当前位置:文档之家› Local Ignition in CarbonOxygen White Dwarfs -- I One-zone Ignition and Spherical Shock Igni

Local Ignition in CarbonOxygen White Dwarfs -- I One-zone Ignition and Spherical Shock Igni

Local Ignition in CarbonOxygen White Dwarfs -- I One-zone Ignition and Spherical Shock Igni
Local Ignition in CarbonOxygen White Dwarfs -- I One-zone Ignition and Spherical Shock Igni

a r X i v :a s t r o -p h /0510367v 2 2 J a n 2006

Local Ignition in Carbon/Oxygen White Dwarfs –I:One-zone Ignition and

Spherical Shock Ignition of Detonations

L.Jonathan Dursi

Canadian Institute for Theoretical Astrophysics,University of Toronto,60St.George St.,Toronto,ON,

M5S 3H8,Canada

ljdursi@cita.utoronto.ca

F.X.Timmes

Theoretical Division,Los Alamos National Laboratory,Los Alamos,NM,87545,USA

timmes@https://www.doczj.com/doc/7d16097921.html, ABSTRACT

The details of ignition of Type Ia supernovae remain fuzzy,despite the importance of this input for any large-scale model of the ?nal explosion.Here,we begin a process of understanding the ignition of these hotspots by examining the burning of one zone of material,and then investigate the ignition of a detonation due to rapid heating at single point.

We numerically measure the ignition delay time for onset of burning in mixtures of degenerate material and provide ?tting formula for conditions of relevance in the Type Ia https://www.doczj.com/doc/7d16097921.html,ing the neon abundance as a proxy for the white dwarf progenitor’s metallicity,we then ?nd that ignition times can decrease by ~20%with addition of even 5%of neon by mass.When temperature ?uctuations that successfully kindle a region are very rare,such a reduction in ignition time can increase the probability of ignition by orders of magnitude.If the neon comes largely at the expense of carbon,a similar increase in the ignition time can occur.

We then consider the ignition of a detonation by an explosive energy input in one localized zone,e.g.a Sedov blast wave leading to a shock-ignited detonation.Building on previous work on curved detonations,we con?rm that surprisingly large inputs of energy are required to successfully launch a detonation,leading to required matchheads of ≈4500detonation thicknesses –tens of centimeters to hundreds of meters –which is orders of magnitude larger than naive considerations might suggest.This is a very di?cult constraint to meet for some pictures of a de?agration-to-detonation transition,such as a Zel’dovich gradient mechanism ignition in the distributed burning regime.

Subject headings:supernovae:general —white dwarfs –hydrodynamics —nuclear reactions,nucleosynthesis,abundances —methods:numerical

1.INTRODUCTION

The current favored model for Type Ia supernovae (SNIa)involves burning beginning as a subsonic de?agration near the central region of a Chandrasekhar-mass white dwarf.Progress has been made in recent years in understanding the middle stages of these events through multiscale reactive ?ow simulations where the initial burning is prescribed as an initial condition of one or more sizable bubbles already burning

material at time zero.However,the initial ignition process by which such bubbles begin burning–whether enormous50km bubbles(Plewa et al.2004)or more physically motivated smaller igniting points(Reinecke et al.2002;H¨o?ich and Stein2002;Bravo and Garc′?a-Senz2003)remains poorly understood.Further,if later in the evolution there is a transition to a detonation(e.g.,Gamezo et al.2004),this ignition process, too,must be explained.Indeed,ignition physics will play a role—by determining the location,number, and sizes of the?rst burning points—in any currently viable SNIa model.However,until very recently(for example,Woosley et al.2004;Garc′?a-Senz and Bravo2005)very little work has gone into examining the ignition physics of these events.Here we begin examining the ignition process by considering the simplest ignitions possible–that of a single zone–and the possibility of igniting a detonation from a Sedov blast wave launched at a single point.

1.1.Ignition Delay Times

Astrophysical combustion,like most combustion(for example,Williams1985;Glassman1996),is highly temperature-dependent;the12C+12C reaction,for example,scales as T12near109K.Rates for the exothermic reactions which de?ne the burning process are generally exponential or near-exponential in temperature(e.g.,Caughlan and Fowler1988).Thus a region with a positive temperature perturbation can sit‘simmering’for a very long time,initially only very slowly consuming fuel and increasing its temperature as an exponential runaway occurs.This is especially true in the electron-degenerate environment of a white dwarf,where the small increases in temperature that occur for most of the evolution of the hotspot will have only extremely small hydrodynamic e?ects.

If fuel depletion and hydrodynamical e?ects were ignored,the temperature of the spot would become in?nite after a?nite period of time.This time is called the ignition time,or ignition delay time,or sometimes induction time,τi.After ignition starts,burning proceeds for some length of timeτb.

For burning problems of interest,of course,fuel depletion is important,and no quantities become in?nite; however,the idea of an ignition delay time still holds(see Fig.1).If the energy release rate for most of the evolution of the burning is too small to have signi?cant hydrodynamical e?ects,and if the timescale over which burning‘suddenly turns on’is much shorter than any other hydrodynamical or conductive timescales, then the burning of such a hotspot can be treated,as an excellent approximation,as a step function where all energy is released from t=τi to t=τi+τb.In many problems,whereτb?τi,this can be further simpli?ed to burning occurring only at t=τi.Where such an approximation(often called‘high activation-energy asymptotics’)holds,it greatly simpli?es many problems of burning or ignition,reducing the region of burning in a?ame to an in?nitesimally thin‘?amelet’(Matalon and Matkowsky1982)surface,for instance, or the structure of a detonation to a‘square wave’(Erpenbeck1963).Where this approximation does not hold–such as if slowβ-decay processes are important as bottlenecks for reactions to proceed(e.g.,p-p burning or the CNO cycle)the simpli?cation of burning happening only overτi≤t≤τi+τb often remains useful.

Even for the simple case of one zone,ignition delay times are relevant for investigation of ignition in SNIa because it sets a minimum time scale over which an initial local positive temperature perturbation(hot spot)can successfully ignite and launch a combustion wave;other timescales,such as turbulent disruption of the hotspot,or di?usive timescales,must be larger than this for ignition to successfully occur.

If the burning occurs in an ideal gas,or in a material with some other simple equation of state,it is fairly easy to write down approximate ignition times for various burning laws.In a white dwarf,however,where

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09 7e+09

8e+09

9e+09

0 0.005 0.01 0.015

0.02 0.025

0.03 0.035 0.04 0.045

T e m p (K )

Time (s)

Ignition Delay Time

Fig.1.—Temperature evolution for burning a zone at constant pressure with an initial state of X 12C =1.0,T =109K,ρ=5×108g cm ?3.Because of the strong temperature dependence,a runaway takes place and most of the burning happens ‘all at once’.

the material is partially degenerate or relativistic and the equation of state is quite complicated (Timmes and Swesty 2000),no such closed-form expression can be written.In §2we numerically follow the abundance and thermodynamic evolution of a zone of white dwarf material in order to measure the ignition times as a function of the initial temperature,density,and composition.We follow both constant-density and constant-pressure trajectories.The results are summarized by simple,moderately accurate,?tting formula.In §3we consider the ignition of a detonation through a localized energy release producing a Sedov blast wave,and estimate the amount of energy that must be released for the detonation to successfully ignite.In §4we consider our results in light of likely temperature ?uctuation spectra during the simmering,convective phase.

2.ONE ZONE IGNITION TIMES

2.1.

Calculations

We performed a series of 1-zone calculations for the purposes of measuring ignition times in carbon-oxygen mixtures.For each of these two burning conditions –burning at constant volume and constant pressure –over 3500initial conditions were examined,in a grid of initial densities,temperatures,and initial carbon fraction.The carbon (mass)fractions were in the range 0.4≤X 12C ≤1.0,with the remainder being oxygen (X 16O =1?X 12C ),temperatures of 0.5≤T 9≤7,and densities 0.1≤ρ8≤50,where T 9is the temperature in units of 109K and ρ8is the density in units of 108g cm ?3.For burning,a 13-isotope αchain was used (Timmes 1999),and a Helmholtz free energy based stellar equation of state (Timmes and Swesty 2000)maintained the thermodynamic state.The temperature and abundance evolution equations were integrated together consistently,as described in Appendix A.Time evolutions were generated as in Fig.1.

To cover the wide range of burning times within each integration,the timestep was increased or decreased depending on the rate of abundance,energy release,and thermodynamic changes.The time interval was varied by up to a factor of two in each timestep,to try to keep the amount of energy released through burning per timestep change of fuel within the range 10?5?10?7.Timesteps failing this criterion were

undone and re-taken with a smaller time interval.The ?nal ignition time,when the simulation was stopped,was de?ned to be time when 90%of the carbon was consumed,although the time reported was found to be insensitive to endpoint chosen.The code used in this integration,as well as the resulting data,is available at http://www.cita.utoronto.ca/~ljdursi/ignition/.

Over the initial conditions chosen,ignition times varied from 10?14s to 10+8s.A representative contour plot showing the calculated ignition delay times are shown in Fig.2.

7.0

7.58.0

8.5

9.09.510.0

Log10 density

L o g 10 t e m p e r a t u r e

Fig.2.—Contour plot of ignition time as a function of initial density and temperature for a constant-pressure ignition of a mixture of half-carbon,half-oxygen by mass.

Fitting formula for the ignition delay times under the two burning conditions were determined;the ignition time for constant-pressure ignition can be given approximately as

τi,cp (ρ,T,X 12C )=1.15×10?5sec (X 12C ρ8)

?1.9

f cp (T )(1+1193f cp (T ))(1)

f cp (T )=(T 9?0.214)

?7.566

and that for constant-volume ignition

τi,cv (ρ,T,X 12C )

=1.81×10?5sec (X 12C ρ8)

?1.85

f cv (T )(1+1178f cv (T ))(2)

f cv (T )=(T 9?0.206)

?7.700

where T9is the initial temperature in units of109K,andρ8is the initial density in units of108g cm?3.

The?ts are good to within a factor of?ve between10?9sec and1sec,and to within a factor of 10between10?14sec and100sec.This can be compared to other analytic expressions,for instance the constant-pressure formula from Woosley et al.(2004),

τi=15sec 7ρ9 3.3(3) which,as shown in Fig.4,is an excellent approximation over a somewhat more narrow range of

conditions. Fig.3.—Fit results vs.calculated results for constant-pressure(left)and constant-volume(right)ignition delay times,for the full range of densities(0.1≤ρ8≤50),temperatures(0.5≤T9≤7),and carbon mass abundances(0.4≤X12C≤1.0)

considered.

Fig.4.—Woosley et al.(2004)ignition time results vs.calculated results for constant-pressure ignition delay times for a mixture half-carbon half-oxygen by mass(X12C=0.5),over a truncated range(1≤ρ8≤50), (0.5≤T9≤1.5).

Which of the two cases(constant volume or constant pressure)are appropriate will depend on comparing the ignition time with the relevant hydrodynamical timescale—in particular,the sound-crossing time of the region undergoing ignition.If the region is small enough that many sound crossing times occur during the ignition,then the constant-pressure value is appropriate;if ignition occurs in much less than a crossing time,

the constant-volume value is appropriate;intermediate timescales will result in intermediate values.In the case of turbulent ignition of a?ame,presumably it is the constant-pressure time which will be most relevant. In any case,due to the degeneracy of the material in the density and temperature ranges considered here, the computed ignition times(or the?ts)rarely di?er between the two cases more than50%.

2.2.E?ect of Metallicity

Most of the initial metallicity of main-sequence star comes from the CNO and56Fe nuclei inherited from its ambient interstellar medium at birth.The slowest step in the hydrogen-burning CNO cycle is proton capture onto14N.This results in all the CNO catalysts piling up into14N when hydrogen burning on the main sequence is completed.During helium burning,all of the14N is converted into22Ne.

As a proxy for investigating the e?ects of metallicity in ourα-chain based reaction network,we consider the ignition of a X12C=0.5constant-pressure ignition while increasing the fraction of20Ne(and thus decreasing the abundance of oxygen).We’ll verify this surrogate by using22Ne in larger networks.

The e?ects of increasing X20Ne from0to0.05,and then further to0.1and0.2,is shown in Fig.5. Addition of even fairly modest amounts of neon can signi?cantly(20–30%)reduce the ignition times for much of the thermodynamic conditions evaluated here.The reduced ignition times are found to result from a larger energy release from burning over the entire integration range.

To understand the increase in the energy deposited by burning,consider theα-chain reactions which dominate burning in this regime and are modeled by the‘aprox13’network as:

12C+12C→20Ne+α+13.933MeV

12C+α→16O+7.162MeV

16O+α→20Ne+4.734MeV(4)

20Ne+α→24Mg+9.312MeV

24Mg+α→28Si+9.984MeV.

Given an initial mixture of12C,16O,and20Ne,it is the carbon burning reaction12C+12C which happens ?rst.The resultingα-particle can capture onto carbon or any heavier element in theαchain.Unless that chain is already populated,then the(very exothermic)neon capture and all?ows to still heavier nuclei are choked o?until enough20Ne and24Mg are generated through burning.Adding even quite modest amounts of neon to the initial mixture allows moreα-chain reactions to promptly occur during carbon burning.

The plots in Fig.6show the abundance evolution ofα-chain elements during constant-density burning atρ8=10,T9=1,X12C=0.5,and an initial neon abundance of zero and0.05.The inclusion of5%neon by mass greatly speeds the production of heavier intermediate-mass elements,and thus the exothermicity of the burning,reducing the ignition time.

To con?rm that this e?ect is not arti?cially enhanced by using anα-chain reaction network,and to quantitatively verify the ignition times produced by the aprox13network used here,we compared the ignition times at two(ρ,T)points and varying neon abundance with those produced by reaction networks containing 513and3304isotopes.The results are shown in Table1We see that not only are the times computed with the smaller network quantitatively in good agreement with the larger networks(within10%for the

10-20

10-10

100

10101020ignition time, X( 22Ne) = 0, (s)

-0.20

-0.15

-0.10

-0.05

0.00

0.05% d i f f e r e n c e ( 22N e = 0.05 - 22N e = 0.00

)

Log 10 dens

L o g 10 t e m p

Log 10 dens

L o g 10 t e m p

Log 10 dens

L o g 10 t e m p

Fig. 5.—The di?erence in ignition time for a constant-pressure ignition of X 12C =0.5,X 16O =0.5when some of the Oxygen is replaced by Neon-20.On the top left is shown the fractional di?erence in ignition time with the addition of X 20Ne =0.05as a function of the ignition time with X 20Ne =0.0.On the top right,bottom left,and bottom right are contour plots in ρ?T space of the percent di?erence in ignition time with X 20Ne =0.05,0.1,0.2,respectively.The ignition time for the base case is shown in Fig.2.lower-temperature case,and within 25%for the higher case),but the trends are similar.The same trend is apparent when 22Ne,unavailable in the α-chain network,is used instead of 20Ne.The trend is in fact stronger with 22Ne because of additional ?ow paths that become available.

While the above has demonstrated the active role neon plays in the ignition process,its e?ect is much smaller than that of carbon,which is the primary source of fuel in this burning process.As a result,in the more realistic case when an increase in neon comes at the expense of both carbon and oxygen,this e?ect is reduced (for small neon fractions)or completely reversed (for moderate neon fractions).This is shown,for instance,in Fig.7.In this case,increased metallicity of the progenitor system has the opposite e?ect;it makes the ignition time signi?cantly longer for hotspots in the resulting white dwarf.

2×10

-23×10

-2

4×10

-2

5×10

-2

6×10

-2

7×10

-2

10-8

10

-710-6

10-5

.0001.001.01

.11M a s s F r a c t i o n

Time (s)

He

He He He

He

He He He He He He He He He He He He He

He He He He He He He He He He He He C C C

C

CC C C C C C C C C C C O O O O OO O O O O Ne

Ne Ne

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Mg

Mg Mg

Mg

Mg Mg Mg Mg Mg Mg Mg Mg

Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Si Si Si

Si

Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si 2×10

-23×10

-2

4×10

-2

5×10

-2

6×10

-2

7×10

-2

10-8

10

-7

10-610-5

.0001.001.01.11M a s s F r a c t i o n

Time (s)

He

He He

He

He He He He He He He He He He

He He He He He He He He He He He He He He He He He C

C C C C C C C C C C C C O O O O O O O O O O Ne

Ne Ne Ne

N e Ne Ne Ne Ne Ne Ne Ne Ne Mg

Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Si

Si

Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Fig. 6.—Mass fraction evolution in constant-density burning,with an initial state of ρ8=10,T 9=1,X 12C =0.5,with X 20Ne =0.0(left)and X 20Ne =0.1(right).The burning here was calculated with a 513-isotope network.Because of the removal of the α-chain bottleneck at neon on the right,burning proceeds faster and the generation of higher intermediate-mass elements is raised by orders of magnitude at early times.

3.

APPLICATION:IGNITION OF A DETONATION

3.1.

Detonation Structure

Detonation waves are a supersonic mode of propagating combustion.A shock wave heats up material,which then ignites,releasing energy which further powers the shock.(See,for instance,textbooks such as Glassman 1996;Williams 1985).There are,broadly,four states in a detonation:the unshocked material;the shocked material immediately behind the shock;an induction zone,where the heated material slowly begins burning and then the reaction zone,where the bulk of the exothermic burning takes place.

Unsupported,self-sustaining detonations can be of the Chapman-Jouget (CJ)type,where at the end of the reaction zone the ?ow becomes sonic,or of the pathological type,where the sonic point occurs within reaction zone,decoupling the ?ow downstream of the sonic point from the shock.Pathological detonations can occur in material where there are endothermic reactions or other dissipative or cooling e?ects,and may have speeds slightly higher (typically by a few percent)than the CJ speed.Detonations within highly degenerate white-dwarf material (ρ8>0.2)are of the pathological type (Khokhlov 1989),largely because some regions of the ?ow behind the detonation can have signi?cant amounts of endothermic reactions,violating the assumptions of the CJ structure.Because in the case of a pathological detonation some fraction of the reactions powering the detonation are decoupled from the shock,calculating the speed of a pathological detonation requires detailed integration of the detonation structure,rather than simply using jump conditions.For either kind of detonation,one can estimate where most burning occurs with shock speed D (which,even in non-CJ case,can be estimated with CJ speed)and τi ;l i =Dτi is the position behind the shock at which the induction zone ends and rapid burning takes place.

In the case of a detonation into a very low-density,cold material,the material immediately behind the shock will still not burn signi?cantly until a length of time equal to the ignition time passes,resulting in a ‘square wave’detonation.For conditions relevant to near the core of a white dwarf,however,the post-shock ?uid will typically have temperatures on order T 9≈5–that is,temperatures which are already near the

Log 10 dens

L o g 10 t e m p

Log 10 dens

L o g 10 t e m p

Fig.7.—As in Fig.5,the di?erence in ignition time for a constant-pressure ignition of X 12C =0.5,X 16O =0.5when (left)a mass fraction of 0.005of each of the carbon and oxygen is replaced by Neon-20and (right)when 0.05of each is replaced by Neon.Note that in this case,for X 20Ne =0.1,with the exception of a small region in (ρ,T )the ignition time is increased by the same magnitude that it is decreased in the case when all of the neon comes from oxygen,e.g.the X 12C =0.5,X 16O =0.4,X 20Ne =0.1case of Fig 5in the bottom right panel.

maximum temperature which will be obtained by burning.Even in these cases,this estimate of l i provides a good measure of the thickness of the detonation structure behind the shock,as is shown in Fig 8where it measures the position of maximum burning.

3.2.Ignition of a Spherical Detonation

One mechanism for ignition of a detonation by a hotspot is an initial rapid input of energy which leads to a Sedov blast wave;the material shocked by the outgoing spherical blast ignites,and as the outgoing wave slows,a steady outgoing detonation results.A steady detonation cannot form until the outgoing shock wave speed drops to the detonation velocity detonation,or else the energy released by reactions behind the blast wave will not be able to ‘catch up’to the outgoing shock to drive it.On the other hand,if the shock drops signi?cantly below the detonation speed before ignition takes place,not enough material will be burning per unit time to sustain a detonation wave.We denote the position of the shock when it reaches the detonation speed from above as R D .Naively,the condition for successful detonation ignition would be that R D l i ,since a detonation structure with width of order l i must be set up before the shock speed becomes too slow;a more sophisticated derivation of this criterion can be found in Zeldovich et al.(1956).However,experimentally this is known to be far too lenient a condition for terrestrial detonations and R D must be orders of magnitude larger than l i (Desbordes 1986).This has also been empirically seen in the context of astrophysical detonations (e.g.,Niemeyer and Woosley 1997).

This has been explained by,for instance,He and Clavin (1994).Curvature has a signi?cant nonlinear e?ect on the structure of a detonation —even more so than on the structure of a ?ame (e.g.,Dursi et al.2003)because the curvature directly e?ects the burning region rather than merely the preconditioning (di?usion)region.He and Clavin (1994),looking at a pseudo-steady calculation of a detonation with curvature,?nd that for a steady detonation to exist requires the curvature to be extremely small.The condition found by the authors requires R D ≈44γ2/(γ2?1)βZ l i ,where γis the polytropic index of the ideal gas and βZ

0 1e+27

2e+27 3e+27 4e+27 5e+27 6e+27 7e+27 8e+27 9e+27

1e+28 0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1

E n e r g y R e l e a s e (e r g /g /s )

Position behind shock (cm)

Pred. width

-0.001

0.000

0.001

0.0020.003

Position behind shock (cm)

0.00.2

0.4

0.6

0.8

1.0

1.2

P r e s , E n e r g y R e l e a s e

Pred. Width

Fig.8.—Two examples of estimating the detonation thickness,l i =v s τi in a detonation.On the left,plotted energy release rate from nuclear reactions behind the shock of a leftward-traveling ZND detonation into a pure-carbon quiescent medium of ρ8=1,T 9=0.05.The shocked state is ρ8=2.97,T 9=4.2,and the incoming fuel velocity behind the shock is 4.0×108cm s ?1.For the shocked material,the predicted ignition time is ≈3×10?11sec.Even in this case,where the shocked temperature is so high that signi?cant burning occurs immediately,and the ‘square wave’detonation structure does not apply,the predicted l i =1.2×10?2cm correctly matches the peak of the reaction zone.On the right,pressure (top)and energy release rate (bottom),plotted relative to their maximum values,behind a leftward-traveling slightly overdriven detonation into the same material as in the previous ?gure,calculated by the hydrodynamics code Flash (Fryxell et al.2000;Calder et al.2002).The line above the plotted quantities shows the predicted l i calculated with the observed values in the shocked state.

represents the temperature sensitivity of the burning law;for the reactions and temperatures of interest in astrophysical combustion,βZ ≈10?15(Dursi et al.2003).Using γ=4/3to describe the highly degenerate material near the centre of the white dwarf,this would give R D ≈1000?1500l i .

While in many cases using a polytropic ideal gas equation of state to describe degenerate white dwarf material can be an excellent approximation,in combustion phenomenon where the burning rate is highly temperature dependent it is problematic,making the above result unsuitable.Further,the authors assume a CJ detonation,as opposed to the pathological detonation that occurs at high densities in a white dwarf.This makes a straightforward application of the results of He and Clavin (1994)to our problem of interest di?cult.Given the complexity of the partially degenerate equation of state in the white dwarf,re-deriving the analytic results for this application would be di?cult.However,the detailed e?ect of curvature on detonations in white dwarfs has already been studied in a di?erent manner,by Sharpe (2001).In this approach,the velocity eigenvalue for the detonation –which depends sensitively on the detonation structure –is calculated using a shooting method to numerically integrate the structure of a pathological detonation to the sonic point.A range of possible detonation velocities is input,and then repeatedly bisected as the detonation structure with a ?xed given curvature term is integrated assuming the current detonation velocity.The result is the velocity-curvature relation for a detonation into a given ambient material,and as a byproduct,the relationship between the thermodynamic structure (at least up to the sonic point)and the curvature for the curved detonation.

We follow the method of Sharpe (2001),also described in Appendix B,and measure the maximum sustainable spherical curvature of a detonation using the same equation of state and burning network as

used in the ignition time study.An example of the detonation-speed versus curvature relation is given in Fig.9.Beyond some maximum curvature κmax ,no steady-state unsupported detonation can exist;thus in

the case of a spherical detonation,for a steady detonation to successfully ignite,R D >κ?1

max .

1.1e+09

1.11e+09

1.12e+09

1.13e+09

1.14e+09

1.15e+09

1.16e+09 1.17e+09

1.18e+09

-0.0005

0 0.0005 0.001

0.0015 0.002 0.0025 0.003 0.0035

S t e a d y S t a t e V e l o c i t y (c m /s )

Curvature (1/cm)

Fig.9.—Example of detonation speed vs.curvature,for a detonation into a quiescent medium of ρ8=1,T 9=0.05,X 12C =0.5,X 16O =0.5.

We calculated the detonation speed versus curvature relation for 0.5≤ρ8≤20and 0.25≤X 12C ≤1.0.The unshocked material was set to a temperature of T 9=0.05,although the results were seen to be insensitive to this value.Our results are shown in Fig.10and Table 2.The code used to perform the calculations is available at http://www.cita.utoronto.ca/~ljdursi/ignition.The estimated detonation thickness and a comparison with κmax is given in Table 3.As compared with the He and Clavin (1994)results of R D 1000?1500l i ,we ?nd R D 3000?6000l i .

We can approximately summarize our results for the detonation velocity and the maximum curvature of these curved detonations:

D =v (κ=0)=1.158×109cm s ?1

X 12C

0.5

2.869

ρ1.2728

(6)

v max=v(κ=κmax)=1.098×109cm s?1 X12C

ρ 1/5t2/5(8) whereβdepends on the equation of state.We performed numerical experiments for a Sedov blast wave propagating through degenerate material atρ8=1,T9=0.05with no burning and foundβ≈0.77.Given this relation,the shock velocity would be

v s=dr

ρ8 1/2r?3/20(9)

where e32is the point energy input in units of1032erg,and r0is the radius in units of1cm.

Our numerical experiments for calculating theβfor the Sedov blast wave under these conditions were as follows.As described later in this section for the calculation of spherical shock-ignited detonations, we performed a series of one-dimensional spherically symmetric hydrodynamical simulations,in this case without any burning,for the hydrodynamic state described.We used very high resolution,with AMR (?x≈2×10?4cm,in a simulation box of5?50cm for these simulations without burning)to ensure that the shock front was described adequately,and we placed the initial excess energy uniformly in the center-most eight zones(e.g.,over1.5×10?3cm).We found that this combination of high resolution and?nite size of energy input worked very well to produce the correct blast wave structure.We then tested an input of energy of1026,1027,1028,and1029erg,and for all input energies obtained a very clean Sedov-like scaling between position(or velocity)and time,with a scaling coe?cient?t to be0.77.As it turns out,these extra calculations were likely unnecessary;the Sedov blast wave simulations with burning also reproduce the same Sedov scaling with the sameβuntil the speed of the blast wave slows to within a factor two of the planar detonation speed.

The requirement that the detonation be successful,that is v s≈v max at r≥κ?1max,gives a minimum energy

e32≈246β?5 X12C

was used to ensure the detonation structure was adequately resolved;improperly resolving detonation can greatly exaggerate curvature e?ects(Meniko?et al.1996)as well as causing spurious ignition or incorrect propagation speeds(Fryxell et al.1989).At time zero,the energy initial energy that causes the blast wave was deposited into a region of size0.0015cm,or about eight zones;this is a large enough number of zones that the blast wave is well resolved even at early times,but a small enough region that the Sedov assumption of a point explosion remains valid,as demonstrated by the Sedov scaling behavior until very late times when burning signi?cantly alters the shock solution.

As shown in Fig.12,successful detonations do indeed begin propagation at predicted the input energy, but they are disrupted due to instabilities(e.g.,Kriminski et al.1998);this suggests that the energy re-quirement given here is a lower bound for successful detonation ignition.However,the results from these simulations need to be taken schematically rather than quantitatively.Because of the extremely large point energies required to successfully ignite a detonation,for much of the evolution shown in Fig.12,the blast wave is moving superluminally,as no relativistic e?ects were included in the hydrodynamics!Part of this is an artifact of assuming that the energy input is at a very localized region.

We can also consider the(more plausible)launch of a spherical shock and possible ignition of detonation from a region of?nite size.Constraints on what that size must be will come from energetic considerations similar to that of the point explosion.If the required energy input comes predominantly from carbon burning (??≈5.6×1017erg g?1),then the volume of material which must be burned to provide such energy can be found by setting the minimum energy requirement from Eq.10to4/3πr3bρ??,or,plugging in numerical values,2.09×10?7(1032erg)ρ8(X12C/0.5)r3b,0.This gives a required radius of burning region

r b≈1.63×103cm β0.5 ?3.19ρ?1.228(11)

Note that in general this matchhead radius is actually larger than the minimum radius for a sustainable detonation.The two sizes are plotted as a function of density in Fig.13.

These results can be compared to empirical results from the astrophysics literature,for instance§3.1.2 of Niemeyer and Woosley(1997),where the authors performed100-zone spherically symmetric simulations to examine the scales of detonation.By imposing a linear temperature pro?le peaking at T9=3.2over thirty zones of a given density and examining the smallest that region could still ignite a detonation.We compare our results,in particularκ?1max,to the size of their matchheads.Some caution should be exercised in this comparison,as they are of di?erent quantities—in our work we?nd the smallest possible radius of a steady-state detonation,whereas the quantity measured in Niemeyer and Woosley(1997)is the smallest size of a region of a particular imposed temperature pro?le which can launch a detonation.With that caveat in mind,a comparison of the results where they(nearly)overlap is given in Table4.Because of the large amounts of energy imposed in the region by those authors,and because the temperature pro?le imposed implies that the detonation would normally‘begin’where the temperature drops to that of the ambient medium,the results are actually quite similar,with only the one point at T9=2di?ering markedly.

4.DISCUSSIONS AND CONCLUSIONS

Any currently feasible mechanism for the explosion of a Type Ia supernova involves propagating a burning front in a carbon-oxygen white dwarf.Correctly modeling the process which leads to ignition is crucial to understanding the resulting explosion;once a thermonuclear burning front begins propagating it

is very di?cult to extinguish(Zingale et al.2001;Niemeyer1999)and di?ering locations,numbers and sizes of the ignition points can signi?cantly change the large-scale character of the explosion(e.g.,Garc′?a-Senz and Bravo2005;Plewa et al.2004).

In this paper,we have examined ignition at a single point by calculating and?tting ignition times over a range of thermodynamic conditions and abundances relevant for almost any mechanism of ignition for a Type Ia supernova.We have also considered the ignition of spherical detonations,determining sizes necessary for a detonation successfully ignite,and the energy required for a Sedov blast wave to lead to a shock-ignited detonation.

Currently the favored model of SNIa ignition is for the central density and temperature to increase as a carbon-oxygen white dwarf grows by accretion from a main-sequence companion in a binary system. When the energy deposited by carbon burning exceeds neutrino losses,the white dwarf enters a simmering, convective stage that lasts500-1000years with convective velocities of order20–100km s?1(e.g.,H¨o?ich and Stein2002;Kuhlen et al.2005).Owing to the convection,the entropy of the core is almost constant.As the temperature continues to rise,thermonuclear?ames are born at points with the highest temperatures at or near the center of the white dwarf.Hot,Rayleigh-Taylor unstable bubbles begin to rise through the convective interior.

In this turbulent convective picture of SNIa ignition,the?rst points to runaway will be rare events at the high-temperature tail of the turbulent distribution.Thus,it is important to accurately quantify ignition conditions.Our?ve-parameter?tting formulae(equations2and3)reproduce our computed ignition delay times very well over15orders of magnitude,covering most thermodynamic conditions and compositions relevant for ignition in a carbon-oxygen white dwarf.In particular,we have found that increases in the white dwarf metallicity,modeled by increases in the20Ne abundance,can speed up the ignition delay time by~30%if the neon comes largely from oxygen,or decrease the ignition delay time by a similar amount if it comes equally from carbon and oxygen.In the‘rare event’picture,if all else is equal,this suggests that the?rst ignition points may happen at signi?cantly di?erent conditions in metal-poor white dwarfs than in metal-rich progenitors–either the?rst ignition points could occur when the mean core temperature is somewhat lower,or more points could ignite.

To quantify this e?ect,Fig.14shows the increase in the probability of a point igniting due to a30% reduction in ignition time.Kuhlen et al.(2005)suggest that the distribution of temperature?uctuations during the simmering,convective phase is Gaussian,particularly at the positive-?uctuation end.Assuming this distribution and takingδT RMS as a free parameter that measures the strength of turbulence,one?nds that if ignition is extremely rare,a30%reduction in ignition time could produce a substantial increase in number in the(still rare)events.

Another example where local ignition can change burning behavior is the propagation upwards through the star of a burning,Rayleigh-Taylor unstable bubble.Such a bubble will experience shear instabilities and shed sparks(Zingale et al.2005).Whether these sparks ignite the unburned material into which they fall to produce more burning bubbles(or?zzle out)will change the burning volume,and thus the overall e?ectiveness of burning.However,the statistics of these sparks are not yet well characterized.

In the second part of our work,we examine another aspect of point ignition–the possibility of igniting a detonation at a point.We have shown that very large amounts of energy are required to ignite a detonation, making the purely local ignition of a detonation extremely unlikely.In Fig.13,we show the required minimum sizes for the successful ignition of a steady state detonation.The restriction on the curvature of a successful detonation restricts all models for ignition of a spherical detonation,for example placing limits

on the minimum size of a preconditioned region for successful ignition of a detonation by the Zel’dovich gradient mechanism(e.g.,Khokhlov et al.1997).

In particular,one oft-mooted possibility for the transition to a detonation is for it to occur in the distributed burning regime nearρ8=0.5.Multi-dimensional resolved calculations of burning in this regime (Bell et al.2004)has found that,because of both the distributed burning itself and the resulting vigorous mixing of fuel and ash,the remaining pockets of unburned fuel can have X12C as low as0.1–0.2.Examining the case of X12C=0.125andρ8=0.5we?nd that the restrictions on igniting a successful spherical detonation are especially stringent,requiring matchheads on order half a kilometer in size.On the face of it,this makes preconditioning of an ignition time gradient for the Zel’dovich mechanism seem fairly unlikely.

In our consideration of one-zone ignitions,we have ignored the in?uence of hydrodynamics,which can transport energy into or away from a burning region.Further,in both the one-zone ignitions and our con-sideration of spherical detonations,we have ignored thermal transport which,in the electron-degenerate material of a white dwarf,can be rapid and e?cient.It is certainly the case that in regions which do success-fully ignite,the ignition timescale will dominate that of hydrodynamics or thermal conductivity;however, without comparing this timescale to the competing timescales of thermal and hydrodynamic transport,we have no way of determining what the successfully igniting regions will be,and which regions will‘?zzle out’.Thus the results presented here can give,at best,one one piece of the story in determining ignition conditions.

Comparisons between the ignition times(or shock-crossing time of the matchhead in the detonation case)to the hydrodynamic or thermal di?usion ignition times is relatively straightforward if a back of the envelope calculation is su?cient.Zingale et al.(2005)indicates that the buoyancy-driven turbulence relevant for ignition in SNIa follows a Kolmogorov turbulence,in which case the hydrodynamic time for destruction of a hot spot behaves as:

τhydro(l)≈4.3×10?5sec 50km s?1100km 1/3 l

1m .(13) If one is in a regime when one of these timescales clearly‘wins’,then this simple comparison of timescales is su?cient.However,in the case of the?rst ignition in the centre of a white dwarf,this will not be the case,as these timescales will necessarily be quite close.In this case,to understand the highly-nonlinear process of ignition,one must rely on computational experiments with all of the relevant physics included.In future work,we will consider the ignition of Gaussian hotspots in a quiescent medium with hydrodynamics and thermal di?usion,and then consider the addition of another piece of physics–the possibility of ignition under compression for the speci?c case of a pulsational delayed detonation.

LJD acknowledges the support of the National Science and Engineering Research Council during this

work.FXT was supported by a National Security Fellow position at Los Alamos National Laboratory. The authors thank M.Zingale for many comments on this manuscript,and in particular suggesting that we consider X12C=0.125and the distributed burning regime.The authors also thank A.Calder for a close reading of this text,A.Karakas for useful discussion,and the anonymous referee whose feedback im-proved this paper.This work made use of NASA’s Astrophysical Data System.The Flash software used for some of this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophys-ical Thermonuclear Flashes at the University of Chicago.Other software used in this work is available at http://www.cita.utoronto.ca/~ljdursi/ignition and https://www.doczj.com/doc/7d16097921.html,/code

Table1.Constant-volume ignition times(sec)adding Neon with di?erent reaction networks

ρ8=10,T9=1ρ8=1,T9=3

X12C X16O X20Ne X22Ne13isotopes a513isotopes3304isotopes13isotopes b513isotopes

a Ignition time in seconds.The‘aprox13’network used primarily in this work gives ignition times within10%of more complete networks for this(ρ,T),and with similar trends.

b Ignition time in seconds.The‘aprox13’network used primarily in this work gives ignition times within25%of more complete networks for this(ρ,T),and with similar trends.

-0.20.0

0.2

0.40.6

0.8

1.0

κ / κmax

1.051.101.151.20

1.25S t e a d y D e t o n a t i o n V e l ( 109 c m /s )

-0.2

0.00.2

0.40.60.8 1.0

κ / κmax

1.051.10

1.15

1.20

1.25

S t e a d y D e t o n a t i o n V e l ( 109 c m /s )

-0.2

0.0

0.2

0.40.6

0.8

1.0

κ / κmax

1.121.141.16

1.18

1.20

1.22

1.241.26S t e a d y D e t o n a t i o n V e l ( 109 c m /s )

-0.2

0.00.2

0.40.60.8 1.0

κ / κmax

1.201.22

1.24

1.26

1.28

1.30

1.32

S t e a d y D e t o n a t i o n V e l ( 109 c m /s )

-0.2

0.0

0.2

0.40.6

0.8

1.0

κ / κmax

1.261.281.30

1.32

1.34

1.36

1.381.40S t e a d y D e t o n a t i o n V e l ( 109 c m /s )

-0.2

0.00.2

0.40.60.8 1.0

κ / κmax

1.361.38

1.40

1.42

1.44

1.46

1.48

S t e a d y D e t o n a t i o n V e l ( 109 c m /s )

Fig.10.—Steady-state detonation velocity as a function of curvature for background densities of,from left to right and top to bottom,ρ8=(0.5,1,2,5,10,20).In each plot,the velocities are shown for initial carbon abundances,top to bottom,of X 12C =(1,0.75,0.5,0.25).So that they could be shown on the same horizontal scale,the curvatures have been scaled to the maximum sustainable curvature for each set of conditions,given by Table 2.Points represent calculated speeds,and solid lines are ?ts with parameters also given in Table 2.

Table2.Measured and Fit Detonation Velocities as a function of curvature

D aκmax b v max c Fit Parameters

(109cm)cm?1109cm a d b c d

X12C=1.001.2071.08×10?21.096?1.55×10?27.75×10?1?1.26×1001.51×100 X12C=0.751.1812.94×10?31.069?5.74×10?44.68×10?14.07×10?11.26×10?1 X12C=0.501.1527.14×10?41.067?1.78×10?36.11×10?17.21×10?1?3.30×10?1 X12C=0.251.1201.26×10?41.055?2.27×10?31.15×100?1.39×10?1?7.54×10?3 X12C=0.1251.1102.34×10?51.059?1.32×10?21.20×100?1.65×10?01.37×10?3

X12C=1.001.2182.78×10?21.131?4.69×10?36.25×10?11.87×10?33.77×10?1 X12C=0.751.1951.02×10?21.116?4.08×10?36.53×10?13.30×10?12.06×10?2 X12C=0.501.1703.15×10?31.102?5.41×10?38.30×10?12.64×10?1?8.85×10?2 X12C=0.251.1415.58×10?41.085?2.99×10?31.17×100?2.12×10?14.44×10?2 X12C=0.1251.1268.90×10?51.092?9.94×10?39.55×10?11.35×10?1?7.99×10?2

X12C=1.001.2496.67×10?21.176?5.52×10?47.93×10?18.76×10?21.20×10?1 X12C=0.751.2272.72×10?21.169?2.72×10?36.75×10?14.44×10?1?1.16×10?1 X12C=0.501.2038.90×10?31.152?1.07×10?29.50×10?11.07×10?1?4.54×10?2 X12C=0.251.1771.56×10?31.133?8.23×10?31.10×100?9.81×10?22.26×10?3 X12C=0.1251.1632.71×10?41.127?1.07×10?31.18×100?2.05×10?13.07×10?2 X12C=1.001.3161.96×10?11.257?5.81×10?38.76×10?11.20×10?19.98×10?3 X12C=0.751.2958.49×10?21.2411.24×10?31.11×100?2.25×10?11.11×10?1 X12C=0.501.2732.76×10?21.227?3.67×10?31.16×100?2.27×10?16.94×10?2 X12C=0.251.2484.75×10?31.210?8.00×10?31.19×100?2.25×10?14.18×10?2 X12C=0.1251.2359.30×10?41.205?9.26×10?38.82×10?12.83×10?1?1.56×10?1

X12C=1.001.3864.45×10?11.327?1.31×10?41.04×100?1.53×10?11.10×10?1 X12C=0.751.3661.94×10?11.316?2.65×10?31.08×100?1.19×10?14.04×10?2 X12C=0.501.3436.27×10?21.2986.40×10?31.26×100?3.40×10?17.62×10?2 X12C=0.251.3191.06×10?21.2796.21×10?41.40×100?5.84×10?11.81×10?1 X12C=0.1251.3062.24×10?31.269?5.93×10?31.35×100?4.74×10?11.26×10?1 X12C=1.001.4721.03×1001.4111.03×10?51.14×100?2.99×10?11.59×10?1 X12C=0.751.4514.56×10?11.399?1.93×10?31.26×100?4.25×10?11.68×10?1 X12C=0.501.4291.47×10?11.3822.49×10?41.41×100?6.10×10?12.03×10?1 X12C=0.251.4052.41×10?21.363?4.72×10?31.43×100?5.96×10?11.68×10?1

a+bκ′+cκ′2+dκ′3,where v′=(v?v max)/(D?v max)andκ′=(1?κ/κmax).Note that for small curvatureκ,one can de?ne a‘Markstein length’(e.g.,Dursi et al. 2003)of sorts by dv/dκ=?((D?v max)/(2κmax))(b+2c+3d)/(a+b+c+d)1/2.

Table3.Detonation Thicknesses compared withκmax

l i aκ?1

max/l i b

X12C=1.002.26×10?24.09×103

X12C=0.755.48×10?26.20×103

X12C=0.501.78×10?17.85×103

X12C=0.251.09×1007.27×103

X12C=1.009.59×10?33.74×103

X12C=0.752.31×10?24.23×103

X12C=0.507.40×10?24.29×103

X12C=0.254.55×10?13.93×103

X12C=1.003.94×10?33.81×103

X12C=0.759.68×10?33.80×103

X12C=0.503.16×10?23.55×103

X12C=0.251.92×10?13.33×103

X12C=1.001.17×10?34.35×103

X12C=0.752.93×10?34.02×103

X12C=0.509.58×10?33.78×103

X12C=0.256.02×10?23.50×103

X12C=1.004.51×10?44.99×103

X12C=0.751.12×10?34.58×103

X12C=0.503.89×10?34.10×103

X12C=0.252.47×10?23.82×103

X12C=1.001.71×10?45.67×103

X12C=0.754.48×10?44.89×103

X12C=0.501.55×10?34.40×103

X12C=0.251.01×10?24.09×103

世界近代史 大二上册名词解释

织田信长泰姬陵东印度公司通讯委员会莱茵邦联 地理大发现 西方史学家对15至18世纪欧洲航海者一系列航海活动的通称。15世纪后,西欧商品货币经济迅速发展,引起了封建贵族、大商人和新兴资产阶级对贵金属的渴求。《马可·波罗行记》对东方富庶的夸张描绘,进一步煽动着欧洲人的寻金热情。15世纪中叶以后,阿拉伯人与奥斯曼土耳其人垄断了东西方传统通道,也促使西欧寻找通向东方的新航路。此外,快速帆船的制造,指南针用于航海及地圆学说的盛行使远洋航行成为可能。最初由葡萄牙、西班牙两国组织远洋航行。1492年,哥伦布航抵“美洲”,开辟了欧美航线;1498年达·伽马开辟自西欧绕过非洲南端直达印度的航路;1519—1522年麦哲伦与其同伴首次环球航行。新航路的开辟和美洲的发现,扩大了世界市场,开始了西方国家殖民掠夺的狂潮。欧洲的商业中心逐渐由地中海地区转移到大西洋沿岸。由此加速了西欧封建制度的解体和资本主义关系的增长,预示了世界史上一个新时代的来临。 教皇子午线 葡萄牙和西班牙划分势力范围的分界线。1492年,哥伦布发现“新大陆”后,西、葡为争夺殖民地和市场而大动干戈,互不相让。1493年5月,罗马教皇亚历山大六世发布训谕,规定佛得角群岛以西100里格处,自北极至南极划一条线,区分西、葡的势力范围。1494年6月,两国据此正式签订了《托德西拉斯条约》,并同意将此线西移至西经43°40'。麦哲伦船队环球航行后,两国在太平洋再起冲突,并于1529年签订《萨拉戈萨条约》,规定在摩鹿加群岛以东17°处划一线,线的东西两侧分别为西班牙和葡萄牙的势力范围。这两项条约,揭开了欧洲殖民列强瓜分世界的序幕。 文艺复兴 14世纪中叶至17世纪初在欧洲发生的思想文化运动。这个运动始于意大利,后扩大到英、法、德、西等欧洲国家。一些新生的资产阶级及其知识分子在“复兴”古代希腊罗马文化的号召下,把矛头直接指向教会神权统治,他们以人文主义为旗帜,主张尊重自然和人权,强调发展个性,反对禁欲主义;提倡科学文化,反对迷信愚昧;表现乐观主义,反对悲观主义。因而人文主义成为文艺复兴时期的主要思潮,也是新文化的基本内容,它逐渐形成为资产阶级思想体系。表面看来,文艺复兴是复兴希腊、罗马古典文化的运动,但是,它并不是对于古典文化“亦步亦趋”的简单模仿,而在很大程度上是一种创新,它冲破了黑暗的中世纪的重重禁锢,是新兴资产阶级反封建斗争在意识形态领域的反映。在人文主义思想指引下,文学艺术出现了前所未有的繁荣局面,以实验为基础的近代自然科学、唯物主义哲学、新的政治学、史学和教育学相继出现,产生了一大批多才多艺的代表人物,使文艺复兴时代成为硕果累累、人才辈出、灿若群星的时代。 马基雅维里 文艺复兴时期意大利著名政治思想家。出生于佛罗伦萨的一个律师家庭。曾长期担任佛罗伦萨共和国政府外交、军事等要职。因涉嫌反对美第奇家族而被逮捕,不久获释,归隐乡下开始著书。1513年,代表作《君主论》问世。全书26篇,主要论述为君之道。通过对历史和时事的分析,具体说明君主应具备的条件和才能,以及治理国家的策略。明确指出,要使国家统一,唯一的办法是建立一个强有力的、具有无限君权、并掌握强大军队的君主政权。他主张君主应把国家利益放首位。君主为达到政治目的,可以背弃信义、不择手段。在他看来,政治归根结底是力量问题。他的政治学说,反映了新兴资产阶级建立民族国家、实现祖国

电大公共行政学小抄名词解释

1.公共行政学:公共行政学是研究公共组织依法处理政务的有效性、公平性、民主性的规律的交叉性与综合性学科。(在这里公共组织主要是指政府,公共行政就是政府行政。) 2.公共行政环境:公共行政环境是指直接或间接地作用或影响公共组织、行政心理、行政行为和管理方法与技术的行政系统内部和外部的各种要素的总和。 3.组织文化:组织文化是指组织在一定的环境中,逐步形成的全体公共组织成员所共同信奉和遵守的价值观,并支配他们的思维方式和行为准则。(组织文化在政府也可以称之为公共行政组织文化,在企业则称之为企业文化。组织文化包括组织观念、法律意识、道德感情和价值观等。) 4.政府职能:政府职能是指政府在国家和社会中所扮演的角色以及所应起的作用。(换句话说,就是指政府在国家和社会中行使行政权力的范围、程度和方式。) 5.市场失效:市场失效是指因为市场局限性和缺陷所导致资源配置的低效率或无效率,并且不能解决外部经济与外部不经济的问题以及社会公平问题。 6.行政体制:行政体制指政府系统内部行政权力的划分、政府机构的设置以及运行等各种关系和制度的总和。 7.地方政府体制:地方政府体制是指地方政府按照一定的法律或标准划分的政府组织形式. 8.行政区划体制:行政区划体制是指根据一定的原则将全国领土划分为若干部分和若干层次的管理区域,并设置相应的行政机关的组织体制。 9.完整制:完整制又叫一元统属制,是指公共组织的同一层级或同一组织内部的各个部门,完全接受一个公共组织或同一位行政首长的领导、指挥和监督的组织类型。 10.分离制:分离制又称多元领导制,是指一个公共组织的同一层级的各个组织部门或同一组织部门,隶属于两个或两个以上公共组织或行政首长领导、指挥和监督的组织类型。 11.首长制:首长制又称独立制、一长制或首长负责制。它是指行政首长独自掌握决策权和指挥权,对其管辖的公共事务进行统一领导、统一指挥并完全负责的公共组织类型。 12.层级制:层级制又分级制,是指公共组织在纵向上按照等级划分为不同的上下节制的层级组织结构,不同等级的职能目标和工作性质相同,但管理范围和管理权限却随着等级降低而逐渐变小的组织类型。 13.机能制:机能制又称职能制,是指公共组织在横向上按照不同职能目标划分为不同职能部门的组织类型。14.行政领导者:行政领导者是指在行政系统中有正式权威和正式职位的集体或个人。 15.委任制:亦称任命制,是指由立法机关或其他任免机关经过考察而直接任命产生行政领导者的制度。 16.考任制:考任制是指由专门的机构根据统一的、客观的标准,按照公开考试、择优录取的程序产生行政领导者的制度。 17.行政领导权力:行政领导权力是指行政领导者在行政管理活动中,利用其合法地位以不同的激励方式和制约方式,引导下属同心协力达成行政目标的影响力。18..行政领导责任:行政领导责任是指行政领导者违反其法定的义务所引起的必须承担的法律后果。 19.人事行政:人事行政是指国家的人事机构为实现行政目标和社会目标,通过各种人事管理手段对公共行政人员所进行的制度化和法治化管理。20.人力资源:人力资源是指在一定范围内能够作为生产性要素投入社会经济活动的全部劳动人口的总和。它可分为现实的人力资源和潜在的人力资源两部分。 21.程序性决策:也叫常规性决策,是指决策者对所要决策的问题有法可依,有章可循,有先例可参考的结构性较强,重复性的日常事务所进行的决策。 22.非程序性决策:也叫非常规性决策,是指决策者对所要决策的问题无法可依,无章可循,无先例可供参考的决策,是非重复性的、非结构性的决策。 23.危机决策:是指领导者在自然或人为的突发性事件发生后,迅速启动各种突发事件应急机制,大胆预测,做出决定的过程。 24.行政决策参与:是指行政领导者个人或集体在行政决策时,专家学者、社会团体、公民等对决策提出意见或建议的活动。 25.行政执行:行政执行是行政机关及行政人员依法实施行政决策,以实现预期行政目标和社会目标的活动的总和。 26.行政控制:行政控制指行政领导者运用一定的控制手段,按照目标规范衡量行政决策的执行情况,及时纠正和调节执行中的偏差,以确保实现行政目标的活动。27.行政协调:行政协调是指调整行政系统内各机构之间、人员之间、行政运行各环节之间的关系,以及行政系统与行政环境之间的关系,以提高行政效能,实现行政目标的行为。 28.法制监督:法制监督,又称对行政的监督,是指有权国家机关对行政机关及其工作人员是否合法正确地行使职权所进行的监督与控制。 29.舆论监督:舆论监督是指通过在公共论坛的言论空 间中所抒发的舆论力量对政府机构和政府官员滥用权力等不当行为的监督与制约。 30.行政立法:行政立法一般是指立法机关通过法定形 式将某些立法权授予行政机关,行政机关得依据授权法(含宪法)创制行政法规和规章的行为。 31.行政法规:行政法规是指国务院根据宪法和法律,按照法定程序制定的有关行使行政权力,履行行政职责的规范性文件的总称。 32.标杆管理: 标杆管理是指公共组织通过瞄准竞争的 高目标,不断超越自己,超越标杆,追求卓越,成为强中之 强组织创新和流程再造的过程. 33.政府全面质量管理:政府全面质量管理是一种全员 参与的、以各种科学方法改进公共组织的管理与服务的,对公共组织提供的公共物品和公共服务进行全面管理,以获得顾客满意为目标的管理方法、管理理念和制度。 34.行政效率:行政效率是指公共组织和行政工作人员 从事公共行政管理工作所投入的各种资源与所取得的成果和效益之间的比例关系。 35.行政改革:行政改革是指政府为了适应社会环境,或者高效公平地处理社会公共事务,调整内部体制和组织结构,重新进行权力配置,并调整政府与社会之间关系的过程。 36.政府再造:政府再造是指对公共体制和公共组织绩 效根本性的转型,大幅度提高组织效能、效率、适应性以及创新的能力,并通过改革组织目标、组织激励、责任机制、权力结构以及组织文化等来完成这种转型过程。

世界近代史名词解释

世界近代史名词解释 1.地理大发现—— 西方史学家对15至18世纪欧洲一系列航海活动的通称。15世纪后,由于对外贸易的需要和对贵金属的渴求,在宗教狂热和人文主义精神的鼓舞下,西欧一些探险家开始寻找通向东方的新航路。1492年,哥伦布航抵“美洲”,开辟了欧美航线;1498年达?伽马开辟自西欧绕过非洲南端直达印度的航路;1519—1522年麦哲伦与其同伴首次环球航行。地理大发现,引起了商业革命和西方国家殖民掠夺的狂潮,加速了西欧封建制度的解体和资本主义关系的成长,预示了世界史上一个新时代的来临。 2.商业革命—— 16世纪欧洲商业的突然扩大和新的世界市场兴起的现象被称为商业革命。新航路的发现,给新兴的资产阶级开辟了新的活动场所,欧洲人的经商范围由地中海一带扩展到大西洋及世界各地,欧洲与亚洲、非洲、美洲之间都有了商业往来,世界市场扩大。各地对欧洲商品的需求也在扩大,使贸易额和商品种类都大为增加。商业革命对欧洲封建社会的解体和资本主义生产方式的兴起,起了很大的推动作用。 3.文艺复兴—— 文艺复兴是14至17世纪欧洲文化和思想史上的一次重大的新文化运动。因欧洲思想文化界人士力图恢复希腊、罗马典文化,使之“复活”、“再生”,“文艺复兴”即由此得名。文艺复兴起源于意大利,15世纪后期传播到英法德等其他西欧国家,运动的中心是意大利。文艺复兴的指导思想人文主义,是一种以人为中心,为创造现世的幸福而奋斗的乐观进取的精神。文艺复兴时期在文学、艺术、政治思想和自然科学等方面都取得了辉煌的成就。文艺复兴运动是欧洲历史上第一次思想解放运动,具有重要的历史意义:促使欧洲人开始以神为中心过渡到以人为中心,唤醒了人们的进取精神、创造精神和科学实验精神;文艺复兴创造的光辉灿烂的文化是人类文明的重要组成部分。 4.人文主义—— 文艺复兴运动的主要思潮,是早期资产阶级的思想体系。人文主义一词来源于拉丁文,又译为“人道主义”或“人本主义”,其思想核心是个人主义。它是资产阶级用来反对封建束缚,谋求自身政治经济地位的思想武器。其基本特征是:以人为本,强调个人“才能”和自我奋斗;重视现世生活,反对宗教禁欲主义,反对经院哲学;否认对教皇和教会的绝对服从;反对封建特权和等级制;提倡理性,重视科学实验;表现乐观主义精神,反对悲观主义;欣赏资产阶级的文学艺术。人文主义对于人们摆脱神权的束缚,争取自由平等乃至推翻封建统治,都具有巨大进步作用 5.克伦威尔——

电大专科《公共行政学》名词解释简答题题库及答案(试卷号:2202)

电大专科《公共行政学》名词解释简答题题库及答案(试卷号:2202) 盗传必究 一、名词解释 1.政府职能:是指政府在国家和社会中所扮演的角色以及所应起的作用。 2.行政区划体制:是指根据一定的原则将全国领土划分为若干部分和若干层次的管理区域,并设置相应的行政机关的组织体制。 3.完整制:又叫一元统属制,是指公共组织的同一层级或同一组织内部的各个部门,完全接受一个公共组织或同一位行政首长的领导、指挥和监督的组织类型。 4.行政效率:是指公共组织和行政工作人员从事公共行政管理工作所投入的各种资源与所取得的成果和效益之间的比例关系。 5.市场失效:是指因为市场局限性和缺陷所导致资源配置的低效率或无效率,并且不能解决外部性问题以及社会公平问题。 6.行政体制:指政府系统内部行政权力的划分、政府机构的设置以及运行等各种关系和制度的总和。 7.程序性决策:也叫常规性决策,是指决策者对所要决策的问题有法可依,有章可循,有先例可参考的结构性较强,重复性的日常事务所进行的决策。 8.行政法规:是指国务院根据宪法和法律,按照法定程序制定的有关行使行政权力,履行行政职责的规范性文件的总称。 9. 管理幅度:是指领导机关或领导者直接领导下属的部门或人员的数额。 10.行政决策参与:是指行政领导者个人或集体在行政决策时,专家学者、社会团体、公民等对决策提出意见或建议的活动。 11.电子政府:是指在政府内部采用电子化和自动化技术的基础上,利用现代信息技术和网络技术,建立起网络化的政府信息系统,并利用这个系统为政府机构、社会组织和公民提供方便、高效的政府服务和政务信息。 12. 公共行政学:是研究公共组织依法处理政务的有效性、公平性、民主性的规律的交叉性与综合性学科。 13. 行政领导责任:是指行政领导者违反其法定的义务所引起的必须承担的法律后果。 14. 风险型决策:是指决策者对决策对象的自然状态和客观条件比较清楚,也有比较明确的决策目标,但是实现决策目标结果必须冒一定风险。 15. 事前监督:是指在某种公共行政管理活动开展之前,监督部门围绕公共行政管理主体的行政行为进行的监督检查。 16. 政府再造:是指对公共体制和公共组织绩效根本性的转型,大幅度提高组织效能、效率、适应性以及创新的能力,并通过改革组织目标、组织激励、责任机制、权力结构以及组织文化等来完成这种转型

世界现代史名词解释

世界现代史 名词解释: 1.美西战争:美西战争是1898年,为夺取属地、和而发动的战争,是列强重新瓜分的第一次战争。和既有重要的价值,又是分别向和扩张的。新兴的拥有雄厚的、军事潜力,已建立起一支较强大的。 2.门户开放政策:在整个范围,列强都有进行贸易的权利。它的主要精神是利益均沾,机会平等。不论是在哪个列强的内,不论是否在或都实行这个原则。是美国侵华行动的“里程碑”。受到列强的普遍欢迎,由此而使得列强在侵华步骤上取得暂时的一致。避免了列强因在华利益的相互抵触而使得列强间本以十分尖锐的矛盾进一步激化。也由此而使得列强由争夺在华利益而转化为在这个问题上相互合作。 3.日俄战争:是指1904年2月,与为了侵占东北和,在中国东北的土地上进行的一场战争。以沙皇俄国的失败而告终。日俄战争促成日本在东北亚取得军事优势,并取得在、中国东北驻军的权利,令俄国于此的扩张受到阻挠。日俄战争的陆上战场是清朝本土的,而清朝政府却被逼迫宣布中立,甚至为这场战争专门划出了一块交战区。日、俄、中(清)三方在这场中都蒙受到了严重损失,并为之后各国的发展道路造成了一定的影响。 4.三国同盟:这是第一次世界大战时帝国主义列强结成的军事与政治集团。1879年,德国、奥匈帝国为了对抗俄国与法国缔结军事同盟条约。1882年意大利加入,三国同盟正式形成。三国同盟的目标直接对准法国。后意大利于1915年脱离同盟国集团,转而加入协约国集团。同年,保加利亚与土耳其则相继加入同盟国。1918年11月,同盟国集团在与协约国的军事战争中失败,最终随着德国的战败,同盟国集团瓦解。 5.三国协约:第一次世界大战期间与三国同盟相对抗的帝国主义集团,由英、法、俄三国于1904—1907年期间签订一系列协议而组成。1893年为抗衡德、意同盟,法俄首先签订军事协定。面临日益增长的德国威胁,英法调整在殖民地上的矛盾,于1904年签订英法协约。随后在日俄战争中遭到失败的俄国为了摆脱自己的困境,也于1907年和英国签订英俄协约。至此协约国最终形成。第一次世界大战期间,日、意、美等二十五国先后加入。十月革命后,苏俄宣布出。1918年德国投降后,美、英、法、日等帝国主义曾以协约国的名义三次向苏俄发动武装干涉,均遭失败。因协约国间矛盾不断加深,逐步瓦解。 6.马恩河战役:1914年5月,德军在进攻中,右翼第一、二集团军之间出现了50公里宽的暴露地段,补英法联军楔入,被迫撤退。联军开始反攻但其后受阻,遂设防固守,此为马恩河战役。马恩河战役是第一次世界大战中的第一次大规模战略决战,以德军第一次撤退和失败,联军取得胜利告终,联军向前推进改革60公里。马恩河之战是大战的第一个转折点,德军在6周内打败法国的计划宣告破产。 7.坦能堡战役:第一次世界大战期间协约国与同盟国军队在东线的一次重要战役。一战爆发后,俄军为配合西线协约国的军事作战,于1914年8月在东线发动军事进攻,但由于其指挥系统差,后勤补给困难,东线德军在兴登堡与鲁登道夫的指挥下,最终击溃入侵俄军,俄军全线溃败,12万人被俘。德军在东线由此从防御进入进攻,最终在12月,在俄国内陆战局陷入僵持状态。

公共行政学名词解释

1.委员会制 委员会制是指在公共组织中,由两个人以上掌握决策权和指挥权,按照多数原则进行决策的公共组织类型。 2.层级制 层级制又分级制,是指公共组织在纵向上按照等级划分为不同的上下节制的层级组织结构,不同等级的职能目标和工作性质相同,但管理范围和管理权限却随着等级降低而逐渐变小的组织类型。 3.机能制 机能制又称职能制,是指公共组织在横向上按照不同职能目标划分为不同职能部门的组织类型。 4.战略管理 公共组织的战略管理是指对公共组织在一定时期的全局的、长远的发展方向、目标、任务和政策,以及资源调配做出的决策和管理艺术。 5.政府再造的含义 政府再造是指对公共体制和公共组织绩效根本性的转型,大幅度提高组织效能、效率、适应性以及创新的能力,并通过改革组织目标、组织激励、责任机制、权力结构以及组织文化等来完成这种转型过程。 政府再造就是用企业化体制取代官僚体制,即创造具有创新习惯和持续改进质量能力的公共组织和公共体制,而不必靠外力驱使。 企业家政府是政府再造的重要内容。企业家政府是指具有企业家精神的行政管理者,用企业的管理方式,以低成本高产出为目标,敢于冒风险、敢于创新、敢于打破僵化官僚体制,取得高绩效的政府。

企业家政府重视政府的成本效益,重视创新与改革,强调利用市场机制和竞争,强调对执行者授权,主张顾客导向,主张放松规制。 6.目标管理的涵义和特点 目标管理是以目标为导向,以人为中心,以成果为标准,而使组织和个人取得最佳业绩的现代管理方法。目标管理的特点是以人、工作和成果为中心的现代管理方法。 7.行政规章的含义 行政规章是指特定的行政机关根据法律和法规,按照法定程序制定的具有普遍约束力的规范性文件的总称。行政规章简称规章。 8.事前监督; 事前监督是指在某种公共行政管理活动开展之前,监督部门围绕公共行政管理主体的行政行为进行的监督检查。 9.行政评估的含义 行政评估是指对行政执行活动的进展情况和效果进行评价和总结,包括行政执行过程评估和行政执行效果评估两个方面。一般意义上所说的行政评估主要是指行政执行效果评估。 10.行政领导权力的概念 行政领导权力是指行政领导者在行政管理活动中,利用其合法地位以不同的激励方式和制约方式,引导下属同心协力达成行政目标的影响力。 11.完整制 完整制又叫一元统属制,是指公共组织的同一层级或同一组织内部的各个部门,完全接受一个公共组织或同一位行政首长的领导、指挥和监督的组织类型。

世界近代史名词解释

世界近代史名词解释 价格革命16至17世纪西欧社会上出现的金银贬值、物价上涨的现象。新航路开辟后,西班牙等国从殖民地掠回大量金银,使欧洲贵金属的储量急剧增长,从而引起欧洲各国通货膨胀。至16世纪末,西班牙的物价平均上升四倍多,英、法、德等国的物价平均上涨二至二点五倍。价格革命打乱了传统的经济关系。其结果是从事商业的人大发横财,新兴资产阶级的经济力量愈益增长,而靠传统方式收取地租的封建地主的地位受到削弱,收入微薄的劳动者的生活日益下降,价格革命加速了西欧各国资本原始积累的进程和封建制的解体。 商业革命16世纪欧洲商业的突然扩大和新的世界市场兴起的现象被称为商业革命。新航路的发现,给新兴的资产阶级开辟了新的活动场所,欧洲人的经商范围由地中海一带扩展到大西洋及世界各地,欧洲与亚洲、非洲、美洲之间都有了商业往来。各地对欧洲商品的需求也在扩大,使贸易额和商品种类都大为增加。工业的发展、商业活动的迅速扩大以及殖民制度的建立,对欧洲封建社会的解体和资本主义生产方式的兴起,起了很大的推动作用。商业革命是产业发展所引起的,而商业革命开发了广大市场,又促进了资本主义经济的发展。 地理大发现:西方史学家对15至18世纪欧洲航海者一系列航海活动的通称。15世纪后,西欧商品货币经济迅速发展,引起了封建贵族、大商人和新兴资产阶级对贵金属的渴求。《马可?波罗行记》对东方富庶的夸张描绘,进一步煽动着欧洲人的寻金热情。15世纪中叶以后,阿拉伯人与奥斯曼土耳其人垄断了东西方传统通道,也促使西欧寻找通向东方的新航路。此外,快速帆船的制造,指南针用于航海及地圆学说的盛行使远洋航行成为可能。最初由葡萄牙、西班牙两国组织远洋航行。1492年,哥伦布航抵“美洲”,开辟了欧美航线;1498年达?伽马开辟自西欧绕过非洲南端直达印度的航路;1519—1522年麦哲伦与其同伴首次环球航行。新航路的开辟和美洲的发现,扩大了世界市场,开始了西方国家殖民掠夺的狂潮。欧洲的商业中心逐渐由地中海地区转移到大西洋沿岸。由此加速了西欧封建制度的解体和资本主义关系的增长,预示了世界史上一个新时代的来临。 文艺复兴:14世纪中叶至17世纪初在欧洲发生的思想文化运动。这个运动始于意大利,后扩大到英、法、德、西等欧洲国家。一些新生的资产阶级及其知识分子在“复兴”古代希腊罗马文化的号召下,把矛头直接指向教会神权统治,他们以人文主义为旗帜,主张尊重自然和人权,强调发展个性,反对禁欲主义;提倡科学文化,反对迷信愚

公共行政学作业3答案

公共行政学作业3答案 一、名词解释 1、行政监察管辖:行政监察管辖,是指对某个监督对象确定由哪一级或者哪一个行政监察机关实施监督和哪一级或者哪一个行政监察机关对哪些特定监督事项有权进行管辖的法律制度。 2、招标性采购:是指通过招标的方式,邀请所有的或一定范围的潜在的供应商参加投标,采购主体通过某种事先确定并公布的标准从所有投标商中评选出中标供应商,并与之签订合同的一种采购方式。 3、标杆管理:是指一个组织瞄准一个比其绩效更高的组织进行比较,以便取得更好的绩效。 4、行政诉讼:所谓行政诉讼,就是公民或法人对行政机关或行政工作人员就违法行政行为向司法机关提起诉讼。俗称“民告官”。 二、单项选择题 1.整个行政执行过程中最具实质意义的、最为关键的阶段是( C )。 A.协调阶段 B.总结阶段 C.实施阶段 D.准备阶段 2.对具有公务员身份的中国共产党党员的案件,需要给予处分的,由( D )给予处分。

A.检察机关 B.行政监察机关 C.党的纪律检查机关 D.党的纪律检查机关和行政监察机关 3.国家预算中占主导地位的是( A )。 A.中央预算 B.县级预算 C.省级预算 D.市级预算 4.根据《立法法》,行政法规和规章应当在公布后的( B )天内报有关部门备案。 A.15 B.30 C.45 D.60 5.批准是一种约束力较强的( A )监督方式。其内容包括:要求监督对象报送审批材料、审查和批准(含不批准)三个基本步骤。 A.事先 B.事中 C.事后 D.全面 6.从20世纪( C )年代开始,西方发达国家相继开始进行行政改革,然后许多发展中国家因为实行市场化也进行不同程度的行政改革。 A.50 B.60 C.70 D.80 7.为了解决在实施决策的过程中出现的而一时又难以查清原因的问题的决策方案,称为( D )。 A.积极方案 B.追踪方案 C.应变方案 D.临时方案 8.行政决策体制的核心( D )。

世界近代史名词解释和问答题

《世界近代史》课程作业 一、名词解释 1.教皇子午线:1494 年经教皇仲裁,西班牙和葡萄牙在世界上划分势力范围的分界线。 1492年哥伦布到达美洲后,西、葡两国为争夺殖民地、市场和掠夺财富,长期进行战争。为缓和两国日益尖锐的矛盾,由教皇亚历山大六世(1492~1503在位)出面调解,于1494年6月7日两画了一条线,线西归西班牙,东归葡萄牙,此即所谓“教皇子午线”。 这条由教皇作保规定的西、葡两国势力范围的分界线,开创近代殖民列强瓜分世界、划分势力范围的先河。(参课本P19) 2.人文主义:文艺复兴时期,资产阶级表现在文学、艺术、教育、哲学和自然科学等方面的思想内容,通常被称为人文主义。 人文主义是一种哲学理论和一种世界观,以人为衡量一切事物的标准。作为文艺复兴时期主要的社会思潮,他的核心是:肯定人,注重人性,要求把人从宗教束缚中解救出来。反对神权,提倡人权;反对神性,提倡人性;反对封建特权,提倡自由平等;反对教会蒙昧主义,提倡发展文化教育;反对封建割据和外族入侵,主张中央集权和民族独立。 人文主义是资产阶级的世界观和历史观,是资产阶级反封建、反中世界神学世界观的思想武器。同时我们也应看到,对人文主义的过分推崇,造成文艺复兴运动个人私欲的膨胀、泛滥和社会混乱。 3.薄伽丘:乔万尼·薄伽丘(1313—1375),一译卜伽丘,意大利文艺复兴运动的杰出代表,人文主义者。 代表作《十日谈》批判宗教守旧思想,揭露教会的虚伪和腐化,提倡个性解放,歌颂人对现世生活的追求。主张“幸福在人间”,被视为文艺复兴的宣言。创作了西欧

文学史上第一部心理小说《菲亚美达》;其与但丁、彼特拉克合称“文学三杰”。 4.因信称义:是德国神学家马丁·路德的神学思想核心。 他认为,基督徒之所以是自由的,是因为他们“因信称义”,不再受善功律的支配,他们通过自己的信仰而与基督建立了新的个人关系。信徒不必依靠教会极其繁琐的宗教礼仪,只凭对上帝对的虔诚信仰就可以得到灵魂的拯救。内容有:1.圣经乃唯一的、最高的成就。2.平信徒皆为祭司3.僧俗平等,恪守天职。 这一宗教伦理是对天主教会所宣扬的“行为称义”的否定,所蕴含的是一种积极的人生态度。具有宗教情感的个人主义与文艺复兴中具有理性的个人主义结合在一起,成为早期资本主义发展的重要精神动力之一。 5.预定论: 由宗教改革家加尔文(1509——1564)提出,也成为加尔文派的奠基。 预定论认为神的旨意是绝对的,也是无条件的,一切有限的受造物联合起来也不能影响神的旨意,这旨意完全是神在永恒里安排的。神是万物的主宰,伟大而有能力,安排大自然的运行,支配人类的历史,任何细节都在他的掌管之下。其内容为将人分为“选民”和“弃民”。 预定论提出了解放人的思想,鼓励人们在世俗生活中去发财致富。 6.开明专制:18世纪下半叶欧洲一些国家封建专制君主执行的一种政策,是为了适应资本主义发展和阶级矛盾尖锐化而进行的具有明显资本主义色彩的改革。 当时,欧洲大陆诸国的封建制度日趋衰落,资本主义生产关系在封建社会内有所发展。各国封建君主为了巩固其专制统治,接过了法国启蒙学者要求改革的旗帜,宣称要进行自上而下的改革。把自己装扮成“开明”的君主,高喊“开明”的口号,进行种种改革,如改革教会,兴办教育事业,编纂法典等 “开明专制”的时代是从普鲁士国王弗里德里希二世登基时开始的。他自称“国家的第一

最新国家开放大学电大《公共行政学》名词解释题库及答案(试卷号2202)

最新国家开放大学电大《公共行政学》名词解释题库及答案(试卷号2202) 名词解释 1.具体行政环境 具体行政环境也叫组织环境,是指具体而直接地影响和作用于公共组织、行政行为和组织凝聚力的公共组织的内部与外部环境的总和。 2.集权制 集权制是指行政权力集中在上级政府或行政首长手中,上级政府或行政首长有决策、指挥、监督的权力,下级处于服从命令听从指挥的被动地位,一切行政行为要按照上级政府或行政首长的指令来行动,自主权很少。 3.行政法规 行政法规是指国务院根据宪法和法律,按照法定程序制定的有关行使行政权力,履行行政职责的规范性文件的总称。 4.行政效率 行政效率是指公共组织和行政工作人员从事公共行政管理工作所投入的各种资源与所取得的成果和效益之间的比例关系。 5.行政决策参与 是指行政领导者个人或集体在行政决策时,专家学者、社会团体、公民等对决策提出意见或建议的活动。 6.行政协调 是指调整行政系统内各机构之间、人员之间、行政运行各环节之间的关系,以及行政系统与行政环境之间的关系,以提高行政效能,实现行政目标的行为。 7.行政诉讼 是公民、法人和其他组织对行政主体的违法行政行为向人民法院寻求司法救济的法律制度。 8.目标管理 是以目标为导向,以人为中心,以成果为标准,而使组织和个人取得最佳业绩的现代管理方法。 9.公共行政 是指公共组织对公共事务的管理。在这里公共组织是指政府,因此也可以说公共行政就是政府行政。 10.地方行政体制 是地方政府按照一定的法律或标准划分的政府组织形式。 11.层级制 又称分级制,是指公共组织在纵向上按照等级划分为不同的上下节制的层级组织结构,不同等级的职

世界近代史-名词解释

明治维新日本历史上的一次政治革命。它推翻德川幕府,使大政归还天皇,在政治、经济和社会等方面实行大改革,促进日本的现代化和西方化。1871年废藩置县,摧毁了所有的封建政权。明治政府的主要目标是实现工业化。军事工业以及交通运输都得到很大发展。到20世纪初,明治维新的目标基本上已经完成,日本在现代工业国的道路上前进。 西进运动北美独立战争到南北战争爆发前后向北美大陆西部移民拓殖扩张、掠夺印第安人土地的运动。美国独立后阻止移民西进的敕令,来自沿海地区和欧洲的移民涌向西部。在西进运动过程中,出现3次巨大的移民高潮。1890年,西进运动正式结束。西进运动使美国的领土增加到建国时的3倍以上,扩大了发展工业所需的各种基本资源,对美国社会制度和资本主义的发展以及美利坚民族性格的形成都产生了巨大的影响。 普法战争德国完成统一的第三次王朝战争。普奥战争后,位于德国西南部的邦国在法国支持下仍然独立,德意志的统一还未完成。俾斯麦积极准备用兵法国。1870年7月,战争爆发。战争以法国军队的进攻为开始,但在普鲁士军队的反击下,战场很快就转移到法国境内。9月1日,双方在色当进行大会战,法国军队再次惨败,拿破仑三世率领10万法军投降。普法战争以普鲁士的胜利而宣告结束。1870年年底,德意志西南部的4个邦国加入“北德意志联邦”,德意志终于实现统一。 《1787年联邦宪法》美国宪法,也是近代西方国家第一部成文宪法。1787年9月17日费城制宪会议上通过。宪法以三权分立为基本原则。以立法、行政、司法的三权分立为国家机构的组织原则,实行总统制。行政权属于总统,总统任期4年,有权任命部长、缔结条约,但须经国会同意,国会对总统、部长的渎职行为有权弹劾;国会是立法机关,由参、众两院组成,负责批准条约,制订税率立法。但总统对国会立法有否决权。司法权属最高法院,大法官由总统任命,须经国会批准,任取终身,有解释宪法的权力。以上三条旨在将立法、行政、司法之权分立,互相制约。宪法同时也带有明显的种族压迫条款,没有触动奴隶制。后增加了10项关于人权的补充条款,规定言论、出版、集会等权利。宪法对加强联邦政府权力,巩固资产阶级统治有很大作用,沿用至今。 吉伦特派法国大革命中代表工商业资产阶级的政治派别。吉伦特派的主要成员最初属于雅各宾俱乐部,后在俱乐部内形成了一个独立的新派别,因该派领袖人物多来自西南部的吉伦特郡而得名。成员主要是与西部和南部的工商业资产阶级有较密切联系的知识分子和律师。1792年8月10日起义之后,以吉伦特派成员为主组成临时政府,开始吉伦特派执掌政权时期。吉伦特派主张废除君主制,建立共和国、但认为法国革命应当止步,恢复秩序。1793年初法国局势恶化,前线吃紧,市场物资匮乏,物价飞涨,群众要求限制物价,打击投机商。吉伦特派则坚持经济自由原则,不愿实行对经济的干涉和管制。吉伦特派逐渐失去民心,1793年5月31日至6月2日,雅各宾派领导巴黎群众起义,迫使议会下令逮捕吉伦特派首领,结束了吉伦特派统治。在恐怖时期,吉伦特派首脑人物被大批处死或自杀。热月政变后,该派残余势力构成热月党的骨干。 开明专制18世纪下半叶欧洲一些国家封建专制君主执行的一种政策。当时,欧洲大陆诸国的封建制度日趋衰落,资本主义生产关系在封建社会内有所发展,社会阶级矛盾尖锐。各国封建君主为了巩固其专制统治,接过了法国启蒙学者要求改革的旗帜,宣称要进行自上而下的改革。他们利用伏尔泰希望有一个开明的君

《公共行政学》作业1-4参考答案

《公共行政学》作业1答案 一、名词解释: 1、地方政府体制:是地方政府按照一定的法律或标准划分的政府组织形式。。 2、非营利组织:是指组织的设立和经营不是以营利为目的,且净盈余不得分配,由志愿人员组成,实行自我管理的、独立的、公共或民间性质的组织团体。 3、人事行政:是指国家的人事机构为实现行政目标和社会目标,通过各种人事管理手段对公共行政人员所进行的制度化和法治化管理。 4、公文管理:就是对公文的创制、处置和管理,即在公文从形成、运转、办理、传递、存贮到转换为档案或销毁的一个完整周期中,以特定的方法和原则对公文进行创制加工、保管料理,使其完善并获得功效的行为或过程。 二、单项选择: 1.被称为“人事管理之父”和行为科学的先驱者的是( C )。 A.普耳B.斯密C.欧文D.斯图亚特 2.公共行政生态学的代表作《公共行政生态学》于1961年发表,该书的作者是( A)。A.里格斯B.古立克C.德鲁克D.高斯 3.20世纪30年代,古立克把管理职能概括为( A)。 A.计划、组织、人事、指挥、协调、报告、预算 B.领导、决策、组织、指挥、协调、人事、预算 C.计划、领导、人事、指挥、组织、报告、预算 D.计划、领导、人事、沟通、协调、组织、预算 4、职位分类最早产生于19世纪的( B )国,后被许多国家所效仿。 A、法 B、美 C、中 D、英 5、由立法机关或其他任免机关经过考察而直接任命产生行政领导者的制度是(C)。 A、选任制 B、考任制 C、委任制 D、聘任制 6.公共行政学研究的核心问题是( A)。 A.政府职能B.行政监督C.行政决策D.行政体制 7.法国第五共和国宪法所确立的一种中央政府体制是( C)。 A.内阁制B.总统制C.半总统制D.委员会制 8.内阁制,起源于18世纪的( A)国,后来为许多西方国家所采用。 A.英国B.美国C.日本D.加拿大 9.我国最早提出学习行政学的是梁启超,他于1876年在( B)中提出“我国公卿要学习行政学”。 A.《行政学原理》B.《论译书》C.《行政学的理论与实际》D.《行政学》10.对于一般的省、市、县、乡而言,实行民族自治的自治区、自治州、自治县、自治乡就是( A)的行政区。 A.特殊型B.发展型C.传统型D.现代型 三、多选题: 1.下列属于文化环境要素的是( BCDE)。 A.法律制度B.意识形态C.道德伦理D.价值观念E.教育 2.国家公务员的培训主要有( BCDE)等几种形式。 A.综合培训B.更新知识培训C.任职培训D.业务培训E.初任培训3.下列国家实行总统制的有( AD )。 A.墨西哥B.德国C.新加坡D.埃及E.丹麦

2013世界近代史名词解释

圈地运动 圈地运动贵族用暴力大规模剥夺农民土地的一种方式。以英国为典型,自15世纪末叶开始,历300余年。15世纪末,由于英国毛织业迅速发展,引起羊毛价格上涨,致使养羊业成为十分有利可图的行业。于是大贵族侵占大量公有地和农民的耕地,将土地用壕沟和栅栏圈围起来,雇佣少量工人放牧羊群。大批农民失去土地无以为生,沦为流浪者。这一现象被托马斯?莫尔比喻为“羊吃人”。16世纪中叶,英国宗教改革过程中,圈地运动又在教产还俗的土地上广泛发展起来。农民破产导致政府税收减少和兵源枯竭,亦增加了社会的不安定因素。因此都铎王朝颁布了一系列“血腥立法”,残酷迫害流浪者。17世纪英国资产阶级革命后,国会通过一系列法令,使圈地运动合法化。圈地运动是资本主义性质的土地关系变革,是资本原始积累的重要手段之一,促进了英国资本主义的发展。 重商主义 15至18世纪西欧国家的一种经济政策和早期资本主义生产方式的一种经济学说。亚当?斯密称之为“商业的或重商的体系”,故名。中心内容是:货币拥有量是国家贫富的标志,发展对外贸易以获取金银是积累国家财富的重要途径,国家采取鼓励制成品出口、颁布航海法令、大力发展航海业和军需工业、奖励造船、给予贸易公司以垄断特权等方法直接干预经济。早期重商主义持货币差额论,主张禁止硬币输出,增加金银输入;晚期重商主义持贸易差额论,主张发展制造业,扩大外贸出超,以获得大量货币输入。重商主义是资本原始积累时期代表商业资本利益的意识形态,错误地认为利润来自流通过程,但其对商业保护主义政策在当时曾促进了早期资本主义的发展。随着工业革命的产生和发展,重商主义逐渐废弃。 独立宣言 英属北美殖民地反对英国殖民统治,宣布美国独立的纲领性文件。由杰斐逊等五人起草,杰斐逊执笔,1776年7月4日第二届大陆会议通过。该文件阐释了资产阶级的自然权利和人民主权的思想,列举了英王压迫北美人民的暴行,从而深刻揭示了北美独立的正当性和必要性。宣布北美殖民地是拥有主权的独立国家,解除与英国的一切从属关系。宣言反映了北美人民的利益和愿望,推动了反英独立斗争,对法国大革命和拉美独立运动也产生了深远影响。7月4日被定为美国的独立日。 人权宣言 法国资产阶级革命的纲领性文件。在法国资产阶级革命爆发之前,1789年7月9日,第三等级的代表把国民议会改为制宪议会,8月26日通过《人权和公民权宣言》,后来被简称为《人权宣言》。宣言开宗明义指出,“人在权利上是生来并永远平等的”。《宣言》宣布了资产阶级的政治主张:自由、财产、安全和反抗压迫是天赋不可剥夺的人权;言论、信仰、著述和出版自由;人民主权、代议制和三权分立;法律面前人人平等、罪行法定主义和无罪推定;私有财产神圣不可侵犯。《人权宣言》是在法国启蒙思想、美国《独立宣言》指导和影响之下产生的,它提出的“自由、平等、博爱”的口号成为法国资产阶级推翻封建统治的革命口号。《人权宣言》在当时鼓舞了人民的革命情绪,成为反封建专制制

《公共行政学》名词解释题库

《公共行政学》名词解释题库 说明:1.试卷号码:2202; 2.资料整理于2019年1月15日,更新至2019年1月试题及答案。 1.办公自动化:是指在行政机关工作中,以计算机为中心,采用一系列现代化的办公设备和先进的通信技术,广泛、全面、迅速地收集。整理、加工、存储和使用信息,为科学管理和决策服务,从而达到提高行政效率的目的。 2.标杆管理:是指公共组织通过瞄准竞争的高目标,不断超越自己,超越标杆,追求卓越,成为强中之强组织创新和流程再造的过程。 3.财政支出:也称为公共支出或政府支出,是指政府为履行其职能,将筹集与集中的资金,进行有计划的社会再分配的过程。 4.层级制:又称分级制,是指公共组织在纵向上按照等级划分为不同的上下节制的层级组织结构,不同等级的职能目标和工作性质相同,但管理范围和管理权限却随着等级降低而逐渐变小的组织类型。 5.程序性决策:也叫常规性决策,是指决策者对所要决策的问题有法可依,有章可循,有先例可参考的结构性较强,重复性的日常事务所进行的决策。 6.地方行政体制:是国家为了方便行政管理的实施,而划分行政区域、设立地方分治机构的制度和惯例。为国家地方行政制度在地域上的体现,是国家实施行政管理的重要组成部分。地方行政制度的管理类型、管理层次的确定,其合理性、科学性与否,影响着整个国家的行政管理体制。 7.地方政府体制:是地方政府按照一定的法律或标准划分的政府组织形式。 8.电子政府:是指在政府内部采用电子化和自动化技术的基础上,利用现代信息技术和网络技术,建立起网络化的政府信息系统,并利用这个系统为政府机构、社会组织和公民提供方便、高效的政府服务和政务信息。 9.法制监督:又称对行政的监督,是指有权国家机关对行政机关及其工作人员是否合法正确地行使职权所进行的监督与控制。 10.反馈行政效率:是指公共组织和行政工作人员从事公共行政管理工作所投入的各种资源与所取得的成果和效益之间的比例关系。 11.非程序性决策:也叫非常规性决策,是指决策者对所要决策的问题无法可依,无章可循,无先例可供参考的决策,是非重复性的、非结构性的决策。 12.非正式沟通:是一种通过正式规章制度和正式组织程序以外的其他各种渠道进行的沟通。 13.分离制:又称多元领导制,是指一个公共组织的同一层级的各个组织部门或同一组织部门,隶属于两个或两个以上公共组织或行政首长领导、指挥和监督的组织类型。 14.分权制:是指上级行政机关或行政首长给予下级充分的自主权,下级可以独自进行决策和管理,上级不予干涉的公共组织类型。 15.风险型决策:是指决策者对决策对象的自然状态和客观条件比较清楚,也有比较明确的决策目标,但是实现决策目标结果必须冒一定风险。 16.公共财政:指的是仅为市场经济提供公共服务的政府分配行为.它是国家财政的一种具体存在形态.即与市场经济相适应的财政类型。 17.公共行政:是指公共组织对公共事务的管理。在这里公共组织是指政府,因此也可以说公共行政就是政府行政。 18.公共行政环境:是指直接或间接地作用或影响公共组织、行政心理、行政行为和管理方法与技术的行政系统内部和外部的各种要素的总和。 19.公共行政学:是研究公共组织依法处理政务的有效性、公平性、民主性的规律的交叉性与综合性学科。 20.公共组织绩效评估:是指公共组织通过一定的绩效信息和评价标准,对公共组织所提供的公共物品和公共服务的效率和质量进行全面的控制和监测活动,是公共组织的一项全面的管理措施。 21.公共组织结构:是指公共组织各要素的排列组合方式,是由法律所确认的各种正式关系的模式。 22.公文:是指行政机关在行政管理活动中产生的,按照严格的、法定的生效程序和规范的格式制定的具有传递信息和记录作用的载体。 23.公务员:是指依法履行公职、纳人国家行政编制、由国家财政负担工资福利的工作人员。在西方, 1

世界近代史名词解释

世界近代史名词解释 负毯者进军 工业革命继续发展后,1817年,曼彻斯特的失业工人组织了向伦敦的进军。他们打算向议会递交请愿书,要求改善他们的生活状况。他们在行进途中,像士兵一样背着折叠起来的毛毯,所以这次运动又称“负毯者进军” 彼得卢屠杀 1819年8月16日发生在英国曼彻斯特圣彼得广场上的一场流血惨案。由于镇压这次集会的军队,有的曾参加过4年前的滑铁卢战役,群众乃讥称这次流血惨案为彼得卢屠杀。 1832年议会改革 背景:工业革命展开后,新兴工业资产阶级为维护自身利益,强烈要求参 与国家管理。1830年,在法国七月革命的冲击下,英国再次掀起改革运动 高潮。资产阶级和工人都发动起来,改革的呼声响彻全国。集会、游行此 起彼伏,有些地方甚至发生暴动。内容: 1.重新分配议席,取消许多已 经衰败的选区,减少一些选区的议席,人口增加的选区议席增多,新兴工 业城市取得较多议席。 2.更改选举资格,降低选民的财产和身份要求, 扩大选民范围,大大增加选民人数,工业资产阶级和富农得到选举权以和 平的方式削弱了贵族保守势力,工业资产阶级得以更多的分享政权,但是 广大工人,雇农,妇女仍被排斥于政治之外。定义:1832年议会改革为代 议制,议会由选举产生的议员组成,代表选民行使国家权利。也就是“集 体统治”。作用:适应了工业革命需要,增强了工业资产阶级在议会中的 作用。意义:君主立宪制确立了资产阶级代议制度,有利于促进资产阶级 民主,防止独裁统治,还得以和平方式解决利益纠纷,避免暴力冲突。 (英)保守党、自由党 维多利亚统治时期,英国议会里,存在着两党制,1832年改革后,托利党和 辉格党分别改名为保守党和自由党。这两个党仍然交替地操纵着英国的政治。 保守党仍然代表土地贵族特别是大农场主的利益,但50、60年代时,保守党 的统治不能再长久维持,自由党已站到了首要地位此时自由党不仅代表大地主 和金融资产阶级的利益而且也部分的代表工商业资产阶级的利益。在两党交替 执政的过程中,19世纪前半期保守党占优势50——60年代责有自由党长期执 政,在1848到1868这二十年里,即使在自由党在野的四年中,虽然由保守党 执政但事实也执行了本质上跟自由党相似的政策。 (俄)西方派、斯拉夫派 “西方派”反对专制制度和农奴制度,但不赞成采取革命手段消灭他们,而 是主张通过渐进的改革,废除农奴制,建立西欧式的君主立宪制,以实现俄国资 本主义工业化。1848年分裂为革命民主主义派和自由派。

相关主题
文本预览
相关文档 最新文档