需要学生平和的心态去把握。花大量的时间学习掌握。也是期中考试的主题内容。很多学生学到这个部分问题教多会怀疑自己初中知识学的是否扎实,其实和初中关联的只有几个部分:(二次函数,一次函数,正比例函数,反比例函数,一元二次方程,和不等式的简单解法。)这几个知识要是没问题就是不会影响到高1初步的知识学习。 数学2:立体几何初步、平面解析几何初步。此部分知识讲解前需要学生做适当预习,不过知识不是很难,因为前面讲数列会花费比较多的时间,因此到解析几何的时候会显得时间紧张,应该提前注意避免影响成绩。

数学3:算法初步、统计、概率。此部分知识不是很难,只要学生紧跟学校老师应该问题不大,但是很多学生会因此放松导致影响后面的知识的学习。 数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。此部分知识承接必修1的函数,是知识延续,如果函数学的不好会对这个部分有较多影响。开展课程前要先了解下必修1中函数知识的掌握情况。 数学5:解三角形、数列、不等式。解斜三角形和必修4的三角函数有部分练习,需提前复习,数列是一个很难的知识模块,需要花费比较多的时间学习掌握。 3.选修课程 对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。选修课程由系列1,系列2,系列3,系列4等组成。 系列1:由2个模块组成。 选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。 系列2:由3个模块组成。 选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何; 选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入; 选修2-3:计数原理、统计案例、概率。

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

高中数学《方程的根与函数的零点》公开课优秀教学设计二

第三章函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点 一.教学内容分析 本节内容是高中数学人教版必修一,第三章函数的应用,第一节函数与方程第一课时方程的根与函数的零点;课本选取探究具体的一元二次方程的根与其 对应的二次函数的图象与x轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般的化归转化思想,由易到难,这符合学生的认知规律;本节体现的数学思想是:“数形结合”思想和“转化”思想.本节充分体现了函数图象和性质的应用.因此,把握课本要从三个方面入手:新旧知识的联系,学生 认知规律,数学思想方法. 二、教学目标 1、了解函数零点的概念:能够结合具体方程(如二次方程),说明方程的根、函数的零点、函数图象与x轴的交点三者的关系; 2、理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是 函数存在零点的一个充分条件;了解函数零点可能不止一个; 3、能利用函数图象和性质判断某些函数的零点个数,及所在区间 4.经历“类比—归纳—应用”的过程,感悟由具体到抽象的研究方法,培养归纳 概括能力.体会从特殊到一般的转化的数学思想。 三、学情分析 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.其次,学生对于方程已经有了一定的认知基础,对方程的根并不陌生,这样 就使得方程与函数联系的过度学生容易掌握,但学生对于数形结合的数学思想仍不能胜任,故本节课关键在于通过图像去突破重难点,学生会表现出不适。而本节的零点存在定理只为零点的存在提供充分非必要条件,所以定理的逆命题、否命题都不成立,在函数连续性、简单逻辑用语未学习的情况下,学生对定理的理解常常不够深入.这就要求教师引导学生体验各种成立与不成立的情况,从不同的角度审视定理的条件与适用范围 四、教学策略选择与设计 本节课在概念的形成和深化、定理的概括和应用方面,都给予自主探究、辨析实践、动手画图及交流讨论的机会,只有充分激活了学生的思维,这节课的各环节才能顺利推进,内容才会丰富充实,方法才会异彩纷呈.所以这节课总的设计理念是以学生为主概念与定理的建立是一个感知、探究的过程,不仅关注知识的掌握,也关注学生的学习过程,把体验、尝试、发现的机会交给学生,紧扣教材,注重思维、注重过程 五、教学重点及难点 教学重点:了解函数零点概念,掌握函数零点存在性定理. 教学难点:对零点存在性定理的准确理解

人教B版新课标高中数学必修一教案 《基本不等式》

《基本不等式 2 a b ab +≤(第1课时)》教学设计 “基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质. 1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.通过实例探究抽象基本不等式; 3.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣. 【教学重点】 2 a b ab +≤的证明过程; 【教学难点】 a b ab +≤ 等号成立条件 1.课题导入 2 a b ab +≤ 的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系. 【设计意图】由北京召开的第24界国际数学家大会的会标引出新课,使数学贴近实际,来源于生活. ◆ 教学过程 ◆ 教学重难点 ◆ ◆ 教学目标 ◆ 教材分析

2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形.设直角三角形的两条直角边长为a ,b 那么正方形的边长为22a b +.这样,4个直角三角形的面积的和是2ab ,正方形的面积为2 2 a b +.由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:2 22a b ab +≥. 当直角三角形变为等腰直角三角形,即a =b 时,正方形EFGH 缩为一个点,这时有 222a b ab +=. 2.得到结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 2 22)(2b a ab b a -=-+ 当2 2 ,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2 ≥-b a ,即.2)(2 2 ab b a ≥+ 4.(1)从几何图形的面积关系认识基本不等式2 a b ab +≤ 特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2 a b ab +≤ (2)从不等式的性质推导基本不等式2 a b ab +≤ 用分析法证明: 要证 2 a b ab +≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3) 要证(3),只要证 ( - )2 (4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立. (3)理解基本不等式2 a b ab +≤的几何意义 探究:

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

函数零点教学设计

《函数零点》教学设计 一、教学目标: 1.函数零点理解函数零点的概念,了解函数的零点与方程根的联系; 2.理解“在函数的零点两侧函数值乘积小于0”这一结论的实质,并运用其解决有关一元 二次方程根的分布问题; 3.通过函数零点内容的学习,分析解决对一元二次方程根的分布的有关问题,转变学生对 数学学习的态度,加强学生对数形结合、分类讨论等数学思想的进一步认识。 二、教学重点:函数零点存在性的判断。 三、教学难点:数形结合思想,转化化归思想的培养与应用。 四、教学方法: 在相对熟悉的问题情境中,通过学生自主探究,在合作交流中完成学习任务,尝试指导与自主学习相结合。 五、教学过程: 1、实例引入 解方程:(1)2-x=4;(2)2-x=x. 意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情. 2、一元二次方程的根与二次函数图象之间的关系.

问题2:一元二次方程的根与相应的二次函数的图象之间有怎样的关系? 学生讨论,得出结论:一元二次方程的根就是函数图象与x轴交点的横坐标. 意图:通过回顾二次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备. 3、一般函数的图象与方程根的关系. 问题3:其他的函数与方程之间也有类似的关系吗?请举例! 师生互动,在学生提议的基础上,老师加以改善,现场在几何画板下展示类似如下函数的图象:y=2x-4,y=2x-8,y=ln(x-2),y=(x-1)(x+2)(x-3).比较函数图象与x轴的交点和相应方程的根的关系,从而得出一般的结论: 方程f(x)=0有几个根,y=f(x)的图象与x轴就有几个交点,且方程的根就是交点的横坐标. 意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫 4、函数零点. 概念:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点. 即兴练习:函数f(x)=x(x2-16)的零点为(D )A.(0,0),(4,0) B.0,4 C.(–4,0),(0,0),(4,0) D.–4,0,4 设计意图:及时矫正“零点是交点”这一误解. 说明:①函数零点不是一个点,而是具体的自变量的取值. ②求函数零点就是求方程f(x)=0的根. 5、归纳函数的零点与方程的根的关系. 问题4:函数的零点与方程的根有什么共同点和区别? (1)联系:①数值上相等:求函数的零点可以转化成求对应方程的根; ②存在性一致:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. (2)区别:零点对于函数而言,根对于方程而言. 以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题可以转化为函数问题来求解,这正是函数与方程思想的基础. 6、零点存在性定理的探索. 探究:(1)观察二次函数f(x)=x2-2x-3的图象: 在区间[-2,1]上有零点______; f(-2)=_______,f(1)=_______,f(-2)·f(1)_____0(“<”或“>”). 在区间(2,4)上有零点______;f(2)·f(4)____0(“<”或“>”). (2)观察函数的图象: ①在区间(a,b)上___(有/无)零点;f(a)·f(b) ___ 0(“<”或“>”). ②在区间(b,c)上___(有/无)零点;f(b)·f(c) ___ 0(“<”或“>”). ③在区间(c,d)上___(有/无)零点;f(c)·f(d) ___ 0(“<”或“>”). 意图:通过归纳得出零点存在性定理. 7、零点存在性定理: 如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线, 并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点. 即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 即兴练习:下列函数在相应区间内是否存在零点? ,2];(2)f(x)=e x-1+4x-4,x∈[0,1]. (1)f(x)=log2x,x∈[1 2

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定 义 , 有 sin a A =, sin b B =,又s i n 1 c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

相关主题
文本预览
相关文档 最新文档