当前位置:文档之家› [教学]电流互感器伏安特性试验及数据分析

[教学]电流互感器伏安特性试验及数据分析

[教学]电流互感器伏安特性试验及数据分析
[教学]电流互感器伏安特性试验及数据分析

[教学]电流互感器伏安特性试验及数据分析电流互感器伏安特性试验及数据分析

一、 CT伏安特性试验概述

CT伏安特性:是指在电流互感器一次侧开路的情况下,电流互感器二次侧励磁电流与电流互感器二次侧所加电压的关系曲线,实际上就是铁芯的磁化曲线,即该曲线在初始阶段表现为线性,当铁芯磁化饱和拐点出现时,该曲线表现为非线性。

试验的主要目的:一是检查新投产互感器的铁芯质量,留下CT原始实验数据;二是运行CT停运检验维护时(通常配合机组大修时进行)通过鉴别磁化曲线的饱和程度即拐点位置,以判断运行一定时期后互感器的绕组有无匝间短路等缺陷,以便及时发现设备缺陷,确保设备安全运行。三是对差动保护CT 精度有要求的进行10%误差曲线校核。

二、原理接线

(1) 通常情况下电流互感器的电流加到额定值时,电压已达400V以上,用传统试验设备试验时,调压器无法将220V电源升到试验电压,必须使用一个升压变(其高压侧输出电流需大于电流互感器二次侧额定电流)升压,一个PT或万用表读取电压。由于万用表可测最高交流电压为5000V,故可用它直接读取电压而无需另接PT。

(2)利用CT伏特性测试仪试验时,CT伏安特性测试仪一般电压可升至2500V,且具备数字电压、电流显示功能,部分测试仪具备数据处理功能,可直接打印出CT 特性曲线。

三试验过程及注意事项

(1)试验前,应将电流互感器二次绕组引线和CT接地线均应拆除,做好防止接地的可靠安全措施,即保证试验时CT各相别可靠独立于应用设备,否则可能造成设备的损坏。

(2)试验时,一次侧可靠开路,从CT二次侧施加电压,参考CT额定电流预先选取几个电流点,一般取10个电流点,即每10%额定电流为一个电流点,逐点读取记录或储存相应电压值、电流值,每个点必须从零开始升压升流,以消除互感器内的剩磁,保证测量数据的准确性。

(3)通入的电流或电压以不超过制造厂技术条件的规定为准,电压应不得

高于CT匝间绝缘要求电压。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验,该点即为拐点电压。

(4)试验后,根据试验数据绘出或打印伏安特性曲线,对应相应CT初始伏安特性曲线或最近测量的伏安特性曲线进行比对分析。

(5)恢复电流互感器二次绕组引线和CT接地线以及其它临时安全措施。

四、数据分析

1、电流互感器10%误差曲线校核:只对继电保护有要求的CT二次绕组进行,一般对差动保护用CT要求必须满足10%误差曲线要求。

2、测得的伏安特性曲线与出厂的伏安特性曲线或最近的测量伏安特性曲线比较,拐点电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。

3、当CT工作在正常伏安特性曲线的线性非饱和区域时,所测电流包括CT的励磁电流Ie及流过CT直阻的电流I2两部分,在此区域随着所加电压的增加,流过CT直阻的电流I2随之升高, CT的励磁电流Ie随之升高,因I1=Ie+ I2,所以测量电流I1随之升高。

4、当CT工作在铁芯饱和区域时,所测电流包括CT的励磁电流Ie及流过CT

直阻的电流I2两部分,在此区域随着所加电压的略微增加,流过CT直阻的电流

I2随之升高非常缓慢,CT的励磁电流Ie随之快速升高,因I1=Ie+ I2,所以测量电流I1随之快速升高,这是因为当铁芯饱和时,大量电流损耗于铁芯发热上,由于CT直阻与CT二次绕组匝数有关,当发生CT二次绕组匝间短路故障时,造成CT 直阻R降低,在CT铁芯饱和电流不变的情况下,拐点电压U=I2*R,从而在CT伏安特性曲线上表现为拐点电压U明显降低,据此初步判断CT二次绕组有异常。

五、10%误差校核

电流互感器的变比误差除了与互感器本身的特性有关外,还和互感器二次负载阻抗有关;一般对误差要求的继电保护要求互感器的一次电流等于最大短路电流时,其变比误差应小于10%,校核时在互感器伏安特性曲线上在拐点处做一线性延长线,在横轴找到一个电流I1b,自I1b点作垂线与曲线分别交于B、A点,且BA=0.1I1b,如果电流互感器一次电流I1I1b,其变比误差就大于10%。

为了便于计算,制造厂家对电流互感器提供了在M10(10%误差曲线)下允许的二次负载阻抗Zen,当我们已知M10(最大短路一次电流)时,从10%误差曲线上可以很方便地得出允许的负载阻抗,如果它大于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止.当然,也可以在已知实际负载阻抗后,在该曲线上求出允许的M10(最大短路一次电流),用以与流经电流互感器一次绕组的最大短路电流作比较, 如果它小于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止。

以上针对新安装互感器的特性误差检查,若是进行保护装置改造, 互感器不动,可只进行新旧装置的实际的负载阻抗比较,若新装置小于或等于旧装置实际的负载阻抗,则互感器的特性误差肯定满足要求,否则,需进一步以以上方法进行校核。

2020届高三高考物理复习专题突破:描绘小电珠的伏安特性曲线

描绘小电珠的伏安特性曲线 1.小张和小明测绘标有“3.8 V 0.4 A”小灯泡的伏安特性曲线,提供的实验器材有: A.电源E (4 V,内阻约0.4 Ω) B.电压表V(2 V,内阻为2 kΩ) C.电流表A(0.6 A,内阻约0.3 Ω) D.滑动变阻器R(0~10 Ω) E.三个定值电阻(R1=1 kΩ,R2=2 kΩ,R3=5 kΩ) F.开关及导线若干 (1)小明研究后发现,电压表的量程不能满足实验要求,为了完成测量,他将电压表进行了改装.在给定的定值电阻中选用________(选填“R1”“R2”或“R3”)与电压表________(选填“串联”或“并联”),完成改装. (2)小张选好器材后,按照该实验要求连接电路,如图所示(图中电压表已经过改装).闭合开关前,小明发现电路中存在两处不恰当的地方,分别是:①__________;②__________. (3)正确连接电路后,闭合开关,移动滑动变阻器的滑片P,电压表和电流表的示数改变,但均不能变为零.由此可以推断电路中发生的故障可能是导线________(选填图中表示导线的序号)出现了________(选填“短路”或“断路”).2.(2019·广西柳州高级中学模拟)在描绘小灯泡的伏安特性曲线的实验中,已知待测小灯泡的额定电压6 V, 额定功率约为3 W,提供的器材有: 电流表A:量程为0.6 A,内阻约为0.5 Ω; 电压表V:量程为3 V,内阻为3 kΩ; 滑动变阻器R1(0~10 Ω,2 A); 滑动变阻器R2(0~500 Ω,1 A); 定值电阻R3=1 kΩ; 定值电阻R4=3 kΩ; 电源:电动势为9 V,内阻约为0.1 Ω; 开关一个,导线若干. (1)实验中,应该选用的滑动变阻器是________,定值电阻是________(填仪器的字母代号). (2)根据所给的器材,在虚线框中画出实验电路图.

电流互感器检测报告

编号:DY-GY-01-CF-0101 干式固体结构电流互感器试验报告设备名称001 1BBA01 #1发电机出线 1.设备参数 型号LZZBJ9-12/175b/4 短时热电流31.5/4 kA/s 额定动稳定电流80 kA 额定绝缘水平值 E 二次绕组1S1-1S2 2S1-2S2 3S1-3S2 / 准确等级5P30 5P30 0.2S / 额定容量(VA) 20 20 20 / 变比1000/1 1000/1 1000/1 / 相别A相B相C相 产品编号170400559 170400558 170400555 制造厂中国大连第一互感器有限公司出厂日期2017.04 2.试验依据 GB 50150-2016 电气装置安装工程电气设备交接试验标准 3.绕组的绝缘电阻及交流耐压试验 测试绕组 出厂耐 压值 (kV) 耐压 值 (kV) 耐压 时间 (min) A相(MΩ)B相(MΩ)C相(MΩ) 耐压前耐压后耐压前耐压前耐压后耐压前一次绕组对二次绕组、末 屏及外壳 / 33 1 6430 5370 5230489052804980一次绕组间/ / / / / / / / / 1S1-1S2对2S1-2S2、 3S1-3S2、4S1-4S2及地 / 2 1 1670 1520 16901580 1590 1890 2S1-2S2对1S1-1S2、 3S1-3S2、4S1-4S2及地 / 2 1 1580 1670 14801350 1460 1570 3S1-3S2对1S1-1S2、 2S1-2S2、4S1-4S2及地 / 2 1 1690 1590 15701470 1540 1680 4S1-4S2对1S1-1S2、 2S1-2S2、3S1-3S2及地 / / / / / / / / / 末屏对二次绕组及地/ / / / / / / / / 备注二次绕组回路耐压采用 2500V 兆欧表代替,试验持续时间为 1min 试验环境环境温度: 34 ℃,湿度:45%RH 试验设备FLUKE1550C 电动兆欧表/量程(250V-5000V); FBG-6kVA/50kV 试验变压器(含操作箱) 试验人员试验日期年月日4.测量绕组直流电阻 相别A相B相C相最大差值(%)一次绕组(μΩ)53.5 53.9 53.6 0.75

如何计算电流互感器的饱和点

如何计算电流互感器的饱和点 点击次数:380 发布时间:2010-3-14 10:22:10 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及 参数选择的建议。

2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互感器在额定负荷下的二次极限电动势E s=(ALF)· I sn·(R ct+R bn),此时综合误差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限

电流互感器饱和度计算

电流互感器饱和计算: 估算,当一次侧电流达到电流互感器额定电流的10倍时,保护用电流互感器就认为饱和了。 电流互感器的暂态饱和及应用计算 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及参数选择的建议。 2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互 感器在额定负荷下的二次极限电动势E s =(ALF)· I sn ·(R ct +R bn ),此时综合误 差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF 与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限值的条件下,适当提高ALF的可用值。但应指出,对于某些不符合低漏磁要求的互感器,如U型电流互感器、一次多匝的互感器等,在一次短路电流倍数超过ALF时,由于铁心局部饱和可能引起二次极限电动势降低,不能在降低二次负荷时,按反比提高ALF。有些制造厂提供的

二极管伏安特性曲线

模拟电子技术课程设计 本文档只需通过world文档繁转简工具,即可以把它 转化成简体字。 二極體伏安特性曲線的研究 一、設計目的 電路中有各種電學元件,如晶體二極管和三極管,光敏和熱敏元件等。人們通常需要瞭解它們的伏安特性,以便正確的選用它們。通常以典雅為橫坐標,電流為縱坐標作出元件的電壓——電流關係曲線,叫做該元件的伏安特性曲線。該設計通過測量二極體的伏安特性曲線,瞭解二極體的導電性的實質,使我們在設計電路時能夠準確的選擇二極體。 二、設計原理 1、二極體的伏安特性 (1)二極體的伏安特性方程為: 式中,Is為反向飽和電流,室溫下為常數;u為加在二極體兩端電壓;UT 為溫度的電壓當量,當溫度為室溫27℃時,UT≈26mV。 當PN結正向偏置時,若u≥UT,則上式可簡化為:IF≈ISeu/UT。 當PN結反向偏置時,若︱u︱≥UT,則上式可簡化為:IR≈-IS。可知- IS 與反向電壓大小基本無關,且IR越小表明二極體的反向性能越好。 對二極體施加正向偏置電壓時,則二極體中就有正向電流通過,隨著正向偏置電壓的增加,開始時,電流隨電壓變化很緩慢,而當正向偏置電壓增至接近其

導通電壓時,電流急劇增加,二極體導通後,電壓少許變化,電流的變化都很大。 對上述二種器件施加反向偏置電壓時,二極體處於截止狀態,其反向電壓增加至該二極體的擊穿電壓時,電流猛增,二極體被擊穿,在二極體使用中應竭力避免出現擊穿觀察,這很容易造成二極體的永久性損壞。所以在做二極體反向特性時,應串入限流電阻,以防因反向電流過大而損壞二極體。 二極體伏安特性示意圖1、2所示。 圖1鍺二極體伏安特性圖2矽二極體伏安特性 2、二極體的伏安特性曲線 下面我們以鍺管為例具體分析,其特性曲線如圖3所示,分為三部分: 圖3 半導體二極體(矽管)伏安特性

2020届高考物理 实验专题:描绘小灯泡的伏安特性曲线

2020高考物理实验专题:描绘小灯泡的伏安特性曲线 1.在伏安法测电阻的实验中,待测电阻R x约为200 Ω,电压表 V的内阻约为2 kΩ,电流表A的内阻约为10 Ω,测量电路 中电流表的连接方式如图甲或乙所示,结果由公式R x=U I计 算得出,式中U与I分别为电压表和电流表的读数;若将图甲和图乙中电路测得的电阻值分别记为R x1和R x2,则________(填“R x1”或“R x2”)更接近待测电阻的真实值,且测量值R x1______(填“大于”“等于”或“小于”)真实值,测量值R x2________(填“大于”“等于”或“小于”)真实值。 答案R x1大于小于 2.在“描绘小灯泡的伏安特性曲线”的实验中,某同学测得电 流—电压的数据如下表所示: (1)用上表数据描绘电压随电流的变化曲线。

(2)为了探究灯丝电阻与温度的关系,已作出电阻随电流的变化曲线如图所示;请指出图线的特征,并解释形成的原因。 答案(1)如图所示

(2)电阻随电流增大存在三个区间,电阻随电流的变化快慢不同。第一区间电流很小时,电阻变化不大;第二区间灯丝温度升高快,电阻增大快;第三区间部分电能转化为光能,灯丝温度升高变慢,电阻增大也变慢。 3.某学习小组欲探究小灯泡(“3 V、1.5 W”)的伏安特性,可提 供的实验器材如下: A.电池组:电动势约4.5 V,内阻可不计; B.双量程的电压表:V1:量程为0~3 V、内阻约为3 kΩ;V2:量程为0~15 V、内阻约为15 kΩ C.双量程的电流表:A1:量程为0~0.6 A、内阻约为1 Ω;A2:量程为0~3 A、内阻约为0.1 Ω D.滑动变阻器R:阻值范围为0~10 Ω、允许通过的最大电流为2 A; E.开关S,导线若干。 在尽量提高测量精度的情况下,请回答下列问题: (1)根据以上器材,用笔画线代替导线将图甲中的实物图连接成完整电路。 (2)闭合开关前,滑动变阻器的滑片应移到________(填“A”或“B”)端。

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验 阿德 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 试验接线如图所示: SVERKER650 二次 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。) 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。 三注意事项 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。 3.电流表宜采用内接法。 4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。 四典型U-I特性曲线

电流互感器基础知识

电流互感器的基本原理 1.1 电流互感器的基本等值电路如图1所示. 图1 电流互感器基本等值电路 图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流,,Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组 电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗 电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电 流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一 次电流之比等于一次绕组与二次绕组匝数比。 即:IpN1=IsN2 Is=Ip×N1/N2=Ip/Kn 1.2. 电流互感器极性标注 电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。 由于电流方向相反,且铁心中合成磁通为零。因此得下式: N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。 推出:Is=N1/N2*Ip 可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。这正是减极性标注的优点。 1.3. 电流互感器的误差 在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以在图1中看到。实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

伏安特性曲线

(一)线性电阻的伏安特性曲线 由图可知,伏安特性曲线的斜率为0.9944,故实验测得线性电阻阻值为1/994.4=1005.6Ω。 实际电阻的标称值为1000Ω,相对误差为E=(|1000-1005.6|/1000)*100%=0.56%。 误差原因:实验中采用电流表内接法,电压表的读数包括了电流表的压降,因此计算所得电阻为电流表内阻和线性电阻之和,偏大。 (二)半导体二极管伏安特性曲线 1、正向特性 U/V 2.0 4.0 6.0 8.0 10.0 I/mA 1.992 3.976 5.956 7.953 9.947 U/V 0.20 0.40 0.60 0.62 0.64 0.66 0.68 0.70 I/mA 0.004 0.004 0.013 0.023 0.042 0.084 0.173 0.359

2、反向特性 U/V 2.00 4.00 6.00 6.20 6.40 6.60 6.80 I/mA 0.004 0.004 0.004 0.004 0.004 0.004 8.034 (三)理想电压源伏安特性曲线 I/mA 10.0 20.0 30.0 40.0 50.0 U/V 10.032 10.032 10.031 10.030 10.030

(四)实际电压源伏安特性曲线 I/mA 10.0 20.0 30.0 40.0 50.0 U/V 9.406 8.853 8.545 7.842 7.421 由公式U=Us-IRs,伏安特性曲线的斜率为电源内阻,可求得实际电源内阻49.8Ω. 实验中,实际内阻为51.2Ω,相对误差为E=|51.2-51|/51*100%=0.39%。 误差原因:实验中采用电流表外接法,电流表的读数包括了电压表中的电流,因此,根据公式U=Us-IRs计算所得电阻值偏小。

伏安特性曲线

对“测绘小灯泡伏安特性曲线”实验的再认识 湖北省十堰市郧县第一中学魏自成 442500 本实验主要是让学生掌握如何根据测量对象确定器材规格和量程,如何设计实验电路;怎样描绘曲线,分析实验误差,总结物理规律等一些目的,达到一石多鸟的效果。实验设计理念阐述地自然流畅,在实验方案中,对电表量程,电流表内外接法的确定,滑动变阻器的连接方式,滑片起始位置及滑动方向,都了做了详尽的解释说明,误差分析也很全面,非常完美,是一个理想的样板实验,示范作用强,对培养学生的实验能力大有帮助,然而本人觉得还可以再做一点儿补充说明和改变。 第一部分补充释疑 1、为什么不用电池组而选用学生电源? 学生电源是稳压电源,电路接入确定的电压档位后,路端电压不随外电路发生改变。若选定“3A”直流输出,总电流不会超3A,而电池组受电源内阻的影响,路端电压不稳定,波动幅度大,电池个数少,灯泡不能正常发光,个数较多,若操作不慎或失误,存在烧毁灯泡的可能,一旦出现短路,极易损坏电源,安全性不够。另外,该实验记录数据多,耗时长,电池组电动势下降显著,电路稳定性不足。 2、为什么不谈通电时间长短和电流的大小的影响? 该实验不同于金属电阻率的测定,电阻率测定对象是某一温度下的定值电阻,若电路中电流大,时间长,测量对象因发热而温度升高,电阻变大,不符合实验要求,为了使其电阻不变或变化微弱,就要通过控制电流来实现。灯泡伏安特性曲线实验的探究对象正是不同温度下的灯丝电阻,而电流大小,通电

时间长短就决定着灯丝的温度,所以在额定电流范围内,对电流没有限制。 3、为什么灯泡发光前和接近正常发光时,曲线近似呈线性? 当灯泡处于低电压,弱电流状态时,灯丝发热功率小,散热快,温度基本不变,电阻变化微弱;当灯泡在接近额定工作状态时,灯丝热功率大,产生的热量多,与环境温差加大,散热更快,达到动态的产、出平衡,温度也基本不变,电阻不变,故两个状态下,曲线均近似呈线性。 第二部分更换部分器材,借助计算机绘图进一步减小误差。 1、为减小指针式电表灵敏度低引起的误差和读数时的偶然误差,可以用电 压、电流传感器代替并与计算机相连。这样具有三个优点,首先提高了测量精度,其次避免了读数误差,再次还可以解决一个常被人们忽视的问题——在测量过程中,电压、电流的读数和记录总是有先后的,而灯丝处于持续通电状态,不同时刻,温度往往不同,故电阻也不同,先测量的电流(电压)值与后测量的电压值(电流)不对应同一电阻,实验中却把它们一起做为一组(U,I)值强加于同一电阻,利用计算机方便快捷的特点,可同时读取数据,真正实现(U,V)同步,进一步减小误差。 2、用Excel图表功能描绘伏安特性曲线,减小人工绘图不准造成的偶然误 差。 依下列数据为例说明如何用Excel图表功能描绘伏安特性曲线。

电流互感器知识整理

电流互感器知识整理 电流互感器知识简介 为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的高电压和大电流按比例变换成低电压和小电流,供给测量仪表和保护装置使用.执行这些变换任务的设备,最 常见的就是我们通常所说的互感器.进行电压转换的是电压互感器(voltagetransformer),而进行电流转换的互感器为电流互感器(currenttransformer),简称为CT.本文将讨论电流互感器的相关基本知识. 1.电流互感器的基本原理 1.1电流互感器的基本等值电路如图1所示. 图1电流互感器基本等值电路 图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流, Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N 1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗. 电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产 生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。 即:IpN1=IsN2 Is=Ip×N1/N2=Ip/Kn 1.2.电流互感器极性标注 电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。 由于电流方向相反,且铁心中合成磁通为零。因此得下式: N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。 推出:Is=N1/N2*Ip 可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。这正是减极性标注的优点。 1.3.电流互感器的误差 在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以在图1中看到。实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁电流,即建立磁场所需

2018届高考物理二轮复习描绘小灯泡伏安特性曲线实验专题卷

100考点最新模拟题千题精练13- 3 1.(2017全国理综I)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8V,额定电流0.32A):电压表V(量程3V,内阻3kΩ);电流表A(量程0.5A,内阻R(阻值1000Ω);滑动变阻器R(阻值0~9.0Ω);电源E(电动势5V,0.5Ω);固定电阻 内阻不计);开关S;导线若干。 (1)实验要求能够实现在0~3V的范围内对小灯泡的电压进行测量,画出实验电路原理图。(2)实验测得小灯泡伏安特性曲线如图(a)所示。 (1)由实验曲线可知,随着电流的增加小灯泡的电阻________(填“增大”“不变”或“减小”),灯丝的电阻率______(填“增大”“不变”或“减小”)。 E(电动势4V,内阻1.00Ω)和题给器材连接成图(b)所示的电路。(2)用另一电源 调节滑动变阻器R的阻值,可以改变小灯泡的实际功率。闭合开关S,在R的变化范围内,小灯泡的最小功率为_____W,最大功率为_______W.(结果均保留两位小数) 【参考答案】(1)电路如图。(4分)

(2)增大(1分)增大(1分) (3)0.39W,(2分)1.17W(2分) E(电动势4V,内阻1.00 )当滑动变阻器接入电路中的电阻为零时,在图(a)中画出电源 的伏安特性曲线,如图中曲线II所示,与小灯泡伏安特性曲线的交点即为电路工作点,该点纵横坐标值的乘积等于小灯泡的最大功率,最大功率为P max=UI=3.62×0.318=1.17W。 2.(2017广西五市考前联考)在“描绘小灯泡的伏安特性曲线”的实验中,需测量一个标

高考物理最新模拟题精选训练(电学实验)专题02 描绘小灯泡伏安特性曲线(含解析)

专题02 描绘小灯泡伏安特性曲线 1.(2017河南部分重点中学联考)二极管是一种半导体元件,它的符号为其特点是具有单向导电性,即电流从正极流入时电阻比较小,而从负极流入时电阻比较大 (1)某课外兴趣小组想要描绘某种晶体二极管的伏安特性曲线,因二极管外壳所印的标识模糊,为判断该二极管的正、负极,他们用多用电表电阻挡测二极管的正、反向电阻;其步骤是:将选择开关旋至合适倍率,进行欧姆调零,将黑表笔接触二极管的左端,红表笔接触右端时,指针偏角比较小;然后将红、黑表笔位置对调后再进行测量,指针偏角比较大,由此判断右端为二极管的正极(选填“左”、“右”); (2)厂家提供的伏安特性曲线如图;为了验证厂家提供的数据,该小组对加反向电压时的伏安特性曲线进行了描绘,可选用的器材有: A.直流电源E:电动势5V,内阻忽略不计; B.直流电源E:电动势7V,内阻忽略不计; C.滑动变阻器R:0﹣20Q; D.电压表V1:量程45V,内阻约500kΩ; E.电压表V2:量程3V,内阻约20kΩ; F.电流表uA:量程300uA,内阻约400a; G.电流表mA:量程50mA,内阻约5Ω; H.待测二极管D; I.单刀单掷开关H,导线若干 ①为了提高测量结果的准确度,选用的器材BCDFHI (填序号字母) ②为了达到测量目的,请在答题卡上虚线框内画出正确的实验电路原理图;(图在答题卡上) ③为了保护二极管,反向电压不要达到40V,请你对本实验的设计或操作提出一条合理的建议:在二极管支路串入一阻值合适的分压电阻起保护作用..

【参考答案】(1)右;(2)①BCDFHI;②电路如图;③在二极管支路串入一阻值合适的分压电阻起保护作用. 2.(9分)(2017成都一模)在“描绘小灯泡的伏安特性曲线”的实验中,除小灯泡L“3.8 V、0.3 A”外,可供选择的实验仪器如下: A.电压表V:量程0~3 V,内阻约6 kΩ, B.电流表A1:量程0—4 mA,内阻100 Ω C.电流表A2:量程0—300 mA,内阻约5 Ω D.滑动变阻器R1:最大阻值10 Ω,额定电流l .0A

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V 和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2 表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、

L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2 表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如 果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是 两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。

电压电流互感器的试验方法(完整资料).doc

【最新整理,下载后即可编辑】 电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中

的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。

电流互感器基础知识

转自:时间:2008年9月3日9:2 1. 电流互感器的基本原理 1.1 电流互感器的基本等值电路如图1所示. 图1 电流互感器基本等值电路 图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流, Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N1,Xct—二次绕组电 抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导 线),Ze—励磁阻抗. 电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电 流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流. 此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两 侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。 即:IpN1=IsN2 Is=Ip×N1/N2=Ip/Kn 1.2. 电流互感器极性标注 电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它 们在铁芯中产生的磁通方向相同。当从一次绕组的极性端通入电流时,二次绕组中感应出的电流 从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。 由于电流方向相反,且铁心中合成磁通为零。因此得下式: N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端 不同,因此两者为减的关系)。 推出:Is=N1/N2*Ip 可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考

伏安特性曲线在解题中的运用

伏安特性曲线在解题中的运用 专业:综合理科教育学号:201003113018 姓名:卢小凡指导教师:冯春杰 摘要 图像能形象地表达物理规律,能直观地描述物理过程,能鲜明地表示物理量之间的关系及变化趋势,伏安特性曲线图的特点是形象、直观、鲜明。伏安特性曲线常用纵坐标表示电流I、横坐标表示电压U,以I-U图像叫做导体的伏安特性曲线图。这种图像是物理学中常用的图像法之一。是物理学中用来解决物理问题的一种方法及手段。由于在物理学中的广泛运用。本文认为,伏安特性曲线在科学理论和实践的基础上,大大的简化了解题中的困难。 关键词:伏安特性曲线解题过程运用

目录 摘要 (1) 1前言 (4) 2影响伏安特性曲线的因素 (5) 3伏安特性曲线的适用范围 (6) 4分析伏安特性曲线的优缺点 (7) 5伏安特性曲线在解题中的运用 (8) 5.1伏安特性曲线在二极管中的运用 (8) 5.2伏安特性曲线在电路中的运用 (10) 5.3伏安特性曲线在PN结中的运用 (10) 6结论 (13) 参考文献 (14) 致谢 (15)

1.前言 1.前言 伏安特性曲线常用纵坐标表示电流I、横坐标表示电压U,以此画出的I-U 图像叫做伏安特性曲线图。它是物理学常用的图像法之一。它有着广泛的应用,特别是用在解题中有着极其重要的意义。在物理学中它不仅运用在解决二极管、PN结中的问题(如:模电问题)。而且还用于解决电路中等多方面的问题。伏安特性曲线是图像方法之一,图像在中学物理中应用十分广泛[1],是分析解决物理问题的一种有效手段,许多时候运用伏安特性曲线解题可大大简化解题过程,使某些难题迎刃而解,以达到事半功倍的目的[2]。 从初中开始一直到大学都学习物理学中相关的知识,起初自己一直对物理这一门学科充满好奇心听别人说学起来很有趣。但是后来自己再怎么努力还是学不好物理,但是自己从来没有放弃对它的学习。可能是和物理有缘吧!大学物理学成为我的专业知识。经过自己的努力,物理逐渐学好啦!因而更激起我学习的欲望。在学习的过程中,我就对伏安特性曲线有了兴趣因为发现它在解决物理学中的相关问题都有着广泛的运用。

相关主题
文本预览
相关文档 最新文档