当前位置:文档之家› 三角函数+立体几何知识点

三角函数+立体几何知识点

三角函数+立体几何知识点
三角函数+立体几何知识点

三角函数 解三角形

??

???

正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角

2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.

第一象限角的集合为{}36036090,k k k αα?<

第二象限角的集合为{}36090360180,k k k α?+

第三象限角的集合为{}360180360270,k k k αα?+<

第四象限角的集合为{}360270360360,k k k αα?+<

终边在x 轴上的角的集合为{}180,k k αα=?∈Z

终边在y 轴上的角的集合为{}18090,k k αα=?+∈Z

终边在坐标轴上的角的集合为{}90,k k αα=?∈Z

3、与角α终边相同的角的集合为{}360,k k ββα=?+∈Z

4、已知α是第几象限角,确定

()*

n n

α

∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n

α

终边所落在的区域.

5、长度等于半径长的弧所对的圆心角叫做1弧度.

6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r

α=. 7、弧度制与角度制的换算公式:

2360π= ,π弧度 180=,1180

π=

弧度,1弧度 )180(π

='

1857 ≈

8、若扇形的圆心角为()

αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,

211

22

S lr r α==.

9.三角函数定义:,cos ,sin r x r y ==

ααx

y

=αtan 10.三角函数线的特征是:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”.

11各象限角的各种三角函数值符号: 一全二正弦,三切四余弦

sin y r α=

cos x r α= tan y x

α=, 12.同角三角函数的基本关系:

()221sin cos 1αα+= ()2

2

2

2s i n

1c o s

,c o s 1s i n αααα=-=-;

()

sin 2tan cos α

αα

= sin sin tan cos ,cos tan αααααα?

?== ???

13.角函数的诱导公式:

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()tan 2tan k παα+=.

()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.

口诀:函数名称不变,符号看象限.

()5sin cos 2π

αα??-=

???,cos sin 2παα??

-= ???. ()6sin cos 2παα??+= ???,cos sin 2παα??

+=- ???

. 口诀:正弦与余弦互换,符号看象限.

14.两角和与差的正弦、余弦、正切公式:

①sin()sin cos cos sin αβαβαβ±=±②cos()cos cos sin sin αβαβαβ±= ③tan tan tan()1tan tan αβ

αβαβ

±±=

④sin 22sin cos ααα=;⑤2222cos2cos sin 2cos 112sin ααααα=-=-=-;⑥α

α

α2

tan 1tan 22tan -=

。 15.三角函数的化简、计算、证明的恒等变形的基本思路是:

“一角二名三结构”。即首先观察角与角之间的关系;第二看函数名称之间的关系,通常“切化弦”; 第三观察代数式的结构特点。

(1)巧变角:如()()ααββαββ=+-=-+,2()()ααβαβ=++-,

2()()αβαβα=+--,22

αβαβ++=?,()(

)

222αββ

ααβ+=---等;

(2)三角函数次数的降升

(降幂公式:21cos2cos 2αα+=,21cos 2sin 2

α

α-=与升幂公式:21cos22cos αα+=,21cos22sin αα-=)。

(3)设置辅助角

:()sin cos a x b x x θ+=

+(其中θ角所在的象限由a , b 的符号确定,

θ角的值由tan b

a

θ=

确定)在求最值、化简时起着重要作用。 16.图像变换

法一:函数sin y x =的图象上所有点向左(右)平移?个单位长度,得到函数()sin y x ?=+的图象;再将函数()sin y x ?=+的图象上所有点的横坐标伸长(缩短)到原来的

1

ω

倍(纵坐标不变),得到函数()sin y x ω?=+的图象;再将函数()sin y x ω?=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍

y

T

A x

α B S

O M P

(横坐标不变),得到函数()sin y x ω?=A +的图象.

法二:函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的

1

ω

倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移

?

ω

个单位长度,得到函数

()sin y x ω?=+的图象;再将函数()sin y x ω?=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍

(横坐标不变),得到函数()sin y x ω?=A +的图象.

R R

,2x x k k ππ??≠+∈Z ????

18.函数()()sin 0,0y x ω?ω=A +A >>的性质: ①振幅:A ;②周期:2π

ω

T =

;③频率:12f ω

π

=

=

T ;④相位:x ω?+;⑤初相:?. 函数()sin y x ω?=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则

()max min 12y y A =

-,()max min 12y y B =+,()21122

x x x x T

=-<. 19五点描点法

20.正弦定理:在△ABC 中,

R C

c

B b A a 2sin sin sin === (1)可解决问题:①已知两边和一角 ②已知两角和一边,可以求出其它所有的边和角。 (2)正弦定理的变形公式:

①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R

=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c

C C

++===

A +

B +A B . 21.三角形解的个数的讨论 方法一:画图看

方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。

(1)若A≥90°时,则有 ①a>b 时有一解; ②a ≤b 时无解.

(2)若A<90°时,则有 ①若a <bsinA ,则无解; ②若a =bsinA ,则有一解;

③若bsinA <a <b ,则有两解; ④若a ≥b ,则有一解. 22.余弦定理: 2

2

2

2cos a b c bc =+-A ,2

2

2

2cos b a c ac =+-B ,2

2

2

2cos c a b ab C =+-.

(1)余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac

+-B =,222

cos 2a b c C ab +-=.

(2)可解决问题:①已知三边求三角 ②已知两边及夹角,解三角形

23. 三角形面积公式:111

sin sin sin 222

C S bc ab C ac ?AB =

A ==

B . 24.在△AB

C 中:①sin(A+B)=sinC ,cos(A+B)=--cosC ,sin 2B A +=cos 2C ,cos 2

B

A +=sin 2C

②若2

2

2

a b c +=,则90C = ; 若222a b c +>,则90C < ; 若222a b c +<,则90C >

. ③A 、B 、C 成等差数列的充要条件是?=60B

④ABC ?是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列 ⑤等边对等角,等角对等边,大边对大角,大角对大边。 ⑥三角形的任意两边之和大于第三边,任意两边之差小于第三边。

六常规函数的图像

常规函数图像主要有:

指数函数:逆时针旋转,对数函数:逆时针旋转,

底数越来越大底数越来越小

幂函数:逆时针旋转,指数越来越

大。其他象限图象看函数奇偶性确定。

重心:三角形三条中线交点.

外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.

第九章 直线、平面、简单几何体

Ⅰ、平行与垂直位置关系的论证

1、线线、线面、面面平行关系的转化:

αβ

αγβγ

//,// ==??

??a b a b

面面平行性质 ??

?

?

?

2、 线线、线面、面面垂直关系的转化:

面面垂直判定

α

面面垂直定义

αβαβ

αβ

=--

?⊥

?

?

?

l l

,且二面角

成直二面角

3、平行与垂直关系的转化:

面面∥

线面垂直判定2面面平行判定2

a b

a

b

//

?⊥

?

?

?

α

α

a

b

a b

?

?

?

?

α

α

//

a

a

?

?

?

?

α

β

αβ

//

αβ

α

β

//

a

a

?

?

?

4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。”其中核心的位置关系

是,它既与其它位置关系有着最紧密的联系,又是解决角度与距离问题的前提,所以在解答立体几何题时,尽可能地先从图形中找出线面垂直的位置关系

Ⅱ、空间中的角与距离的数量关系的求法

三类角的求法:转化为平面角“一找、二作、三指、四算”

即:(1);(2);

(3)(4)

1 、异面直线所成的角θ:

(1)定义:如图

(2)范围:

(3)求法:

注:(1)求异面直线所成的角的最关键是要找出一个点,

把其作为角的顶点,然后把两条直线“平行平移”过来,这个角就完成了。这个点有

时很好找,中点、交点、对称点等。

(2)若用平移转化烦琐或无法平移时,可考虑是否异面垂直,即可通过证明垂直的位置关系得

到90°的数量关系

2、直线与平面所成的角: (1)定义:如图

(2)范围:

(时,∥或)θαα=??0b b

(3)求法:

即三余弦定理: (其中α、β、θ分 别是斜线与射影(即线与面)、射影与面内线、斜线与面内线所成的角)

3、二面角:

(1)定义 :

(2)求法:如图,即所谓的常见的点、线、面法

另外,还有

公式法:①、利用面积射影公式,即 (直棱柱中截面与底面夹角)

②、利用异面直线上任意两点间的距离公式θcos 22

2

2

2

mn d n m l -++=

向量法:最后是向量的夹角还是其补角,要在图形中注出法向量的方向后判定,若方向是

同进同出,则是其补角,若是一进一出,则就是此角

注:(1)当二面角由两个等腰三角形构成时,利用底面的两个中线 (2)求正棱锥侧面夹角时,利用全等三角形

(3)若是无棱二面角,一种办法是作出交线,利用结论:若三个平面两两相交于在三条直线,则

三条直线平行或相交于一点,即要么作平行线,要么延长相交,就能作出交线。

另外,也可用面积射影公式

锐角三角函数与动点问题

锐角三角函数与动点问题教学设计 吉林省白山市抚松县外国语学校迟金梅 【教学内容分析】 锐角三角函数在中考各种题型中出现的频率非常高,尤其特殊角的三角函数值的应用非常广泛。近几年来,以特殊直角三角形为背景的动点问题也成了各省中考的热点问题,也是难点问题。这类问题通常以特殊几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 它的综合性比较强,能较全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。很多学生一见到动点问题,就感到头痛,觉得无从下手。本节课就以两道中考题为例,对特殊的锐角三角函数在动点问题中的应用进行了探究,意在让学生经历分析动点问题的一般过程,体会特殊角三角函数值在解决问题过程中的快捷、优化解题过程的作用和优势;通过几何画板的动态演示,让学生感受图形的变化规律,渗透分类讨论思想、数形结合思想和数学建模思想;同时通过专题复习,使学生建构知识体系,形成解决动点问题的一般策略。 【教学目标】 知识与技能: 1、巩固锐角三角函数的概念,熟记特殊角的三角函数值,并能恰当运用锐角的三角函数进行解题; 2、初步养成边读题、边标注、边分析的习惯,学会把动点问题化整为零,分散难点,各个击破; 3、能利用特殊角的三角函数值或特殊三角形的性质和定理解决与特殊直角三角形有关的动点问题。 过程与方法: 经历分析动点问题的一般过程,感受图形的变化规律,渗透分类讨论思想、数形结合思想和数学建模思想,通过专题复习,建构知识体系,形成解决动点问题的一般策略。 情感态度价值观: 通过动手实践、合作交流等活动,培养学生探索的精神和合作交流能力,激发学生学习数学的兴趣和信心。 【教学重点】 在运动变化过程中,探索图形变化规律,借助特殊角的锐角三角函数建立等量关系、表达线段长。 【教学难点】 在复杂图形中探索两个图形重合部分的面积与时间的函数关系,找准图形状态发生改变的临界点,准确画出符合题意的图形。 【教学准备】制作几何画板动态演示课件

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:2 222 1 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换

4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

九年级数学锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA=, ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 2、取值范围】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边 ) (sin = A =______, 斜边)(sin = B =______; ②斜边 )( cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

2.如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点, ?= ∠4 3 sin AOC 求AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: 1.在Rt △ABC 中,∠C =90°,若BC =1,AB =5,则tan A 的值为 A . 5B .25 C .12 D .2 2.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B .45 C .34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2.求:sin B 、cos B 、tan B . 2. 如图,直径为10的⊙A 经过点(05)C , 和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( ) A . 12 B .32 C .35 D .4 5 D C B A O y x 第8题图

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

锐角三角函数的图文解析

锐角三角函数的图文解析 一、选择题 1.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( ) A .3 B .23 C .63 D .33 【答案】B 【解析】 【分析】 证明△OBE 是等边三角形,然后解直角三角形即可. 【详解】 ∵四边形ABCD 是菱形,∴OD =OB ,CD =BC . ∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB . ∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°. ∵∠DEB =90°,∴BD = 23sin603 DE =?. 故选B . 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】

在Rt△BDE中,cosD=DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3 5 ,则下列结论正确的个数有() ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm. A.1个B.2个C.3个D.4个【答案】C 【解析】 【分析】 根据菱形的性质及已知对各个选项进行分析,从而得到答案 【详解】 ∵菱形ABCD的周长为20cm ∴AD=5cm ∵sinA=3 5 ∴DE=3cm(①正确) ∴AE=4cm ∵AB=5cm ∴BE=5﹣4=1cm(②正确) ∴菱形的面积=AB×DE=5×3=15cm2(③正确) ∵DE=3cm,BE=1cm ∴10(④不正确) 所以正确的有三个. 故选C. 【点睛】 本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键 4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

三角函数与解三角形(师)

三角函数与解三角形 一、 y=Asin (ωx+φ)函数的图像与性质重难点突破 二、经验分享 【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】 用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3 0,,,,222 π πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换: sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短 (0≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1 ω 倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换: 函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”). 一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的: (1) 先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的 1 ω 倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

人教版初中数学锐角三角函数的难题汇编及解析

人教版初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( ) A .60海里 B .45海里 C .3 D .3 【答案】D 【解析】 【分析】 根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案. 【详解】 解:由题意可得:∠B=30°,AP=30海里,∠APB=90°, 故AB=2AP=60(海里), 则此时轮船所在位置B 处与灯塔P 之间的距离为:22303AB AP -= 故选:D . 【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. 2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C 点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知:32 2 AE = .

sin∠AOD= 3 2 ,∴∠AOD=60°; sin∠AOE= 2 2 ,∴∠AOE=45°; ∴∠BAC=75°. 当两弦共弧的时候就是15°. 故选:C. 【点睛】 此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形. 3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为() A.23B.3C.33D.3 【答案】A 【解析】 【分析】 【详解】 设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,3, 所以BD=BA=2x,即可得33)x, 在Rt△ACD中,tan∠DAC= (32) 32 CD x AC + ==, 故选A. 4.直角三角形纸片的两直角边长分别为6,8,现将ABC V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE ∠的值是()

锐角三角函数的难题汇编

锐角三角函数的难题汇编 一、选择题 1.cos60tan45 +o o的值等于() A.3 2 B. 2 2 C. 3 2 D.1 【答案】A 【解析】 【分析】 根据特殊角的三角函数值计算即可.【详解】 解:原式 13 1 22 =+=. 故选A. 【点睛】 本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值. 2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为() A.πB.2πC.3πD.31)π 【答案】C 【解析】 【分析】 3 为2,据此即可得出表面积. 【详解】 3的正三角形. ∴正三角形的边长 3 2 ==. ∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π ∴侧面积为1 222 2 ππ ??=,∵底面积为2r ππ =, ∴全面积是3π.

故选:C . 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 3.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( ) A . 35 B . 45 C . 34 D . 43 【答案】C 【解析】 试题分析:如答图,过点O 作OD ⊥BC ,垂足为D ,连接OB ,OC , ∵OB=5,OD=3,∴根据勾股定理得BD=4. ∵∠A= 1 2 ∠BOC ,∴∠A=∠BOD. ∴tanA=tan ∠BOD=4 3 BD OD =. 故选D . 考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 4.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ?沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

解三角形与三角函数专题

三角函数与解三角形 1.已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期; (2)求f (x )在区间??????0,2π3上的最小值. 2.(2019·济南调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2). (1)求cos A 的值; (2)求sin(2B -A )的值. 3.已知函数f (x )=sin 2x -cos 2x +23sin x cos x (x ∈R ). (1)求f (x )的最小正周期; (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,c =5,cos B =1 7,求△ABC 中线AD 的长.

4.(2018·湘中名校联考)已知函数f (x )=cos x (cos x +3sin x ). (1)求f (x )的最小值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B ,2cos 2B 2-1),B 为锐角且m ∥n . (1)求角B 的大小; (2)如果b =2,求S △ABC 的最大值. 6.(2019·信阳二模)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C . (1)求角A 的大小; (2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值.

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

武汉市初中数学锐角三角函数的知识点

武汉市初中数学锐角三角函数的知识点 一、选择题 1.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是() A.B.C.D. 【答案】D 【解析】 【分析】 根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案; 【详解】 解:当0

∴△ABC是等边三角形,∴∠ABC=60°, ∴CP=BC×sin60°=8× 3 2 =43,BP=4, BN=4x,BM=2x, 2 42 BM x x BP ==, 2 BN x BC =, ∴= BM BN BP BC , 又∵∠NBM=∠CBP, ∴△NBM∽△CBP, ∴∠NMB=∠CPB=90°, ∴ 11 44383 22 CBP S BP CP =??=??= V ; ∴ 2 NBM CBP S BN S BC ?? = ? ?? V V , 即y= 22 2 83=23 2 NBM CBP BN x S S x BC ???? =?=? ? ? ???? V V , 当2

三角函数与解三角形练习题

三角函数及解三角形练习题 一.解答题(共16小题) 1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小. 2.已知3sinθtanθ=8,且0<θ<π. (Ⅰ)求cosθ; (Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域. 3.已知是函数f(x)=2cos2x+asin2x+1的一个零点. (Ⅰ)数a的值; (Ⅱ)求f(x)的单调递增区间. 4.已知函数f(x)=sin(2x+)+sin2x. (1)求函数f(x)的最小正周期; (2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的值域. 5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f()=(<α<),求cos(α+)的值. 7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π]. (1)若∥,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值. 8.已知函数的部分图象如图所示.

(1)求函数f(x)的解析式; (2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值围. 9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π. (Ⅰ)求函数f(x)的解析式; (Ⅱ)若f(α﹣)=,求cos2α的值. 10.已知函数. (Ⅰ)求f(x)的最大值及相应的x值; (Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值. 11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f ()=0.

初三锐角三角函数知识点与典型例题

初三锐角三角函数知识 点与典型例题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

锐角三角函数: 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边) (sin = A =______, 斜边)(sin =B =______; ②斜边) (cos =A =______, 斜边) ( cos = B =______; ③的邻边 A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练:

2014年几何专题训练锐角三角函数和投影与视图

2014年几何专题训练锐角三角函数和投影与视图

2014年几何专题训练锐角三角函数和投影与视图 一.选择题(共20小题) 1.(2013?昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为() .C D. 2.(2012?孝感)如图,在塔AB前的平地上选择一点C,测出看塔顶的仰角为30°,从C点向塔底走100米到达D 点,测出看塔顶的仰角为45°,则塔AB的高为() 米米D.米 3.(2012?内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为() .C D. 4.(2012?杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则() 5.(2011?衡阳)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()

m C.m 6.(2010?丹东)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是() D )m 7.(2009?兰州)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为() 8.(2009?广州)已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,如图所示,则sinθ的值为() .C D. 9.(2009?黑河)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是() .C D.

高三数学理科《三角函数与解三角形》专题训练

高三数学理科《三角函数与解三角形》专题训练 1.已知点P (tan α,cos α)在第三象限,则角α的终边在第几象限( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若扇形圆心角的弧度数为2,且扇形弧所对的弦长也是2,则这个扇形的面积为( ) A.1sin 21 B.2sin 22 C.1cos 21 D.2cos 22 3.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-4 5 ,则m 的值为( ) A .-12 B.12 C .-32 D.32 4.已知α是第一象限角,tan α=3 4 ,则sin α等于( ) A.45 B.35 C .-45 D .-35 5.若点P (m ,n ) (n ≠0)为角600°终边上一点,则m n =________. 6.已知tan α tan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α (2)sin 2α+sin αcos α+2. 7.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (2 009)=3,则f (2 010)的值是( ) A .-1 B .-2 C .-3 D .1 8.已知sin(2π-α)=4 5,α∈() 3,22 ππ,则sin α+cos αsin α-cos α等于 ( ) A.17 B .-17 C .-7 D .7 9.已知cos(π-α)=8 17,α∈() 3,2 ππ,则tan α=________. 10.已知sin(3π+θ)= 13 ,求 cos(π+θ) cos θ[cos(π-θ)-1] + () ()()() cos 233sin cos sin 22 θπππθθπθ ----+的值. 11.如果函数y =3cos (2x +φ)的图象关于点 ( ) 4,03 π 中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2 12.已知函数y =sin πx 3 在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是( ) A .6 B .7 C .8 D .9 13.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在 x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1 B .2 C .3 D .4 14.已知f (x )=sin ( ) 3 x π ω+ (ω>0),()() 63f f π π =,且f (x )在区间 ( ) ,63 ππ 上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ( ) 23 x π + (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ( )26 x π - ③y =f (x )的图象关于点( ) ,06 π - 对称;④y =f (x )的图象关于直线x =-π 6对称. 其中正确的命题的序号是________.(把你认为正确的命题序号都填上) 16.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π 3 时f (x )的值域; (2)若函数f (x )的图象的一条对称轴为x =π 3 ,求ω的值. 17.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π 2 ,直线x = π 3 是其图象的一条对称轴,则它的解析式是( ) A .y =4sin ()46x π + B .y =2sin () 23x π ++2 C .y =2sin () 43x π++2 D .y =2sin () 46x π++2 18.若将函数y =tan ()4x πω+(ω>0)的图象向右平移π 6 个单位长度后,与函数y = tan () 6x πω+的图象重合,则ω的最小值为( )

2020中考数学 几何专项突破:锐角三角函数(含详解版)

2020中考数学 几何专项突破 锐角三角函数(含答案) 典例探究 例1.在Rt △ABC 中,∠C =90°,若sinA =,则cosB 的值是( ) A . B . C . D . 例2.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D .已知cos ∠ACD =,BC =4,则AC 的长为( ) A .1 B . 203 C .3 D.163 例3.cos 60°的值等于( ) A . 13 B . 2 C . 2 D . 3 例4.如图,在半径为1的⊙O 中,∠AOB =45°,则sinC 的值为( ) A. 2 B. C. D. 4

巩固练习-1 1.已知sinA= 2 1 (∠A 为锐角),则∠A=_________,cosA_______,tanA=__________. 2.在Rt △ABC 中,∠C 为直角,1a =,2b =,则cosA=________,tanA=_________. 3.在Rt △ABC 中,∠C 为直角,AB=5,BC=3,则sinA=________, tanA=_________. 4.在Rt △ABC 中,∠C 为直角,∠A=30o,4b =,则a =__________,c =__________. 5.在Rt △ABC 中,∠C 为直角,若sinA= 5 3 ,则cosB=_________. 6.已知cosA= 2 3 ,且∠B=90o-∠A ,则sinB=__________. 7.若∠A 是锐角,且cosA=sinA ,则∠A 的度数是( ) A 、30o B 、45o C 、60o D 、不能确定 8.如图,电线杆AB 的中点C 处有一标志物,在地面D 点处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为 a ,则电线杆AB 的长可表示为 A .a B .2a C .32 a D .52 a 9. 1 012sin 45(2)3-??+-π- ??? o 10. 计算:1 012019tan 603-?? -+--? ??? D C B A

高考真题_三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析 三角函数 一、三角恒等变换(3题) 1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A ) (B (C )12- (D )12 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=1 2 ,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 2.(2016年3卷)(5)若3 tan 4 α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625 【解析】由3tan 4α=,得34sin ,cos 55αα==或34 sin ,cos 55αα=-=-,所以 2161264 cos 2sin 24252525 αα+=+?=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. 3.(2016年2卷9)若π3 cos 45α??-= ???,则sin 2α= (A ) 7 25 (B )15 (C )1 5 - (D )725 - 【解析】∵3cos 45πα??-= ???,2ππ 7sin 2cos 22cos 12425ααα????=-=--= ? ????? ,故选D . 二、三角函数性质(5题) 4.(2017年3卷6)设函数π ()cos()3 f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π 3 x =对称 C .()f x π+的一个零点为π6x = D .()f x 在π (,π)2 单调递减 【解析】函数()πcos 3f x x ? ?=+ ?? ?的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2?? ??? 上先递减后递增,D 选项错误,故选D.

相关主题
文本预览
相关文档 最新文档