当前位置:文档之家› 函数分段点可导性的一个定理及应用

函数分段点可导性的一个定理及应用

函数分段点可导性的一个定理及应用
函数分段点可导性的一个定理及应用

分段函数分段点可导性的一个定理及应用

作者:JIANG Hai-qin, 曹瑞成, JIANG Hai-qin, CAO Rui-cheng

作者单位:扬州职业大学,江苏,扬州,225009

刊名:

扬州职业大学学报

英文刊名:JOURNAL OF YANGZHOU POLYTECHNIC COLLEGE

年,卷(期):2008,12(2)

被引用次数:1次

参考文献(4条)

1.张红梅支持向量机方法及其在电力系统中的应用[期刊论文]-扬州职业大学学报 2007(02)

2.张隆辉.魏国祥函数在一点可导性与在该点附近的导数的关系[期刊论文]-楚雄师范学院学报 2007(06)

3.汪维红探究分段函数的导数[期刊论文]-绥化师专学报 2004(02)

4.何彦力分段函数分段点的有关讨论及证明 1999(03)

相似文献(10条)

1.期刊论文曾艳妮分段函数在连续的分界点处可导性的另一种判定-湖北大学成人教育学院学报2005,23(5)

通常我们讨论分段函数在分界点处的可导性是通过定义(即函数在某点的左、右导数存在且相等则函数在该点可导)来讨论,本文则用分段求导的方法讨论分段函数在连续的分界点处的可导性,并且用拉格朗日中值定理证明了这种方法的正确性.事实证明用此方法比用定义法将更简单.

2.期刊论文赵芳玲分段函数可导性的一种简便判别法-西安航空技术高等专科学校学报2003,21(3)

分段函数的可导性问题是高等数学理论中的一个重点和难点,学生在平时的学习中不易掌握,本文介绍一种简单判别分段函数在分段点处的可导性的方法.

3.期刊论文程延.Chen Yan谈分段函数的可导性-新疆职工大学学报2000,8(3)

本文给出了分段函数可导性的判别方法,以及分段函数在定义或分界点处可导与不可导的几何解释.

4.期刊论文金友良关于分段函数在分界点处的可导性判定-成都教育学院学报2003,17(7)

介绍判断分段函数在分界点处可导性的一种简便方法.

5.期刊论文李天胜分段函数的连续可导性-高等数学研究2006,9(5)

讨论了分段函数的连续可导性,得到了一个分段函数具有任意阶导数的充分条件,并介绍了一个求分段函数在其分段点处n阶导数的公式

6.期刊论文李华凤.康淑卫分段函数的应用-张家口农专学报2003,19(2)

阐述了分段函数在作图、复合、连续性、可导性及积分中应注意的几个问题.

7.期刊论文叶鉴樱分段函数在高等数学教学中的几类问题-咸宁师专学报2002,22(6)

就函数的定义,函数的连续性,可导性及微分的应用几方面讨论了分段函数在高等数学学习中的重要性,并强调了在高等数学的学习中一定要认真学习概念,掌握其问题的实质.

8.期刊论文周秀君.周天刚分段函数可导性的判别方法-牡丹江教育学院学报2008,""(4)

提出了分段函数在分段点可导的简便判别方法.

9.期刊论文赵邦杰.郭瑞海对分段函数在分段点的极限、连续、可导性的研究-西南民族大学学报(自然科学版) 2003,29(4)

通过对分段函数在分段点性态的讨论,指出了分段函数在帮助学生理解高等数学一些基本慨念的作用.给出了在一定条件下,用导函数在该点的极限判定该点导数是否存在的方法.

10.期刊论文曾昭华分段函数在分段点处的可导性研究-渝西学院学报(自然科学版)2004,3(3)

通过几个实例对分段函数在分段点处是否可导、如何求分段点处的导数进行了分类讨论,从中总结了几个结论.

引证文献(1条)

1.贠小青.于颖关于分段函数在分段点处的导数的教学[期刊论文]-科技信息 2009(2)

本文链接:https://www.doczj.com/doc/7d8492039.html,/Periodical_yzzydxxb200802012.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:865ff9cf-0a9b-450d-92d3-9dcb016dc25f

下载时间:2010年8月7日

分段函数的单调性1(含答案)

分段函数单调性 1.设函数若f(a)=a,则实数a的值为() A.±1 B.﹣1 C.﹣2或﹣1 D.±1或﹣2 2.已知函数f(x)=是定义域上的单调函数,则a的取值 范围是() A.(1,+∞)B.[2,+∞)C.(1,2) D.(1,2] 3.已知函数在(﹣∞,+∞)上单调递减,则a的取值范围是() A.(0,1) B.(0,)C.D. 4.若函数f(x)=是R上的单调函数,则实数a的取值范围是() A.[0,2) B. C.[1,2]D.[0,1] 5.已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围 是() A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞) 6.已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是() A.(0,3) B.(1,3) C.(1,+∞)D.

7.设a>0且a≠1,若f(x)=为一分段函数,且在R上为增函 数,则实数a的取值范围. 8.若函数y=,则函数的单调增区间为. 分段函数单调性答案 1.设函数若f(a)=a,则实数a的值为() A.±1 B.﹣1 C.﹣2或﹣1 D.±1或﹣2 【解答】解:由题意知,f(a)=a; 当a≥0时,有,解得a=﹣2,(不满足条件,舍去); 当a<0时,有,解得a=1(不满足条件,舍去)或a=﹣1. 所以实数a 的值是:a=﹣1. 故选B. 2.已知函数f(x)=是定义域上的单调函数,则a的取值 范围是() A.(1,+∞)B.[2,+∞)C.(1,2) D.(1,2] 【解答】解:因为f(x)是定义域R上的单调函数,所以a应满足: ,解得:1<a≤2,故选D. 3.已知函数在(﹣∞,+∞)上单调递减,则a的取值范围是() A.(0,1) B.(0,)C.D. 【解答】解:由已知,f1(x)=(2a﹣1)x+7a﹣2在(﹣∞,1)上单减,∴2a

闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

30分段函数单调性问题

专题30、分段函数单调性 【例1】已知函数(2)1,1()log ,1a a x x f x x x --≤?=?>?,若()f x 在(,)-∞+∞单调递增,则实数的取值范围是_________ 【答案】(2,3] 【解析】若()f x 在(,)-∞+∞单调递增,则在R 上任取12x x <,均有12()()f x f x <,在任取中就包含12,x x 均在同一段取值的情况,所以可得要想在R 上单调增,起码每一段的解析式也应当是单调 递增的,由此可得 201a a ->??>? ,但仅仅满足这个条件是不够的。还有一种取值可能为12,x x 不在同一段取值,若也满足12x x <,均有12()()f x f x <,通过作图可发现需要左边函数的最大值不大于右边函数的最小值,代入1x =,有左段右端,即21log 103a a a --≤=?≤,综上所述可得(2,3]a ∈。 【例2】已知函数2,1()2ln ,1 x e ax x f x a x x ?-≤=?+>?在定义域(,)-∞+∞上是单调增函数,则实数a 的取值范围 是( ) .,2e A ??-∞ ??? .,3e B ??+∞???? .,32e e C ?????? .(,)32e e D 【答案】C 【解析】由于函数2,1()2ln ,1 x e ax x f x a x x ?-≤=?+>?在定义域(,)-∞+∞上是单调增函数,2a e a ≥-,解得 a ≤

【例6】已知函数()1()1,22 x f x x =?-

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

分段函数单调性及其应用

分段函数单调性及其应用 基本理论 函数???>≤=a x x f a x x f x f ),(,),()(2 1在R 上单调递增,则)(x f 满足两个条件: (1) )(1x f 在],(a -∞上单调递增,)(2x f 在),(+∞a 上单调递增; (2) ).()(21a f a f ≤ 数学应用 1.(直接应用)已知???≥<+-=1,log ,1,4)13()(x x x a x a x f a 是),(+∞-∞上的减函数,则a 的取值范围是________________. 变式拓展:1.1若函数x a x x x f 2)(+-=在R 上单调递增,求实数a 的取值范围. 1.2已知函数.,1)(2R a a x x x f ∈+-+=求)(x f 得最小值.

2(从反方向角度考查) 设???>-≤+-=, 1,1,1,)(2x ax x ax x x f 若存在2121,,x x R x x ≠∈,使得)()(21x f x f =成立,求实数a 的取值范围. 3(从数列问题函数化角度考查) 设数列)(7, ,7,4)2(*N n n a n n n a a n ∈?? ?<+≥++-=是递增数列,则实数a 的取值范围是_______________. 4.(从“间断点”处回归函数考查) 已知函数)(0,)3()4(,0),1()(22222R a x a x a a x x a k x k x f ∈?????<-+-+≥-+=.若对任意的非零实数1x ,都存在唯一的非零实数2x ,使得)()(21x f x f =成立,求实数k 的取值范围.

高中数学-分段函数的几种常见题型及解法

分段函数常见题型及解法 【解析】 3 ?求分段函数的最值 4x 3 (x 0) 例3?求函数f(x) x 3 (0 x 1)的最大值 x 5 (x 1) 分段函数是指自变量在两个或两个以上不同的范围内 有不同的对应法则的函数 它是一个函数,却又常常被学生误认为是几个函数 ;它的定义域是各段函数定义域的并 集,其值域也是各段函数值域的并集 ?由于它在理解和掌握函数的定义、函数的性质等知 识的程度的考察上有较好的作用 ,时常在高考试题中“闪亮”登场,笔者就几种具体的题 型做了一些思考,解析如下: 1 ?求分段函数的定义域和值域 例1.求函数f(x) 值域? 【解析】 2x 2 x [ 1,0]; 1 x x (0,2);的定义域、 3 x [2,); 作图, 利用“数形结合”易知f (x)的定义域为 [1,),值域为(1,3]. 2 ?求分段函数的函数值 |x 1| 2,(|x| 例2 . ( 05年浙江理)已知函数 f(x) 1 1 x 2 (|x| 1) 1) 求f[? 因为 f(i) 11 1| 2 所以 f[f(b] f( 1 4 1 ( i) 2 13

【解析】当 X 0 时,f max (X ) f(0) 3,当 0 X 1 时,f max (X ) f(1) 4, 当 X 1 时, X 5 15 4,综上有 f max (x) 4. 4 ?求分段函数的解析式 例4 .在同一平面直角坐标系中,函数y f (X )和y g(X )的图象关于直线 y X 对 称,现将y g(x)的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得 的图象是由两条线段组成的折线(如图所示) ,则函数f (x)的表达式为() 5 ?作分段函数的图像 例5?函数y e IM |X 1|的图像大致是() 2x 2 (1 X 0) A. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 0) B. f(x) 2 X 2 (0 X 2) 2x 2 (1 X 2) C. f(x) X 2 1 ( 2 X 4) 2x 6 (1 X 2) D. f(x) X 2 3 (2 X 4) 【解析】 将其图象沿X 轴向右平移2个单位, 再沿y 轴向下 平移 1 个单位 得解析式为y 今(x 2) 1 1 4 1 f(x) 2x 2 (x [ 1,0]),当 x [0,1]时, y 2x 1,将其图象沿x 轴向右平移2 个单位,再沿y 轴向下平移 1个单位, 得解析式y 2(x 2) 1 1 2x 4, 所以 f(x) 2x 2 (x [0,2]) 综上可得f(x) 2x 2 ( 1 x 0) ■2 2 (0 x 2) 故选A 当 X [ 2,0]时,y 1 x 1

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

分段函数练习题

1、分段函数 1、已知函数)(x f =267,0,100,, x x x x x ++<≥????? ,则 )1()0(-+f f =( ) A . 9 B . 71 10 C . 3 D . 1110 提示:本题考查分段函数的求值,注意分段函数分段求。 解析:0代入第二个式子,-1代入第一个式子,解得)1()0(-+f f =3,故正确答案为C. 90 2、函数||x y x x =+的图象为下图中的( ) 提示:分段函数分段画图。 解析:此题中x ≠0,当x>0时,y=x+1,当x<0时,y=x-1, 故正确答案为C. 120 3、下列各组函数表示同一函数的是( ) ①f(x)=|x|,g(x)=???<-≥) 0()0(x x x x ②f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2 ④f(x)=1122-+-x x ,g(x)=0 ,x ∈{-1,1} A.①③ B.① C.②④ D.①④ 提示:考察是否是同一函数即考察函数的三要素:定义域、值域、对应关系,此题应注意分段函数分段解决。 解析:此题中①③正确,故正确答案为A. 120 4、设()1232,2()log 1,2 x e x f x x x -?

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

分段函数连续性讨论书写格式

讨论分段函数在分段点的连续性与可导性涉及分段函数概念、连续概念、导数概念,既是重点,又是难点。建议同学们认真模仿以下3道题的解答过程,注意讨论的函数是整个分段函数()f x ,而不是其中的某段函数(以下解答中标红的不要省了);务必精准写出连续、导数定义;答题过程较长时最后要加以总结. 例1:讨论20,1,()0 1,x x e f x x ≠?-=?=?在0x =的连续性与可导性. 解: (0)1f =. 020 li l m im (1)()0x x x f x e →→=-=. 因0 lim ()(0)x f x f →=,故 ()f x 在0x =不连续,从而也不可导. 例2:讨论20,1,()0sin , x x e f x x x ≤?-=?>?在0x =的连续性与可导性. 解:先讨论连续性. (0)0f =. 因020li l m(1im )0()x x x f x e --→→=-=,且00 lim l s i m ()n 0i x x x f x ++→→==, 得0 lim ()0x f x →=. 因0 lim ()(0)x f x f →=,故 ()f x 在0x =连续. 再讨论可导性. 因021()(0)(01lim )lim 02x x x f x f f x e x --→-→-'=--==, 但00sin l ()(0)(0)im l 1im x x f x f x f x x ++ +→→==-=', 得1()(0) (1)lim 0x f x f f x →-'=-不存在,故 ()f x 在0x =不可导. 总之, ()f x 在0x =连续,但不可导.

判断函数可导性的步骤【微积分】

《判断函数在x=x。处可导性的步骤》 利用知识:左右导数。 本人正读高中,知能浅薄,自行探究,若有疏漏请见谅。 【第一步】~~将原函数化成当x <x。与x>x。的"分段函数".(像y=x2这样,分段之后两个式子一样的也要写出来); 【第二步】~~将这两个式字都化成两个等价的、可用公式方便地求导的式子.(若原本很完美就省略这步); 【第三步】~~根据求导公式对每个式子进行求导。求导过程中,只着手式子,不用看定义域怎样。定义域照抄下来; 【第四步】 分类讨论···㈠若此时y′为常数,则比较y′左是否等于y′右······························?如果y′左=y′右=这个常数,则说y=f(x)在x=x。处可导····················?如果y′左≠y′右,则说y=f(x)在x=x。处不可导 ···㈡若此时y′为含x代数式,则看当把x=x。代入时有无意义··············?有意义,则代入x=x。后比较y′左与y′右·····①相同,可导②不相同,不可导···············?无意义,不可导。 【【例题演示】】 第一题 ··············判断y=|X|在x=0处是否可导.·············· 【第一步】y=|X|等价于y=-x x<0 y=x x>0 【第二步】省略 【第三步】y′=(|X|)′等价于y′左= -1 x<0 y′右= 1 x>0 【第四步】 其为常数,又由于两个常数不等,即左右导数不等,所以y=|X|在x=0处是否不可导。 第二题 ··············判断y=x2在x=0处是否可导····(X的平方)············ 【第一步】y=x2等价于 y=x2 x<0 y=x2 x>0

第2讲 分段函数及函数的单调性

第二讲 分段函数及函数的单调性 一.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论. 常见的命题类型有: (1)分段函数的函数求值问题; (2)分段函数的自变量求值问题; (3)分段函数与函数性质、方程、不等式问题. 二.函数的单调性 1.单调性的定义 自左向右看图象是 __________ 自左向右看图象是_________ 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)_______,区间D 叫做函数y =f (x )的___________. 2.函数的最值 题型一分段函数的函数求值(域)问题

1.已知函数f (x )=? ???? log 2x ,x >0,3x +1,x ≤0,则f ????f ????14的值是________. 2. 若函数f (x )= x 2+1,x ≤1lg x ,x >1,则f (f (10))=( ) A .lg101 B .2 C .1 D .0 3.设定义在N 上的函数f (x )满足f (n )=???-+)] 18([13 n f f n ),2000(),2000(>≤n n 试求f (2002)的值. 4.设函数f (x )=????? 1x , x >1, -x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________. 题型二 分段函数的自变量求值问题 1.已知f (x )=?? ? x 1 2 ,x ∈[0,+∞), |sin x |,x ∈??? ?-π2,0,若f (a )=1 2 ,则a =________. 2.已知函数f (x )=? ???? 2x -2,x ≤0, -log 3x ,x >0,且f (a )=-2,则f (7-a )=( ) A .-log 37 B .-34 C .-5 4 D .-7 4 3.已知函数f (x )=? ???? (a -1)x +1,x ≤1,a x -1,x >1,若f (1)=1 2,则f (3)=________. 题型三 分段函数与函数性质、方程、不等式问题. 1.已知函数f (x )=????? x 2 +2ax ,x ≥2, 2x +1,x <2, 若f (f (1))>3a 2,则a 的取值范围是________. 2.已知函数f (x )=?? ?<-≥-), 2(2 ), 2(2 x x x 则f (lg30-lg3)=___________________; 不等式xf (x -1)<10的解集是___________________. 题型四.常见函数的单调性 一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、正弦函数、余弦函数、正切函数的单调性、单调区间。 题型五.判定函数的调性 1.f(x)图像 如图所示,请写出f(x)的单调区间

函数的连续性复习--例题及解析

分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21)10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1==--→→x x f x x 11lim )(lim 1 1==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 21)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 00x f x f x f x x x x x x →→→+-=才存在. 函数的图象及连续性 例 已知函数2 4)(2+-=x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(l i m )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2-=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2-=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ???-=--≠+-=)2(4)2(24)(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根

分段函数与复合函数

分段函数 1.已知函数f (x )=232,1, ,1,x x x ax x +?=?≤?,则1(())9f f = A.4 B. 14 C.-4 D-14 【答案】B 【解析】根据分段函数可得311()log 299f ==-,则211(())(2)294 f f f -=-==, 所以B 正确. 3.定义在R 上的函数f(x )满足f(x)= ???>---≤-0 ),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( ) A.-1 B. 0 C.1 D. 2 【解析】:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-, (2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=, (4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1,故选C. 4.设函数2()2()g x x x R =-∈, ()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是 (A )9,0(1,)4??-?+∞???? (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4??-?+∞???? 【答案】D 【解析】本题主要考查函数分类函数值域的基本求法,属于难 题。 依题意知22222(4),2()2,2x x x x f x x x x x ?-++<-??--≥-??, 222,12()2,12 x x x f x x x x ?+<->??---≤≤??或 5.若函数f(x)=212 log ,0,log (),0x x x x >???-f(-a),则实数a 的取值范围是

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法 分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下: 1.求分段函数的定义域和值域 例1.求函数1222[1,0]; ()(0,2);3 [2,);x x f x x x x +∈-?? =-∈?? ∈+∞?的定义域、值域. 【解析】 作图, 利用“数形结合”易知()f x 的定义域为 [1,)-+∞, 值域为(1,3]-. 2.求分段函数的函数值 例2.(05年浙江理)已知函数2 |1|2,(||1) ()1,(||1)1x x f x x x --≤?? =?>?+?求12 [()]f f . 【解析】 因为311222()|1|2f =--=-, 所以3 12 22 3 2 14[()]()1() 13 f f f =-== +-. 3.求分段函数的最值 例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤?? =+<≤??-+>? 的最大值.

【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, m ax ()(1)4f x f ==, 当1x >时, 5154x -+<-+=, 综上有m ax ()4f x =. 4.求分段函数的解析式 例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( ) 222(10) .()2(02)x x x A f x x +-≤≤?=?+<≤? 222(10) .()2(02)x x x B f x x --≤≤?=?-<≤? 222(12) .()1(24)x x x C f x x -≤≤?=?+<≤? 2 26(12) .()3(24)x x x D f x x -≤≤?=?-<≤? 【解析】 当[2,0]x ∈-时, 1 2 1y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下 平移 1个单位, 得解析式为11 2 2 (2)111y x x = -+-= -, 所以 ()22 ( [f x x x = + ∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2 个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以 1 2 ()2([0,2])f x x x = +∈, 综上可得2 22(10) ()2(02)x x x f x x +-≤≤?=?+<≤?, 故选A . 5.作分段函数的图像 例5.函数|ln | |1|x y e x =--的图像大致是( ) y x

高中数学常见题型解法归纳含详解第15招 分段函数常见题型解法

【知识要点】 分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题. 1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为: 11 2 2() ()()() n n n f x x D f x x D f x x D f x x D ∈??∈?=? ∈??∈?K K ,不要写成11 22 ()()()()n n n y f x x D y f x x D f x x D y f x x D =∈??=∈?=?∈? ?=∈?K K .注意分段函数的每一段的自变量的取值范 围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面. 2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并. 3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并. 4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合. 5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合. 6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性. 7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. 虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】 题型一 分段函数的解析式问题 解题方法 一般一段一段地求,最后综合.即先分后总.

函数的连续性及极限的

第四节 函数的连续性及极限的应用 1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义, lim x x →f (x )存在,且0 lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续. 2..函数f (x )在点x =x 0处连续必须满足下面三个条件. (1)函数f (x )在点x =x 0处有定义; (2)0 lim x x →f (x )存在; (3)0 lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点 的函数值. 如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0 处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)?g(x), ) ()(x g x f (g(x)≠0)也在点x 0处连续。 ②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。 4.函数f (x )在(a ,b )内连续的定义: 如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数 f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数. f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在 函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限

存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ), 在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义: 如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有 + →a x lim f (x )=f (a ),在右端点x =b 处有- →b x lim f (x )=f (b ),就说函数f (x ) 在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上的连续函数. 6. 最大值最小值定理 如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值 7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、 问题讨论 ●点击双基 (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要 解析:f (x )在x =x 0处有定义不一定连续. 答案:A

相关主题
文本预览
相关文档 最新文档