当前位置:文档之家› 2021届高考物理一轮复习阶段测评卷(九)动能定理

2021届高考物理一轮复习阶段测评卷(九)动能定理

2021届高考物理一轮复习阶段测评卷(九)动能定理
2021届高考物理一轮复习阶段测评卷(九)动能定理

2021届高考物理一轮复习阶段测评卷(九)

动能定理

1.如图所示,水平转台上有一个质量为m的物块,用长为L的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ角,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则下列说法正确的是()

A.转台一开始转动,细绳立即绷直对物块施加拉力

B.当绳中出现拉力时,转台对物块做的功为μmgL sinθ

C

D.当转台对物块支持力为零时,转台对物块做的功为

2

sin 2cos mgLθ

θ

2.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图所示。重力加速度取10 m/s2。则()

A.该物体的质量为2 kg

B.空气阻力大小为1N

C.物体落回地面时速度大小为m/s

D .物体运动过程中克服阻力做功24J

3.如图所示的水平面内,电动机通过皮带带动两轻质轮,皮带质量为m ,质量分布均匀,厚度远小于两轮半径,皮带与轮子之间不打滑。右轮半径是左轮半径的3倍,忽略转轴的摩擦。A 、B 是放在两轮边缘上质量均为m 的小物块。启动电动机,使系统从静止逐渐加速动起来,若A 、B 始终未滑动,则以下说法正确的是

A .A 、

B 的线速度始终相等

B .动起来以后,A 、B 的向心加速度大小之比始终为3:1

C .当B 的速度由零增加到v 的过程中,它受到的静摩擦力始终指向圆心

D .当B 的速度由零增加到v 的过程中,电动机总共对此系统做功为

232

mv 4.某同学用200N 的力将质量为0.44kg 的足球踢出,足球以10m /s 的初速度沿水平草坪滚出60m 后静止,则足球在水平草坪上滚动过程中克服阻力做的功是( ) A .22 J

B .4.4 J

C .132 J

D .12000 J

5.如图所示在足球赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高度为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功W 为(不计空气阻力、足球可视为质点)( )

A . 12

mv 2 B .mgh C .

12mv 2

+mgh D .

12

mv 2

+mgh 6.下列说法中,正确的是 ( )

A .一定质量的物体,动能不变,则其速度一定也不变

B .一定质量的物体,速度不变,则其动能也不变

C .一定质量的物体,动能不变,说明物体运动状态没有改变

D .一定质量的物体,动能不变,说明物体所受的合外力一定为零

7.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图所示,则力F 所做的功为( )

A .mgl cos θ

B .Fl sin θ

C .mgl (1-cos θ)

D .Fl

8.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv =0

B .Δv =12 m/s

C .W =0

D .W =10.8 J

9.倾角为45 的传送带在电动机带动下始终以0v 的速度匀速上行。相等质量的甲、乙两种不同材料的滑块(可视为质点)分别无初速放在传送带底端,发现甲滑块上升h 高度处恰好与传送带保持相对静止,乙滑块上升

3

h

高度处恰与传送带保持相对静止。现比较甲、乙两滑块均从静止开始上升h 高度的过程中( )

A .甲滑块与传送带间的动摩擦因数大于乙滑块与传送带间的动摩擦因数

B .甲、乙两滑块机械能变化量相同

C .甲运动时电动机对皮带所做的功大于乙运动时电动机对皮带所做的功

D .甲滑块与传送带间摩擦产生的热量等于乙滑块与传送带间摩擦产生的热量

10.质量为m 的滑块沿着高为h ,长为L 的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下

滑到底端的过程中()

A.重力对滑块所做的功等于mgh

B.滑块克服阻力所做的功等于mgh

C.合外力对滑块所做的功等于mgh

D.合外力对滑块所做的功为零

11.如图所示,长为L=10m的水平传送带以v0=4m/s逆时针匀速转动,质量m=1kg的物块以水平初速度v=6m/s滑上传送带,物块与传送带间的动摩擦因数为0.2,不考虑传送带轮轴摩擦等能量损失,重力加速度g=10m/s2,则物块从滑上到离开传送带的过程中,下列说法正确的是()

A.物块离开传送带时的速度大小为6m/s

B.摩擦力对物块先做负功再做正功

C.摩擦力对物块做的功为10J

D.因摩擦产生的热量为50J

12.在机场和火车站对行李进行安全检查用的水平传送带如图所示,当行李放在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪检查,设某机场的传送带匀速前进的速度为0.4

m/s,某行李箱的质量为5 kg,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上的A点,已知传送带AB两点的距离为1.2 m ,那么在通过安全检查的过程中,g取10 m/s2,则().

A.开始时行李箱的加速度为0.2 m/s2

B.行李箱从A点到达B点时间为3.1 s

C.传送带对行李箱做的功为0.4 J

D.传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m

13.如图所示,水平传送带BC顺时针转动,一半径R=1m的竖直粗糙四分之一圆弧轨道AB和传送带在B点平滑连接,一半径为r的竖直光滑半圆弧轨道CD和传送带在C点平滑

连接。现有一质量为m =0.1kg 的滑块(可视为质点)从A 点无初速释放,经过圆弧上B 点时,轨道对滑块的支持力大小为F =2.6N ,滑块从C 点进入圆弧轨道CD 后从D 水平飞出落在传送带上的E 点(图中没有画出)。已知传送带的速率为v 1=2m/s ,BC 间的距离为L =4m ,滑块与传送带之间的动摩擦因数为μ=0.2,g 取10m/s 2,不计空气阻力。求: (1)滑块在圆弧轨道AB 上克服摩擦力所做功W f ;

(2)圆弧轨道CD 的半径r 为多大时,CE 间的距离最大?最大值为多少?

14.如图|所示,地面固定一个圆心为O ,竖直放置的光滑半圆轨道ABC ,B 与O 等高,半径R=0.5m 。木板DE 质量11kg m m ==,长度6m =L ,E 与A 距离 1.5m s =,木板与地面间的动摩擦因数10.1μ=,E 与A 等高,以使E 与A 重合时板上的物体可以滑入半圆轨道,当E 与A 一旦分离,板上物体将落地而无法进入半圆轨道。一个可看作质点的物体质量为22m m =,物体与木板间动摩擦因数20.3μ=,物体可在木板上的任意位置以初速度

0v 开始向右运动,当木板与半圆轨道接触时立即粘连不动,重力加速度210m /s g =。

(1)当物体以速度3m/s 通过A 点时,半圆轨道对物体的支持力是多大; (2)要使物体沿轨道能到达C 点,物体在A 处的速度A v 至少为多大; (3)求物体初速度0v 满足什么条件可以使物体沿轨道到达C 点。

15.如图甲所示,水平传送带的长度L =6 m ,皮带轮的半径R =0.25 m ,皮带轮以角速度ω顺时针匀速转动.现有一质量为1 kg 的小物体(视为质点)以水平速度v 0从A 点滑上传送带,越过B 点后做平抛运动,其水平位移为x .保持物体的初速度v 0不变,多次改变皮带轮的角速度ω,依次测量水平位移x ,得到如图乙所示的x -ω图象.已知重力加速度g =10 m/s 2.回答下列问题:

(1)当0<ω<4 ra d/s时,物体在A、B之间做什么运动?

(2)物块的初速度v0为多大?

(3)B端距地面的高度h为多大?

(4)当ω=24 ra d/s时,求传送带对物体做的功.

参考答案及解析

1.答案:D

解析:A .转台一开始转动时,物体与转台之间的静摩擦力提供向心力,随转速的增加,静摩擦力逐渐变大,当达到最大静摩擦力时物块开始滑动,此时细绳绷直对物块施加拉力,选项A 错误;B .对物体受力分析知物块离开圆盘前合力

2

sin v F f T m r θ=+=①

cos N T mg θ+= ②

根据动能定理知

2

12

k W E mv ==

③ 当弹力

T =0,r =L sinθ④

由①②③④解得

11

sin sin 22

W fL mgL θμθ=

≤ 至绳中出现拉力时,转台对物块做的功为1

sin 2

mgL μθ,故B 错误;

CD .当N =0,f =0,由①②③知

21sin sin tan 22cos mgL W mgL θ

θθθ

==

由①②知0ω=

相互作用,故C 错误,D 正确。 故选D 。 2.答案:D

解析:AB .根据动能定理可得

F 合△h =△E k

解得E k -h 图象的斜率大小

k =F 合

上升过程中有

117236N=12N 3

E mg

F h -+=

= 下落过程中

224824

N=8N 3

k E mg F h --=

= 联立解得

F =2N

m =1kg

故AB

错误。

C .物体落回地面时的动能为48J

,则物体落回地面时速度大小为

v =

== 选项C 错误;

D .物体运动过程中克服阻力做功

0172J-48J 24J f k k W E E =-==

选项D 正确。 故选D 。 3.答案:D

解析:A .A 、B 的线速度大小相等,方向可能不相同,故A 错误;

B .A 、B 的线速度大小相等,根据公式2

v a r

=得,A 、B 的向心加速度大小之比始终为

1:3,故B 错误;

C .当B 的速度由零增加到v 的过程中,B 不是做匀速圆周运动,它受到的静摩擦力不是始终指向圆心,故C 错误;

D .当B 的速度由零增加到v 的过程中,A 、B 和皮带的速度都由零增加到v ,根据能量守恒定律得,电动机总共对此系统做功为

2213

(3)22

W m v mv ==

故D 正确。 故选D 。

4.答案:A

解析:足球在草坪上滚动的过程,由动能定理得

-W f =0-2012

mv 则得,克服阻力做的功

W f =

2012mv =21

0.44102

??J=22J A .22 J ,与结论相符,选项A 正确; B .4.4 J ,与结论不相符,选项B 错误; C .132 J ,与结论不相符,选项C 错误; D .12000 J ,与结论不相符,选项D 错误; 故选A . 5.答案:C

解析:对足球从球员踢出到飞入球门的过程研究,根据动能定理得

2

12

W mgh mv -=

解得

21

2

W mgh mv =+

故C 正确,ABD 错误. 故选C 。 6.答案:B

解析:A 项,物体的动能不变,说明其速度大小不变,但速度方向可能改变,故A 项错误.B 项,由2

12

k E mv =

,速度不变,则其动能一定不变,故B 项正确.C 项,同A 项解析,物体的动能不变,说明其速度大小不变,但速度方向可能改变,则其运动状态可能改变,故C 项错误.D 项,物体的动能不变,根据动能定理可得,其所受合外力做功为零,但不能说明合外力为零.例如匀速圆周运动,合外力与速度方向时刻垂直,合外力不为零,但不做功,物体的动能不变,故D 项错误 故选B 7.答案:C

解析:对小球受力分析,受到重力、拉力F 和绳子的拉力T ,如图

根据共点力平衡条件,有F=mgtanα,故F 随着α的增大而不断变大,故F 是变力;对小球运动过程运用动能定理,得到-mgL (1-cosα)+W=0,故拉力做的功等于mgL (1-cosθ),故选C . 8.答案:BC

解析:A.规定初速度方向为正方向,初速度16m/s v =,碰撞后速度26m/s v =-,则速度变化量为:

2112m/s v v v ?=-=-

负号表示速度变化量的方向与初速度方向相反,所以碰撞前后小球速度变化量的大小为12m/s ,故A 错误, B 正确;

C.运用动能定理研究碰撞过程,由于初、末动能相等,则:

0k W E =?=

碰撞过程中墙对小球做功的大小W 为0,故C 正确,D 错误。 9.答案:BC

解析:A .相等质量的甲,乙两种不同材料的滑块分别无初速放在传送带底端,最终都与传送带速度相等,动能增加量相同,但甲的速度增加的慢,说明甲受到的摩擦力小,故甲滑块与皮带的动摩擦因数小于乙滑块与皮带的动摩擦因数,故A 错误;

B .由于动能增加量相同,重力势能增加也相同,故甲、乙两滑块机械能变化量相同,故B 正确;

CD .动能增加量相同,即

3sin 45sin 453

h

h h f mgh f mg ??-=-甲乙 得

3f f =乙甲

相对位移

=3x x 甲乙

滑块与皮带间摩擦生热为等于系统内能的增加量,根据=Q fx 知甲滑块与皮带摩擦产生的热量大于乙滑块与皮带摩擦产生的热量,电动机对皮带做的功等于系统摩擦产生的内能和滑块机械能的增加量,由于滑块机械能增加相同,则甲运动时电动机对皮带所做的功大于乙运动时电动机对皮带所做的功,故C 正确,D 错误。 故选BC 。 10.答案:ABD

解析:A .重力做功与路径无关,只与下降高度有关,故重力做功等于mgh ,选项A 正确;

B .由动能定理可知0f mgh W -=,故滑块克服阻力做功等于mgh ,选项B 正确; CD .由动能定理可知,合外力对滑块做功为零,选项

C 错误,

D 正确。 故选ABD 。 11.答案:BD

解析:A .刚滑上传送带时,物块做匀减速直线运动,速度减为0的位移

2

09m

==μ

可知物体到达传送带最右端之前已经减速为0,之后左做匀加速运动,速度达到与传送带速度相同时,与传送带相对静止,所以再次回到出发点的速度大小为4m/s 时,方向向左,因此物块离开传送带的速度为4m/s ,故A 错误;

B .由A 选项的分析可知,物块先向右做匀减速直线,再向左做匀加速直线,所以摩擦力先做负功,再做正功,故B 正确;

C .根据动能定理,摩擦力对物块做的功为

22

01110J 22

f W mv mv =

-=- 故C 错误;

D .根据牛顿运动定律可知,物体的加速度

22m/s a g μ==

所以物体的运动时间

046

s 5s 2

v v t a ---=

==- 物体的位移为

2101

5m 2

x v t at =+=

传送带的位移为

2020m x v t ==

所以物块和传送带之间的相对位移

1225x x x m ?=+=

摩擦产生的热

50J Q mg x =?=μ

故D 正确, 故选BD 。 12.答案:BCD

解析:行李开始运动时由牛顿第二定律有:μmg=ma ,所以得:a="2" m/s 2,故A 错误;物体加速到与传送带共速的时间10.40.22

v t s s a =

==,此时物体的位移:11

0.042x vt m =

=,则物体在剩下的x 2=1.2m-0.04m=1.96m 内做匀速运动,用时间22 2.9x

t s v

==,则行李箱从A 点到达B 点时间为t=t 1+t 2="3.1" s ,选项B 正确;行李最后

和传送带最终一起匀速运动,根据动能定理知,传送带对行李做的功为:W=1

2

mv 2="0.4"

J ,故C 正确;在传送带上留下的痕迹长度为:0.04?22vt vt

s vt m =-==,故D 正确.故选BCD .

13.答案:(1) 0.2J ;(2)r=0.05m 时,x CE 最大为0.2m 解析: (1)由牛顿第二定律可得

2B

v F mg m R

-=

解得

4m /s B v =

=

由动能定理可得

212

f B mgR W mv -=

解得

2

10.2J 2

f B W mgR mv =-=

(2)设滑块在传送带上运动距离x 时,与传送带达到共同速度,有

2211122

B mgx mv mv μ-=

- 解得

2

213m 4m 2B v v x L g

μ-==<=

∴滑块在传送带上先减速后匀速,离开传送带的速度为

12m /s v =

离开传送带后滑块先沿圆弧轨道CD 做圆周运动

22111222

D mv mg r mv =?+ 滑块飞离D 点后做平抛运动,有

CE D x v t =

2

122

r gt =

解得当r=0.05m 时,x CE 最大为0.2m 。

14.答案:(1)56N ; (2)5m /s ;(3)08/9/m s v m s 解析:(1)当物体以速度3m/s 通过A 点时,根据向心力公式有:

2

22v F m g m R

-=

代入数值解得半圆轨道对物体的支持力:

56N F =

(2)要使物体沿轨道能到达C 点,则有:

2

22

c v m g m R

= 解得

2c v gR =

由A 到C 由机械能守恒有:

2222211

222

A c m v m v m g R =+? 代入数值解得物体在A 处的速度A v 至少为:

5m/s A v =

(3)若板半圆轨道接触前与物体共速,对木板加速过程有:

()2211211m g m m g m a μμ-+=

解得:

213m /s a =

又2

112v a s =共,1s s

解得:

3m /s v 共

而物体能到C 时

5m /s A v v =共

故该情况不成立。

所以木板与物体不会共速,设物体距E 为x 处开始运动 对木板有:

21112

s a t =

解得:

11s t =

对物体有:

2222m g m a μ=

解得:

223m /s a =

又:

201211

2

x s v t a t +=-

其中满足:

x L

021A v a t v - 02111v a t a t -

联立解得08/9/m s v m s

15.答案:(1)匀减速直线运动;(2)5 m/s ;(3)1.25 m ;(4)5.5 J

解析:试题分析:(1)0<ω<4 ra d/s 时,物体在传送带上一直做匀减速直线运动

(2)由图象看出ω≤ω1=4 ra d/s 时,物体在传送带上一直减速,经过B 端时的速度大小v 1=ω1R =1 m/s

当ω≥ω2=28 ra d/s 时,物体在传送带上一直加速.经过B 端时速度大小v 2=ω2R =7 m/s 物体的加速度a =μg

22202v v gL μ-=

22102v v gL μ-=-

得v 0=5 m/s

(3)由图可以看出水平速度为1 m/s 时,水平距离为0.5 m ,下落时间t =0.5 s 得2

12

h gt =

=1.25 m (4)当ω=24 ra d/s 时,物体先加速运动,当速度v 3=rω=0.25×24 m/s =6 m/s 时,物体和传送带保持相对静止,由动能定理得

22101122

W mv mv =

- 解得W =5.5 J

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

最新高考物理动能与动能定理练习题及答案

最新高考物理动能与动能定理练习题及答案 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理解析版汇编

高中物理动能与动能定理解析版汇编 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能定理和能量守恒专题

弄死我咯,搞了一个多钟 专题四动能定理及能量守恒(注意大点的字) 一、大纲解读 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常及牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力

要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功及否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移及力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往 考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力及速度间的夹角。一般用于求某一时刻的瞬时功率。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)求滑块与斜面间的动摩擦因数μ; (2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值; (3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】 试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR - μmgcos37° 2sin 37R ? =0-0 解得:μ=0.375 ⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ① 在C 点时,根据牛顿第二定律有:mg +N =2C v m R ② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37° 2sin 37R ?=2 12 C mv - 2 012 mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3 ⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④ 在竖直方向的位移为:y = 2 12 gt ⑤ 根据图中几何关系有:tan37°= 2R y x -⑥ 由④⑤⑥式联立解得:t =0.2s 考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

高考物理专题复习 动能 动能定理练习题

2008高考物理专题复习 动能 动能定理练习题 考点:动能.做功与动能改变的关系(能力级别:Ⅰ) 1.动能 (1)定义:物体由于运动而具有的能量叫做动能. (2)计算公式:221mv E k = .国际单位:焦耳(J). (3)说明: ①动能只有大小,没有方向,是个标量.计算公式中v 是物体具有的速率.动能恒为正值. ②动能是状态量,动能的变化(增量)是过程量. ③动能具有相对性,其值与参考系的选取有关.一般取地面为参考系. 【例题】位于我国新疆境内的塔克拉玛干沙漠,气候干燥,风力强劲,是利用风力发电的绝世佳境.设该地强风的风速v =20m/s,空气密度ρ=1.3kg/m 3,如果把通过横截面积为s=20m 2的风的动能全部转化为电能,则电功率的大小为多少?(取一位有效数字). 〖解析〗时间t 内吹到风力发电机上的风的质量为 vts m ρ= 这些风的动能为 22 1mv E k = 由于风的动能全部转化为电能,所以发电机的发电功率为 W s v t E P k 531012 1?≈== ρ 2.做功与动能改变的关系 动能定理 (1)内容:外力对物体做的总功等于物体动能的变化.即:合外力做的功等于物体动能的变化. (2)表达式: 12k k E E W -=合 或k E W ?=合 (3)对动能定理的理解: ①合W 是所有外力对物体做的总功,等于所有外力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+…….特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功. ②因动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关,一般以地球为参考系. ③不论做什么运动形式,受力如何,动能定理总是适用的. ④做功的过程是能量转化的过程,动能定理中的等号“=”的意义是一种因果联系的数值上相等的符号, 它并不意谓着“功就是动能的增量”,也不意谓着“功转变成动能”,而意谓着“合外力的功是物体动能变化的原因,合外力对物体做多少功物体的动能就变化多少”. ⑤合W >0时,E k2>E k1,物体的动能增加; 合W <0时,E k2

高考物理动能与动能定理练习题及解析

高考物理动能与动能定理练习题及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理专题汇编物理动能与动能定理(一)

高考物理专题汇编物理动能与动能定理(一) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。开始时让连着A 的细线与水平杆的夹角α。现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求: (1)当细线与水平杆的夹角为β(90αβ<

2.如图,在竖直平面内,半径R =0.5m 的光滑圆弧轨道ABC 与粗糙的足够长斜面CD 相切于C 点,CD 与水平面的夹角θ=37°,B 是轨道最低点,其最大承受力F m =21N ,过A 点的切线沿竖直方向。现有一质量m =0.1kg 的小物块,从A 点正上方的P 点由静止落下。已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s 2,不计空气阻力。 (1)为保证轨道不会被破坏,求P 、A 间的最大高度差H 及物块能沿斜面上滑的最大距离L ; (2)若P 、A 间的高度差h =3.6m ,求系统最终因摩擦所产生的总热量Q 。 【答案】(1) 4.5m ,4.9m ;(2) 4J 【解析】 【详解】 (1)设物块在B 点的最大速度为v B ,由牛顿第二定律得: 2B m v F mg m R -= 从P 到B,由动能定理得 2 1()02 B mg H R mv += - 解得 H =4.5m 物块从B 点运动到斜面最高处的过程中,根据动能定理得: -mg [R (1-cos37°)+L sin37°]-μmg cos37°?L =2102 B mv - 解得 L =4.9m (3)物块在斜面上,由于mg sin37°>μmg cos37°,物块不会停在斜面上,物块最后以B 点为中心,C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量 Q =mg (h +R cos37°) 解得 Q =4J 3.如图所示,光滑水平轨道距地面高h=0.8m ,其左端固定有半径R=0.6m 的内壁光滑的半圆管形轨道,轨道的最低点和水平轨道平滑连接.质量m 1=1.0kg 的小球A 以v 0=9m/s 的速度与静止在水平轨道上的质量m 2=2.0kg 的小球B 发生对心碰撞,碰撞时间极短,小球A 被

高考物理——动能与动量

动量与能量 测试时间:90分钟 满分:110分 第Ⅰ卷 (选择题,共48分) 一、选择题(本题共12小题,共48分。在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.[2017·河北冀州月考]在光滑的水平桌面上有两个在同一直线上运动的小球a 和b ,正碰前后两小球的位移随时间变化的关系如图所示,则小球a 和b 的质量之比为 ( ) A .2∶7 B .1∶4 C .3∶8 D .4∶1 答案 B 解析 由位移—时间图象的斜率表示速度可得,正碰前,小球a 的速度v 1= 1-41-0 m/s =-3 m/s ,小球b 的速度v 2=1-01-0 m/s =1 m/s ;正碰后,小球a 、b 的共同速度v =2-16-1 m/s =0.2 m/s 。设小球a 、b 的质量分别为m 1、m 2,正碰过程,根据动量守恒定律有m 1v 1+m 2v 2=(m 1+m 2)v ,得m 1m 2=v -v 2v 1-v =14 ,选项B 正确。 2.[2017·江西检测]如图所示,左端固定着轻弹簧的物块A 静止在光滑的水平面上,物块B 以速度v 向右运动,通过弹簧与物块A 发生正碰。已知物块A 、B 的质量相等。当弹簧压缩到最短时,下列说法正确的是( )

A.两物块的速度不同 B.两物块的动量变化等值反向 C.物块B的速度方向与原方向相反 D.物块A的动量不为零,物块B的动量为零 答案 B 解析物块B接触弹簧时的速度大于物块A的速度,弹簧逐渐被压缩,当两物块的速度相同时,弹簧压缩到最短,选项A、D均错误;根据动量守恒定律有Δp A+Δp B =0,得Δp A=-Δp B,选项B正确;当弹簧压缩到最短时,物块B的速度方向与原方向相同,选项C错误。 3.[2017·黑龙江模拟] 如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块。今让一质量为m的小球自左侧槽口A的正上方h 高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是() A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量不守恒 C.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒 D.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动 答案 B 解析当小球在槽内由A到B的过程中,墙壁对槽有力的作用,小球与半圆槽组成的系统水平方向动量不守恒,故A、C错误,B正确。当小球运动到C点时,它的两个分运动的合速度方向是右上方,所以此后小球将做斜上抛运动,即C错误。 4.[2017·辽师大附中质检]质量相同的子弹a、橡皮泥b和钢球c以相同的初速度水平射向竖直墙,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被以原速率反向弹回。关于它们对墙的水平冲量的大小,下列说法中正确的是() A.子弹、橡皮泥和钢球对墙的冲量大小相等 B.子弹对墙的冲量最小 C.橡皮泥对墙的冲量最小 D.钢球对墙的冲量最小 答案 B

高考物理动能定理的综合应用技巧(很有用)及练习题及解析

高考物理动能定理的综合应用技巧(很有用)及练习题及解析 一、高中物理精讲专题测试动能定理的综合应用 1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。 (1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。 【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】 (1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理 2211222 N mg R mv mv -?= - 代入解得 22m/s v = (2)A →N 过程 2 011202 Pt fL mg R mv --?= - 代入解得 15m/s v = 在N 点时 2 1N mv mg F R += 代入解得 N 6N F = 根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。 (3)设小汽车恰能过最高点,则

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

最新高考物理动能定理的综合应用解题技巧及练习题(含答案)

最新高考物理动能定理的综合应用解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为 ()37sin370.6,cos370.8β???===,一个可看成质点的小环套在细杆OA 上从图中离轨 道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。 【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】 (1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为 2sin cos 4.4m/s mg mg a m βμβ -= = 设物体与A 点之间的距离为0L ,由几何关系可得 0 2.2m sin37 h L ? = = 设物体从静止运动到A 所用的时间为t ,由2 012 L at = ,得 1s t = (2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得 cos3700mgh mgs μ?=-- 代入数据解得 s =8.25m (3)假设物体能依次到达B 点、D 点,由动能定理有 2 01(sin37)cos37()2 B mg h L mg L L mv μ??+= -- 解得 20B v < 说明小环到不了B 点,最终停在A 点处

相关主题
文本预览
相关文档 最新文档