arm基础
- 格式:ppt
- 大小:1.14 MB
- 文档页数:59
ARM 课程考试相关知识点主要:●嵌入式系统的五个特性包括:专用性,可剪裁性,可靠性,低功耗性和实时性。
●嵌入式系统的特点:专用性强,可剪裁性好,实时性和可靠性好,功耗低●嵌入式操作系统的特点:微型化,可裁剪性,实时性,高可靠性,易移植性●嵌入式系统设计过程的主要步骤(5个):⏹1、系统需求分析⏹2、体系结构设计⏹3、硬件/软件设计⏹4、系统集成⏹5、系统测试●ARM处理器的五个系列:(体系架构是否是冯诺依曼)ARM7和ARM9的体系架构?⏹ARM7(冯诺依曼结构)⏹ARM9(哈佛体系结构)⏹ARM9E(哈佛体系结构)⏹ARM10E⏹SecurCore冯诺依曼结构指数据空间和地址空间不分开;哈佛结构数据空间和地址空间是分开的●操作系统指令执行的三个阶段⏹1、获得指令⏹2、分析指令⏹3、执行指令●代码密度:就是处理完成一个完整的操作,需要的指令条数,按字节计算越少效率越高●MMU(Memory Management Unit):存储器管理单元。
P176存储器管理单元MMU主要完成以下工作:虚拟存储空间到物理存储空间的映射;存储器访问权限的控制;设置虚拟存储空间的缓冲的特征。
MMU可以将某些地址变换条目锁定在快表【TLB(translation lookasidebuffer)】中,从而使得进行与该地址变换条目相关的地址变换速度保持很快。
MMU可以将整个存储空间分为最多16个域。
功能:将虚拟地址映射为物理地址;提供硬件机制的内存访问授权。
●ARM的寻址方式⏹立即数寻址⏹寄存器寻址⏹寄存器移位寻址⏹寄存器间接寻址⏹多寄存器寻址⏹基址变址寻址⏹相对寻址⏹堆栈寻址⏹块拷贝寻址●嵌入式系统/操作系统?主要由哪几部分组成嵌入式系统的组成部分:⏹嵌入式处理器(ARM,MIPS,PowerPC)⏹外围设备(存储器接口)⏹嵌入式操作系统⏹应用软件●ARM的最小系统,画出框图,并说明。
1. ARM芯片。
2. 电源电路、复位电路,晶振电路。
一、 ARM基础知识 (2)(一)嵌入式产品 (2)(二) ARM公司 (2)1. ARM公司分布在全球各处 (2)2. ARM产品线 (3)3.授权的厂商 (4)(三) ARM 体系架构 (4)(四) ARM系统硬件组成和运行原理 (5)二、开发环境的搭建 (5)(一)安装交叉编译工具链 (5)(二)安装keil(MDK) (5)(三)创建一个project (6)(四)关联arm-none-linux-gnueabi工具链 (6)(五)导入链接脚本 (6)(六)写代码 (6)(七)编译和调试 (6)三、 ARM的工作模式及寄存器 (7)四、 ARM 工作模式及寄存器框图 (8)五、 CPSR寄存器 (8)六、思考 (9)七、作业 (9)一、ARM基础知识(一)嵌入式产品*ARM和CPUCPU是按图纸设计出来的实物,按ARM公司设计的图纸做出来的叫做ARM处理器按Intel公司设计的图纸做出来的叫做Intel处理器cpu 中文叫中央处理单元(二)ARM公司成立于1990年11月前身为 Acorn计算机公司主要设计ARM系列RISC处理器内核授权ARM内核给生产和销售半导体的合作伙伴ARM 公司不生产芯片1.ARM公司分布在全球各处EnglandCambridge, Maidenhead, Sheffield, Blackburn GermanyMunichFranceParis, Sophia AntipolisKoreaSeoulUSSeattle, Los Gatos, Walnut Creek, Austin, Boston, San Diego AsiaTaiwanJapanShin-Yokohama (Tokyo)2.ARM产品线Real-time表示实时性的:马上请求,马上相应。
3.授权的厂商(三)ARM 体系架构流水线:可以同时工作的数目。
MMU:内存管理单元注:不同ARM体系采用不同指令集哈佛结构是数据和指令分开存储并行冯诺依曼(普林斯顿)结构是混合存储的(四)ARM系统硬件组成和运行原理二、开发环境的搭建(一)安装交叉编译工具链我们用的交叉编译工具链是arm-2011.09-70-arm-none-linux-gnueabi.exe 在该可执行文件上右键->属性-> 兼容性选择兼容window 7确定后以管理员身份运行即可,可能需要很长时间。
复习问题提纲第一讲基础知识1.什么是嵌入式系统(IEEE定义和国内普遍认同(de)定义分别是什么)IEEE(国际电气和电子工程师协会)对嵌入式系统(de)定义:“用于控制、监视或者辅助操作机器和设备(de)装置”国内普遍认同(de)嵌入式系统定义为:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求(de)专用计算机系统.更简单(de)讲:就是嵌入到对象体中(de)专用计算机系统.三要素:嵌入、专用、计算机嵌入性:嵌入到对象体系中,有对象环境要求专用性:软、硬件按对象要求裁减计算机:实现对象(de)智能化功能2.嵌入式系统(de)特点1、专用软、硬件可剪裁可配置;2、低功耗、高可靠性、高稳定性;3、软件代码短小精悍;4、代码可固化;5、实时性;6、弱交互性7、嵌入式系统软件开发通常需要专门(de)开发工具和开发环境;8、要求开发、设计人员有较高(de)技能.3.嵌入式系统(de)组成嵌入式系统总体上是由硬件和软件组成(de),硬件是其基础,软件是其核心和灵魂.第二讲ARM技术概述(以下指(de)arm处理器都是指ARM920T)1.arm处理器是32位架构,它支持(de)基本数据类有哪3个(提示:字节、、)(1)Byte:字节,8bit (2)Halfword:半字,16bit(半字必须与2字节边界对齐)(3)word:字,32bit(字必须与4字节边界对齐)2.什么是存储大小端模式所谓(de)大端模式,是指高位字节存放在低地址单元中,而低位字节存放在高地址单元中.所谓(de)小端模式,是指低位字节存放在低地址单元中,而高位字节存放在高地址单元中.3.arm 处理器有哪7种工作模式,每种工作模式下通用工作寄存器有多少个、作用是什么、各个模式间哪些模式下有自己专有(de)寄存器,哪些寄存器是各个模式彼此公用(de),哪些寄存器一般有固定(de)用途是什么哪两种模式寄存器完全相同,哪种模式它(de)专有寄存器最多(1)ARM微处理器支持7种运行模式,分别为:用户模式(usr):ARM处理器正常(de)程序执行状态.(大部分任务执行时)快速中断模式(fiq):用于高速数据传输或通道处理.(当高优先级中断产生时)外部中断模式(irq):用于通用(de)中断处理.(当低优先级中断产生时)特权模式(svc):操作系统使用(de)保护模式.(当复位或软中断指令执行时)数据访问中止模式(abt):可用于虚拟存储及存储保护. (当存取异常时)未定义指令中止模式(und):可用于支持硬件协处理器(de)软件仿真.(当未定义(de)指令执行时)系统模式(sys):运行具有特权(de)操作系统任务.(和User模式相同寄存器集(de)模式)(2)每种工作模式下通用工作寄存器有:(共15个)(ARM处理器共有37个寄存器,被分为若干个组(BANK),这些寄存器包括30个通用寄存器和6个状态寄存器,1个程序计数器(PC指针)及所有寄存器(均为32位). 未分组寄存器:包括R0~R7. 分组寄存器:包括R8~R14(3) 未分组寄存器(R0-R7)指(de)都是同一个物理寄存器,但是在异常中断切换时,由于使用相同(de)物理寄存器,所以和容易使寄存器中(de)数据被破坏. 对于分组寄存器(R8~R14),他们每一次所访问(de)物理寄存器与处理器当前(de)运行模式有关,除FIQ模式外其他寄存器是公用(de)(R0-R12). 分组寄存器R13和R14来说,每个寄存器对应6个不同(de)物理寄存器.其中(de)一个是用户模式和系统模式公用(de),而另外5个分别用于5种异常模式. R15用作程序计数器(PC),用来保存读取指令(de)地址.(4)R13,R14,CPSR是各个模式专有(de),FIQ模式除此之外还有R8-R12.(5)R0~R7是所用模式公用(de);R8~R12对于快速中断FIQ模式之外(de)其他模式都是公用(de),而FIQ 模式另外有一套自己寄存器R8_fiq~R12_fiq,FIQ处理程序在保存和恢复现场时可以少保存和恢复几个寄存器(R8-R12),从而提高中断处理迅速(6)R13通常用作栈指针寄存器(SP),每一种模式有自己(de)R13,所以允许每一种异常都有自己(de)栈指针.R14用作连接或返回地址寄存器(LR),每一种模式有自己(de) R14.R15用作程序计数器(PC),用来保存读取指令(de)地址.程序状态寄存器(CPSR)存储ARM微处理器当前(de)状态和模式标志.备份状态寄存器(SPSR)异常模式下(de)CPSR(de)备份寄存器,当一个异常发生时保存当前(de)CPSR值.结合连接寄存器可使处理器返回先前(de)状态.(7)用户模式(user)和系统模式(sys)寄存器完全相同且这两种模式不能由异常进入(8)快速中断(FIQ)模式最多4.arm处理器有哪2种工作状态,上电复位后进入(de)是什么状态(1)第一种为ARM状态,此时处理器执行32位(de)字对齐(de)ARM指令,对应ARM指令集;第二种为Thumb状态,此时处理器执行16位(de)、半字对齐(de)Thumb指令,对应Thumb指令集.(2)上电复位后,处于ARM状态5.理解流水线是如何提高处理器处理速度(de),如假设某嵌入式处理器有3级流水线,每级流水线所耗时间均为为2ms,则执行25条指令需要耗费时间流水线(pipeline)技术是指在程序执行时多条指令重叠进行操作(de)一种准实现技术T=执行一条指令(de)时间+(指令(de)条数—1)流水线周期 6+(25-1)2=546.充分掌握arm处理器CPSR寄存器每一位(de)作用.寄存器R16用作程序状态寄存器CPSR(Current Program Status Register,当前程序状态寄存器).在所有处理器模式下都可以访问CPSR.CPSR包含条件码标志、中断禁止位、当前处理器模式以及其他状态和控制信息.每种异常模式都有一个程序状态保存寄存器SPSR(Saved Program Status Register).当异常出现SPSR用于保留CPSR(de)状态.CPSR和SPSR(de)格式如下:(1)条件码标志N、Z、C、V(Negative、Zero、Carry、oVerflow)均为条件码标志位(Condition Code Flags),它们(de)内容可被算术或逻辑运算(de)结果所改变,并且可以决定某条指令是否被执行.CPSR中(de)条件码标志可由大多数指令检测以决定指令是否执行.在ARM状态下,绝大多数(de)指令都是有条件执行(de).在Thumb状态下,仅有分支指令是有条件执行(de).通常条件码标志通过执行比较指令(CMN、CMP、TEQ、TST)、一些算术运算、逻辑运算和传送指令进行修改.条件码标志(de)通常含义如下:N:如果结果是带符号二进制补码,那么,若结果为负数,则N=1;若结果为正数或0,则N=0.Z:若指令(de)结果为0,则置1(通常表示比较(de)结果为“相等”),否则置0.C:可用如下4种方法之一设置:加法(包括比较指令CMN).若加法产生进位(即无符号溢出),则C置1;否则置0.减法(包括比较指令CMP).若减法产生借位(即无符号溢出),则C置0;否则置1.对于结合移位操作(de)非加法/减法指令,C置为移出值(de)最后1位.对于其他非加法/减法指令,C通常不改变.V:可用如下两种方法设置,即对于加法或减法指令,当发生带符号溢出时,V置1,认为操作数和结果是补码形式(de)带符号整数.对于非加法/减法指令,V通常不改变.Q标志位:在带DSP指令扩展(de)ARM v5及更高版,bit[27]被指定用于指示增强(de)DAP指令是否发生了溢出,因此被称为Q标志位.同样,在SPSR中bit[27]也被称为Q标志位,用于在异常中断发生时保存和恢复CPSR中(de)Q 标志位(3)控制位程序状态寄存器PSR(Program Status Register)(de)最低8位I、F、T和M[4:0]用作控制位.当异常出现时改变控制位.处理器在特权模式下时也可由软件改变.a.中断禁止位I:置1,则禁止IRQ中断;F:置1,则禁止FIQ中断.b.T位T=0 指示ARM执行(即正在执行32位(de)ARM指令);T=1 指示Thumb执行(即正在执行16位(de)Thumb指令).c.模式控制位(4)其他位程序状态寄存器(de)其他位保留,用做以后(de)扩展.7.arm处理器有哪两个中断快速中断(FIQ)和标准中断(IRQ)8.掌握s3c2410X单片机他(de)内核是什么处理器,该单片机有哪两类总线,两类总线分别挂接了哪些接口控制器(1)S3c2410X单片机(de)内核ARM920T处理器;S3C2410处理器支持大/小端模式存储字数据,a)其寻址空间可达1GB,b)对于外部I/O设备(de)数据宽度c)可以是8/16/32位,d)所有(de)存储器Bank(共有8个)都具有可编程(de)操作周期,e)而且支持各种ROM引导方式(NOR/Nand Flash、EEPROM等)(2)两类总线分别为:AHB和APB;(3)AHB挂接了LCD、USB主控制、NAND Flash、中断控制、总线控制、内存APB挂接了串口、usb从设备、看门狗定时器、总线控制、SPI、I2C、I2S、GPIO、RTC、ADC、PWM定时器第三讲ARM指令系统1.掌握ARM处理器指令(de)几种寻址方式和分类,哪两类指令是专门用来访问内存(de) 哪类指令或伪指令会导致流水线情况(提示:那些会使PC值发生跳变(de)指令)(1)指令有七种寻址方式:1、立即寻址:ADD R0,R0,1 ;R0←R0+1MOV R0,0xff00 ;R0←0xff00在以上两条指令中,第二个源操作数即为立即数,要求以“”为前缀,对于以十六进制表示(de)立即数,还要求在“”后加上“0x”.2、寄存器寻址:操作数放在寄存器当中,在指令当中只需要给出存放操作数寄存器(de)名字就可以了,这也是一种执行效率较高寻址方式.举例:MOV R0,R1 ; R0←R1SUB R0,R1,R2 ;R0←R0-R23、寄存器间接寻址:寄存器间接寻址就是以寄存器中(de)值作为操作数(de)地址,而操作数本身存放在存储器中.ADD R0,R1,[R2] ;R0←R1+[R2]在第一条指令中,以寄存器R2(de)值作为操作数(de)地址,在存储器中取得一个操作数后与R1相加,结果存入寄存器R0中.LDR R0,[R1] ; R0←[R1]第二条指令将以R1(de)值为地址(de)存储器中(de)数据传送到R0中.4、基址变址寻址:基址变址寻址就是将寄存器(该寄存器一般称作基址寄存器)(de)内容与指令中给出(de)地址偏移量相加,从而得到一个操作数(de)有效地址.变址寻址方式常用于访问某基地址附近(de)地址单元.LDR R0,[R1,4] ;R0←[R1+4]在第一条指令中,将寄存器R1(de)内容加上4形成操作数(de)有效地址,从而取得操作数存入寄存器R0中.5、多寄存器寻址:6、相对寻址:7、堆栈寻址:0指令有六类:1、跳转指令 2、数据处理指令 3、程序状态寄存器(PSR)传输指令 4、加载/存储(load/store)指令 5、协处理指令 6、异常中断产生指令根据使用(de)指令类型不同,指令(de)寻址方式分为数据处理指令寻址方式和内存访问指令寻址方式. (2)加载/存储(load/store)指令和跳转指令访问内存(de)指令:str和ldr(3)a、互锁指令:在典型(de)程序处理过程中,经常会遇到这样(de)情形,即一条指令(de)结果被用作下一条指令(de)操作数,如:有如下指令序列:LDR R0,[R0,0]ADD R0,R0,R1 ;在5级流水线上产生互锁从例子中可以看出,流水线(de)操作产生中断,因为第1条指令(de)结果在第2条指令取数时还没有产生.第2条指令必须停止,直到结果产生为止.b、跳转指令:跳转指令也会破坏流水线(de)行为,因为后续指令(de)取指步骤受到跳转目标计算(de)影响,因而必须推迟.第四讲ARM程序设计语言1.掌握ARM一些常用伪指令(de)作用及含义如ldr r0,=label(含义)、entry、end、import、export、dcb 100等.ldr r0,=label:把lable(程序开始地址)写到r0寄存器中Entry:ENTRY 伪指令用于指定汇编程序(de)入口点.在一个完整(de)汇编程序中至少要有一个 ENTRY (也可以有多个,当有多个 ENTRY 时,程序(de)真正入口点由链接器指定),但在一个源文件里最多只能有一个 ENTRY (可以没有).End:作用:用于通知编译器已经到了源程序(de)结尾.含义:指定应用程序(de)结尾Import:伪指令用于通知编译器要使用(de)标号在其他(de)源文件中定义,但要在当前源文件中引用,而且无论当前源文件是否引用该标号,该标号均会被加入到当前源文件(de)符号表中.Export:用于在程序中声明一个全局(de)标号,该标号可在其他(de)文件中引用.Dcb 100: 用于分配一片连续(de)字节存储单元并用伪指令中指定(de)表达式初始化.2.掌握ATPCS规则,如汇编与C语言间参数是如何传递(de)(C语言函数(de)形参对应哪些通用寄存器、返回参数又对应哪些通用寄存器)1.子程序通过寄存器R0~R3来传递参数. 这时寄存器可以记作: A1~A4 , 被调用(de)子程序在返回前无需恢复寄存器R0~R3(de)内容.2.在子程序中,使用R4~R11来保存局部变量.这时寄存器R4~R11可以记作: V1~V8 .如果在子程序中使用到V1~V8(de)某些寄存器,子程序进入时必须保存这些寄存器(de)值,在返回前必须恢复这些寄存器(de)值,对于子程序中没有用到(de)寄存器则不必执行这些操作.在THUMB程序中,通常只能使用寄存器R4~R7来保存局部变量.3.寄存器R12用作子程序间scratch寄存器,记作ip; 在子程序(de)连接代码段中经常会有这种使用规则.4. 寄存器R13用作数据栈指针,记做SP,在子程序中寄存器R13不能用做其他用途. 寄存器SP在进入子程序时(de)值和退出子程序时(de)值必须相等.5. 寄存器R14用作连接寄存器,记作lr ; 它用于保存子程序(de)返回地址,如果在子程序中保存了返回地址,则R14可用作其它(de)用途.6. 寄存器R15是程序计数器,记作PC ; 它不能用作其他用途.7. ATPCS中(de)各寄存器在ARM编译器和汇编器中都是预定义(de).3.理解加载地址和运行地址(de)含义,以及在程序加载时和运行时分别分成了哪几个段(提示RO子读、RW可读可写、ZI存储)第5讲GPIO编程1.掌握S3C2410 GPIO端口(de)设置方法,如现在需要把通用端口F组(de)第2管脚口设置为输出且输出低电平(即0),现在要其F组其他管脚口保持不变,应如何设置他(de)相关寄存器rGPFCON = (rGPFCON&0xff)|(0x04);rGPFDAT=(rGPFDAT);2.掌握实验板4个LED灯(de)编程控制i.;保留未使用(de)异常向量ii. b IRQHandleriii. b FIQHandler2.掌握S3C2410 中断控制器工作原理,其有多少个一级中断源和二级中断源,中断控制器(de)相关寄存器(de)作用,在一级中断控制寄存器中我们是通过哪个寄存器来识别是哪个一级中断源触发了中断服务(提示:中断号)当中断服务结束,我们是如何来清除中断请求信号a)s3c2410有56个外部中断源头,这56个外部中断源头是通过说s3c2410内部(de)中断控制器来管理(de),中断控制器(de)主要工作就是管理外部中断源:产生中断信号,保存在中断源寄存器中,打开中断屏蔽位,MODE选IRQ或FIQ(默认为IRQ),再排中断优先级后送到处理器,向cpu发出中断请求.b)c)SRCPND寄存器当中断源发出中断请求是,源挂起寄存器(SRCPND)(de)相应位就会置1.INTMOD(中断模式寄存器)当中断源(de)模式位置1时,用FIQ模式处理;置0时,用IRQ处理.INTMSK(中断屏蔽寄存器)当中断源(de)屏蔽位置为1时,CUP不响应中断源(de)中断请求,置0时,响应.INTPND(中断挂起寄存器)当中断请求被响应时,相应位置1.INTOFFSET(IRQ偏移寄存器)给出INTPND寄存器中那个是IRQ模式(de)中断请求.EXTINTn(外部中断控制寄存器)有24个外部中断有几种中断触发方式由该寄存器设置.EINTMASK(外部中断屏蔽寄存器)[23:4]分别对应外部中断23~4.等于1,对应(de)中断被屏蔽,反之, 允许.EINTPND(外部中断挂起寄存器)前四位保留EINT 0-3对应(de)挂起位在寄存器中,4—23位对应着一个中断源.请求响应时,响应位置1.在中断服务子程序中判断EINPND来判断哪个中断提起申请.d)在一级中断控制寄存器中我们是通过INTOFFSET寄存器来识别是哪个一级中断源触发了中断服务.e)一级中断源(de)中断清除,需要对INTPND、SRCPND要写1清03.学会使用外部中断+扫描法来实现实验板上矩阵键盘(de)识别第8讲定时器1.RTC 时钟信号(de)来源如何设置时间(如设置秒钟为24秒,你如何给它相应寄存器赋值)a)时钟信号(de)来源是:外部晶振(依靠一个外部(de)(de)石英晶体,产生周期性(de)脉冲信号.每一个信号到来时,计数器就加1,通过这种方式,完成计时功能. )b)rRTCCON |= 0x01; //使能RTC控制,用来设置时间rBCDSEC = 0x24;rRTCCON |= 0x00;2.RTC 时间节拍(de)周期如何设置a) Period=(n+1)/128 ;以秒作为单位式中:n为节拍时间计数值,范围为1~127.3.掌握看门狗定时器(de)工作原理及其相关寄存器(de)作用、看门狗增强系统稳定性(de)原理又是什么S3C2410 ARM9(de)看门狗主要由五部分构成:时钟、看门狗计时器、看门狗数据寄存器、复位信号发生器、控制逻辑等.a)看门狗定时器(de)工作原理:b)Watchdog根据PCLK,Prescaler Value,Clock Select会产生一个watchdog自己(de)工作周期,我们把这个工作周期记为t_watchdog(),watchdog在一个 t_watchdog周期结束时会产生一个记数递减信号,每当这个信号产生时,WTCNT中(de)值便减1,若在WTCNT递减为0(Timer Out)(de)时候软件层还没有重新往WTCNT中写入数值(这个行为便是我上文提到(de)喂狗),则watchdog触发Reset Signal,系统重起.c)相关寄存器(de)作用是:i.WTCON:watchdog控制寄存器(是否启用看门狗定时器、4个分频比(de)选择、是否允许中断产生、是否允许复位操作)ii.WTDAT:watchdog数据寄存器(用于指定超时时间)iii.WTCNT:watchdog记数寄存器(通过WTDAT得到一个值,watchdog在每个t_watchdog周期里向WTCNT发送一个递减信号,当WTCNT(de)值递减到0(de)时候则发生time out,重而重起系统. 用来设置多少个时钟周期 (t_watchdog) 总(de)定时长度T=WTCNTt_watchdog)d)看门狗增强系统稳定性(de)原理是:设一系统程序完整运行一周期(de)时间是Tp,看门狗(de)定时周期为Ti,要求Ti>Tp. 在程序运行一周期后,修改定时器(de)计数值,只要程序正常运行,定时器就不会溢出. 若由于干扰等原因使系统不能在Tp 时刻修改定时器(de)计数值,定时器将在Ti 时刻溢出,引发系统复位,使系统得以重新运行,从而起到监控作用.4.看门狗定时器溢出会可能产生哪两路输出如何设置定时器定时器初值(如PCLK时钟频率为60MHz,看门狗控制寄存器中(de)预分频因子设为99、再分频因子设为32,若要产生秒钟(de)看门狗定时中断,则WTDAT中(de)计数初值为)a)产生中断和复位信号两大功能是:定时功能和复位功能b)T_watchdog=1/(PCLK/Precaler value+1)/Division_factor5.PWM 定时器(de)工作原理,其相关寄存器(de)作用(如用哪个寄存器设置计数器和比较器初值,计数器寄存器能直接读写吗如果不能我么又是如何来读(de) ),以及产生PWM信号占空比是由哪两个寄存器来确定(de) 如何编程产生不同频率和占空比(de)PWM信号,定时器(de)输出脉冲(PWM)(de)周期如何计算,脉宽如何计算a)计数器寄存器不能直接读写,因为计数器TCNT没有地址,不能对其操作.定时器值可以被写入定时器计数缓冲寄存器(TCNTBn),当TCNTn(de)值等于0时,自动重载操作把TCNTBn(de)值装入TCNTn,只有当自动重载功能被使能并且TCNTn(de)值等于0(de)时候才会重载.b)PWM信号占空比是由TCNTn和TCMPn两个寄存器来确定(de)c)rTCFG0 = 158<<0; //低八位为定时器0和1(de)预分频值为158rTCFG1 = 3<<0; //选择定时器0为16分频rTCNTB0 = 100; //向计数缓冲器写入100rTCMPB0 = 50; //向比较缓冲器写入50rTCON = 1<<1;//手动更新rTCON = (1<<3)|(1<<0);//自动更新,并启动e)6.s3c2410(de)PWM定时器有几个,哪几个能输出PWM信号,哪个具有死区动能PWM定时器有5个{(定时器0、1、2、3、4)定时器4仅供内部定时而没有输出引脚}定时器0、1、2、3能输出PWM信号定时器0具有死区动能(死区就是在上半桥关断后,延迟一段时间再打开下半桥或在下半桥关断后,延迟一段时间再打开上半桥,从而避免功率元件烧毁.这段延迟时间就是死区.)第9讲存储控制器1.s3c2410(de)bootloader(即启动代码)(de)分成哪几个步骤以及各步骤完成哪些主要任设置中断向量表:系统运行有异常中断发生时,ARM处理器便把PC指针强制置为向量表中对应中断类型(de)地址值,从而跳到存储器其他位置(de)相应标号处执行.初始化看门狗和外围电路:关闭看门狗设置堆栈指针:ARM有7种工作模式,而每一种模式所用堆栈是不同(de),所以初始化堆栈必须初始化这7种模式下(de)堆栈.初始化系统时钟:改变CPU总线模式(快速->异步)初始化存储控制器:设置存储器控制寄存器(de)值初始化数据区:内核映像开始总是在Flash里面(de),其中RO部分可以在Flash中执行,也可以转移到RAM中执行,而RW和ZI必须转移到RAM中执行.数据区初始化就是完成必要(de)部分从Flash到RAM(de)数据传输和内容清零.跳转到C程序(de)Main()函数:是改变处理器模式,转入到C程序(de)人口操作.2.s3c2410存储空间有多大,分成了几个组,每组空间有多大,最大能挂接多大SDRAM存储空间有1GB;分成了8组;每组空间128M;最大能挂接256M(de)SDRAM,就是bank6和bank7.。
ARM 基础知识单选题100道及答案解析1. ARM 处理器采用的架构是()A. CISCB. RISCC. VLIWD. EPIC答案:B解析:ARM 处理器采用的是精简指令集(RISC)架构。
2. 以下哪个不是ARM 处理器的特点()A. 低功耗B. 高性能C. 复杂指令集D. 体积小答案:C解析:ARM 处理器是精简指令集,不是复杂指令集。
3. ARM 指令集的寻址方式不包括()A. 立即寻址B. 间接寻址C. 寄存器间接寻址D. 基址加变址寻址答案:B解析:ARM 指令集的寻址方式包括立即寻址、寄存器寻址、寄存器间接寻址、基址加变址寻址等,没有间接寻址。
4. 在ARM 体系结构中,用于存储程序状态寄存器的是()A. R0B. R13C. R15D. CPSR答案:D解析:CPSR(Current Program Status Register)用于存储程序状态。
5. 以下关于ARM 异常的说法错误的是()A. 复位异常优先级最高B. 未定义指令异常可以用于软件仿真C. 数据中止异常发生在数据访问时D. 快速中断异常响应速度比普通中断慢答案:D解析:快速中断异常响应速度比普通中断快。
6. ARM 处理器的工作模式不包括()A. 用户模式B. 系统模式C. 管理模式D. 超级模式答案:D解析:ARM 处理器的工作模式包括用户模式、系统模式、管理模式、中止模式、未定义模式、中断模式、快速中断模式。
7. 下列属于ARM 处理器的寄存器组的是()A. 通用寄存器B. 状态寄存器C. 控制寄存器D. 以上都是答案:D解析:ARM 处理器的寄存器组包括通用寄存器、状态寄存器和控制寄存器。
8. 在ARM 中,实现子程序调用的指令是()A. BB. BLC. BXD. MOV答案:B解析:BL 指令用于实现子程序调用,并保存返回地址。
9. 以下关于ARM 流水线的描述,错误的是()A. 提高了指令执行效率B. 增加了处理器的复杂度C. 减少了指令执行周期D. 不会产生流水线冲突答案:D解析:ARM 流水线可能会产生流水线冲突。
2.1ARM指令系统ARM处理器是基于精简指令集计算机(RISC)原理而设计的。
ARM微处理器在较新的体系结构中支持两种指令集:ARM指令集和Thumb指令集。
前者为32位长度,后者为16位长度。
2.1.1 ARM指令介绍格式:<opcode>{<cond>}{s}<Rd>,<Rn>,<shifter_operand>其中:opcode是指令操作符编码,cond是指令执行的条件编码,S决定指令的操作是否影响CPSR的值,Rd是目标寄存器编码,Rn是包含第1个操作数的寄存器编码,在ARM指令中,第2个操作数(shifter_operand)有多种表示方法。
1.常数表达式#immed_8r 该常数必须对应8位位图,即常数是由一个8位的常数循环移位偶数位得到的。
2.寄存器方式Rm 在寄存器方式下操作数即为寄存器的数值。
3.寄存器移位方式Rm,shift 将寄存器的移位结果作为操作数,但Rm的值保存不变。
移位方法如下:ASR #n ; 算术右移n位LSL #n ;逻辑左移n位LSR #n ;逻辑右移n位ASL #n ;算术左移n位Type Rs其中type为ASR、LSL、LSR、ASL中的一种,Rs为偏移量寄存器,低8位有效,其值如果大于或等于32,则第2个操作数的结果为0(ASR、ROR例外)2.1.2 ARM指令寻址方式寻址方式是根据指令中给出的地址码字段来实现寻找真实操作地址的方式。
共9种:a、寄存器寻址:操作数的值在寄存器中,指令中的地址码字段指出的是寄存器编号,指令执行时直接取出寄存器值操作。
例如:MOV R1,R2 ;R2->R1b、立即寻址:立即寻址中操作码字段后面的地址码部分就是操作数本身,也就是说,数据就包含在指令之中,取出指令也就取出可以立即使用的操作数(立即数)。
例如:SUB R0,R0,#1 ;R0-1->R0 立即数要以#为前提,十六进制数以0x表示。