当前位置:文档之家› 核电厂仪控逻辑图的总结

核电厂仪控逻辑图的总结

核电厂仪控逻辑图的总结
核电厂仪控逻辑图的总结

核电厂仪控逻辑图的总结

摘要:在核电厂,各专业的工程改造工作均会涉及逻辑图,工程师或运行人员

通过查看逻辑图和可以掌握系统的原理,准确判断引起故障的原因,进而采取正

确的措施,以保证机组安全运行。

关键词:核电仪控逻辑图

1.逻辑图的内容

逻辑图是一种用符号形式表示某一系统的控制逻辑的示意图。系统逻辑图描

绘存在于传感器、控制器、执行机构之间的逻辑功能和对有关系统数据的逻辑处理,以及与其他系统和本系统其它部分交换的逻辑信号。

下列各项应在图中予以表示:

提供通/断信号的传感器;

操作员使用的控制手段;

传感器、执行机构、控制器等发出的通/断信号及其组合关系构成的控制逻辑;例如:许可功能;保护功能;控制开关功能;记忆功能;顺序控制功能等;

受控制逻辑影响的执行机构;

操纵员使用的通/断信号信息;

来自外部系统但涉及本系统的所有其他逻辑数据。

逻辑图主要用于描述系统内执行机构在控制、监测、保护有关的逻辑动作,

以及所产生的信息(这些信息构成系统控制的逻辑部分);详细描述不同系统之

间的信息交换(用于确定接口)。

逻辑图可作为以下内容的输入:

仪控应用设计;

编制调试、运行等相关规程;

在发生运行故障或不可预期的暂态时,可作为确定故障原因的辅助手段。

2.逻辑图的一般格式

一个系统逻辑图通常以数张图纸的形式出现。主要包括:

索引,列出系统逻辑图内各张图纸,标明每张图纸的页号、标题、最新版次;

各张图纸,通常按以下顺序排列:首先是通道A,然后是通道B(若有);

逻辑图绘制的一般要求:

图纸应对安全分级、各冗余列、专用仪控设备处理的信息区分表示。

按照核电厂数字化仪控的技术特点,在图纸中明确指出信号的去向(KIC、BUP、KPR、LOC);

图纸应清楚地表示各信号间逻辑关系,尽量避免多张图纸互相参照。图纸应

能清楚地显示不同部件的性质,一个设备或接线端在逻辑图中只表示一次,以便

于与此设备或接线端的标识和接线。

逻辑图的图形如图2-1所示,可以横向或纵向布局。逻辑图一般为A3 或A4

规格幅面,分以下几个部分:

(1)输入由传感器、控制装置、阈值和由其它处理过程来的逻辑处理信号,作为输入可分为两种,一种为本系统的输入,另一种为来自不同系统的信号输入。

内部连接:是同一系统文件中,信号处理所产生的数据;

外部连接:其它系统产生的数据;

来自传感器的输入。

区域①:符号表示上述所列的每种输入类型。

核电站数字化仪控系统简介

https://www.doczj.com/doc/7d4479862.html,2010年05月28日13:25:04 查看数:162 摘要在总结不同时期核电站仪表控制系统应用特点和发展趋势的基础上,以两座典型的核电站全数字化仪控系统为例,结合核电站仪控系统的特点及设计准则,进行详细的系统结构和功能分析,并提出我国新世纪核电站数字化仪控系统的改造与设计思路。 关键词过程控制DCS 智能化以太网现场总线 核电站的仪表和控制系统是核电站的重要组成部分,机组的安全可靠、经济运行已经在很大程度上取决于仪表控制系统的性能水平。从我国已经建成的和在建的核电工程来看,核电站的仪控系统经历了三个阶段。第一阶段是以模拟量组合单元仪表为主的控制系统,如正在运行的我国300 MW秦山核电站主控制系统应用的FOXBORO公司的SPEC200组装仪表,大亚湾2×980 MW核电站主控制系统采用的Baily 9020系统也属于这一类。其模拟量仪表采用小规模集成电路运算放大器为基础的元件来控制,逻辑量仪表采用继电器等硬逻辑电路来控制。因而系统所需要的仪表控制器件数量多,运行操作管理和维护工作任务重,大部分采用手动操作,主控室布局也显得较大。第二阶段是以模拟量和数字量混合运用的主控制系统,这一类实际是核岛系统仍采用小规模集成电路运算放大器为基础的模拟量元件来控制。而部分常规岛和辅助系统采用PLC自动控制系统,结合软件自诊断技术、冗余技术和网络通信技术,减少很多硬接线和就地控制柜,提高了系统运行可靠性。刚刚建成的广东岭澳核电站(2×980 MW)仪表控制系统就属于这一类。第三阶段称为全数字化仪表控制系统,它将应用成熟的常规电站分布式控制系统(DCS)加以改进并移植过来,全面应用在常规岛、BOP、核岛部分,构成核电站全新数字化仪表控制系统。现阶段应用比较典型的全数字化仪控系统有:日本日立等公司开发的NUCAMM-90系统、法国法马通公司N4控制系统、ABB公司的NUPLEX80 系统、美国西屋公司的Eagle21 WDPFⅡ系统以及我国在建的田湾核电站所采用的德国西门子公司的TELEPERM XP XS系统等。 1 核电站仪控系统的特点及全数字化仪控系统的功能设计原则 核电站仪控系统的特点是由其工艺过程的特点决定的,一般来讲典型的核电站仪控系统特点可以归纳为以下几点: (1)控制对象的工艺流程复杂,监测和控制的参数多而且各种过程参数联系密切,1000 MW典型的核电站仪控系统的参数信息量和指令大约是7000~9000个。 (2)系统安全性、可靠性要求高,运行质量直接与仪控系统性能相关。 (3)反应堆工作或停堆后一段时间内,大部分设备人员无法接近。 (4)控制和监测核燃料裂变链式反应及堆芯状态监测的必要性。

核电站全数字化仪控系统

上海交通大学核科学与系统工程系 核电培训内部教材 核电厂全数字仪控系统 上海交通大学核科学与系统工程系 2006年11月

目录 第1章概述 (3) 1.1.仪控系统的作用 (3) 1.2.核电站对仪控系统的基本要求 (4) 1.3.仪控系统在核电站安全中的角色 (4) 1.4.仪控系统的两大功能 (4) 1.4.1 信息功能: (5) 1.4.2 控制功能: (5) 1.4.3 控制功能的实施: (5) 1.5.核电厂安全设计的基本原则在仪控系统中的应用 (5) 第2章核电厂数字仪控系统的发展及构架 (6) 2.1.基础的逻辑要素 (6) 2.2.核电厂数字仪控系统的分类 (7) 2.3.核电厂数字仪控系统的发展 (7) 2.4.核电厂数字仪控系统的构架 (11) 第3章核电厂数字仪控系统中的DCS系统 (15) 3.1.系统设计 (15) 3.2.系统结构 (16) 3.3.信号流程 (18) 3.4.网关与网络服务器 (18) 3.5.DCS 的总线结构 (20) 3.6.系统事件响应时间 (21) 3.7.服务器任务 (22) 3.8.用户权限和登陆控制 (23) 3.9.I&C 系统的软件编制和V&V 认证 (24) 第4章DCS的硬件结构 (28) 4.1.标准的机柜 (29) 4.2.基本处理模块 (33) 4.3.基本通信模块 (34) 4.4.基本输入输出模块 (39) 4.4.1 数字信号输入模块。 (39) 4.4.2 数字信号输出模块。 (39) 4.4.3 模拟输入模块 (40) 4.4.4 模拟输出模块/计数模块 (41) 4.5.其他模块 (42) 第5章DCS的软件结构 (43) 5.1.系统纵览 (44) 5.2.计算机软件 (45) 5.3.软件结构 (46) 5.4.软件工程处理 (46) 5.5.工程软件下载 (50) 5.6.运行环境的操作模块 (54) 5.7.用户软件设计模块 (55)

核电厂仪控系统网络安全协调要求

核电厂仪控系统网络安全协调要求 1引言 随着现代工业技术的发展,工业化与信息化正在不断融合,工业控制系统越来越多采用通用的通信协议和软硬件系统,并且以各种方式接入网络,从而打破了这些系统原有的封闭性和专用性,造成病毒、木马等安全威胁向工控领域迅速扩散。工业控制系统所面临的信息安全问题日益严重,而且呈现出诸多与传统IT 系统不同的特点。核电厂作为国家关键基础设施,是关注的核心,重中之重。仪控系统作为核电厂的神经中枢、关键数字资产,是重点保护对象。而仪控系统从功能安全角度已有完整的法规标准和技术。如何在不降低安全的情况下考虑加强信息安全,有必要提出协调功能安全和信息安全的整体框架。 2安全和网络安全协调要求 2.1基本原则。数字式仪控系统整体结构层面应考虑以下原则:(1)网络安全措施不能影响核电厂安全目标。网络安全措施不应损害仪控系统架构实施的多样性和纵深防御的有效性。(2)首先按照IEC61513的要求,进行仪控系统功能初次分配,并进行仪控系统架构总体设计,然后考虑可能影响整体系统架构的网络安全要求。通过迭代设计过程,将可能影响系统架构的网络安全要求整合到一起。(3)网络安全功能不得对安全重要功能所要求的性能、有效性、可靠性和可操作性产生不利影响。(4)安全重要系统增加的网络安全特征应进行失效模式和后果分析,并考虑预防、控制或缓解措施。(5)当两种架构设计有相同等级的安全性时,优先考虑具备网络安全防范特性的设计。但应避免不必要的复杂设计,因为复杂设计既不利于功能安全也不利于网络安全。2.2网络安全区域划分原则。为了更切实地实施分级方法,需要将仪控系统中的基于计算机的和基于数字逻辑的系统划分为若干安全区域,分级保护原则适用于各个安全区域。区域允许将在安全和设备功能方面有着相似重要性的系统分为一组,以管理并应用保护措施。定义安全区域的标准可能包括组织问题、本地化、架构或技术方面。划分网络安全区域应考虑如下原则:(1)网络安全区域的划定应考虑和利用为加强安全目的而引入的独立性和物理隔离要求;(2)划定网络安全区域应同时考虑数据通信、地理/物理隔离以及独立性等方面;(3)除非能够从网络安全防范角度有效的过

核电数字化仪控远程智能运维系统的应用研究

核电数字化仪控远程智能运维系统的应用研究 摘要:在我国快速发展的过程中,数字化仪控系统在核电厂中的应用,为核电 厂工作人员提供了更加精准的电路信息,从而促进了核电厂的正常运行。在核电 厂数字化仪控系统中,通信网络系统占据核心地位,为控制系统的建立和各个控 制站间的数据交互提供可实现的基础前提。本文主要分析了当前我国常见的几种 核电厂数字化仪控系统中的通信网络,并对各类型通信网络进行了性能对比,探 讨在核电厂数字化仪控系统中适用性最强的通信网络。 关键词:核电厂;数字化仪控系统;通信网络 引言 概率安全分析(ProbabilisticSafetyAnalysis,PSA)是一种系统工程方法,其采用系统可靠性评估技术和概率安全分析方法,综合分析复杂系统各种可能事故的 发生和发展过程,从而全面研究系统设计和运行的风险。数字化仪控系统通过计 算机硬件和控制系统软件平台执行各种复杂的核电厂控制功能。与纯硬件系统相比,数字化设备具备时间动态特性,有不同的故障模式,并且计算机软件具有冗 余性。虽然传统的PSA对数字化系统风险的评估有一定的作用,但目前建模和分 析仍然采用传统的静态方法。使用传统的PSA方法对数字化仪控系统进行建模时,常常不能完整地解释核电厂的物理过程与触发或随机逻辑事件的动态交互作用, 因而可能造成忽略一些事故后果的状况。传统的ET/FT方法在处理数字化仪控系 统时的不足可总结为以下6点:①事件序列设定问题;②闭环控制的影响;③ 多重顶事件冲突;④设备失效数据的转换问题;⑤分析结果的不确定性问题; ⑥人因故障分析的不足。因此,可靠性模型如何更准确、更全面地反映系统的复杂动态交互特性,如何对核电厂数字化仪控系统的安全性和可靠性进行定性与定 量评估,成为相关领域的研究热点。目前,NRC和NASA已经批准并推荐了分析 包含软件的数字化仪控系统可靠性问题的方法,主要是动态可靠性分析方法。 1概述 核电数字化仪控系统(DigtalInstrument&ContralSystem,简称DCS)是整个核 电厂的“中枢神经”系统,对保证核电站的安全、可靠、稳定运行发挥着重要作用。运维作为核电站生命周期的关键阶段,是保证核电站安全、高效、可靠运行的重 要手段。随着新建核电站不断投运,已有的核电站不断升级,核电站目前已经普 遍使用数字化仪控系统实现核电站的运行、控制和保护。数字化仪控系统产品因 大规模集成电路等的应用、智能化程度不断提高,核电DCS运维的复杂性和多样 性日趋提高。传统的人员纠正性维修、预防性维修、备件预留库存等方式已经无 法满足核电DCS的维护要求,亟待进一步提高运维技术及运维管理水平。同时, 核电站数字化仪控系统产品设备维护需要维护人员介入,在现场维修窗口申请、 平台深层次问题分析方面需要投入大量工作,综合成本较高。DCS产品自身故障 严重依赖控制系统产品提供商的分析,采用的方式维护人员现场拷贝故障数据, 发送给DCS厂家进行分析,不能对DCS系统状态进行实时在线评估,问题处理时 效性差。而DCS产品本身的设备运行状态数据资产也没有得到有效开发利用。随 着大数据、互联网等技术发展,平行理论、数字双胞胎理论的应用,可通过信息化、网络化、智能化等先进技术实现与运维服务的结合,建立DCS远程智能运维 系统平台,获取核电站DCS自诊断、环境等数据后,通过安全网络传输至DCS远

核电厂仪控系统安全和网络安全协调要求

核电厂仪控系统安全和网络安全协调要求 发表时间:2020-04-03T05:47:04.431Z 来源:《建筑学研究前沿》2019年24期作者:姚路锋 [导读] 核电是我国能源行业国家级战略产业,其自身运行过程具有特殊性,所以对核电厂仪控系统有更为严格的安全要求。 福建福清核电有限公司福建福清 350318 摘要:核电是我国能源行业国家级战略产业,其自身运行过程具有特殊性,所以对核电厂仪控系统有更为严格的安全要求。一旦发生事故,除了生产运行受到影响外,还可能导致环境污染和人员辐射危害,并进一步波及全球核电行业。伊朗震网事件、韩国核电厂泄密事件等重大的核电网络安全事件说明了核电网络安全的重要性和关键性。在我国核电网络安全建设运维过程中,由于进口设备多、维护团队多,潜在植入漏洞和引入漏洞的风险较大。 关键词:仪控;核电;安全;协调 引言 随着现代工业技术的发展,工业化与信息化正在不断融合,工业控制系统越来越多采用通用的通信协议和软硬件系统,并且以各种方式接入网络,从而打破了这些系统原有的封闭性和专用性,造成病毒、木马等安全威胁向工控领域迅速扩散。工业控制系统所面临的信息安全问题日益严重,而且呈现出诸多与传统IT系统不同的特点。核电厂作为国家关键基础设施,是关注的核心,重中之重。仪控系统作为核电厂的神经中枢、关键数字资产,是重点保护对象。而仪控系统从功能安全角度已有完整的法规标准和技术。如何在不降低安全的情况下考虑加强信息安全,有必要提出协调功能安全和信息安全的整体框架。 1安全级仪控系统需求的描述方法 1.1自然语言需求 在通常的需求实践中,最常见且使用最广泛的一种需求描述方式是使用自然语言。由于自然语言的广泛性和其描述问题的普适性,使得自然语言需求具备普遍、灵活、可理解这几个主要的优势。但是,使用自然语言对同一事物进行描述和理解会因人而异,这是由于自然语言本身具有的二义性和人们的认知水平不同而导致的。 1.2模型化需求 在使用自然语言描述需求的同时,人们也专门创建了一些建模语言,如:数据流语言、状态图、AND/OR目标图等模型化建模语言来描述需求。认知科学中的研究表明,与来自文本中的信息相比,人类更容易捕获并记住来自图画中的信息。这些发现对于使用需求模型来理解和记忆需求提供了有力的支撑。需求模型对于关注特定方面的支持十分有用,通过提供预定义的抽象化机制,建模语言支持用于关注特定的方面,同时消除不必要的细节。对于用自然语言描述的需求,进行正确性、完整性以及一致性等质量属性的检查通常十分耗时且容易出错。需求建模语言支持对需求的特定质量属性的检查。然而,与自然语言需求相比,模型化需求所提供的表达能力有限,不能作为一种普适性的需求描述方法,而且需要需求的涉众熟悉相应的建模语言后才能理解需求。 2核电厂仪控系统安全和网络安全协调要求 2.1网络安全区域划分原则 为了更切实地实施分级方法,需要将仪控系统中的基于计算机的和基于数字逻辑的系统划分为若干安全区域,分级保护原则适用于各个安全区域。区域允许将在安全和设备功能方面有着相似重要性的系统分为一组,以管理并应用保护措施。定义安全区域的标准可能包括组织问题、本地化、架构或技术方面。划分网络安全区域应考虑如下原则:(1)网络安全区域的划定应考虑和利用为加强安全目的而引入的独立性和物理隔离要求;(2)划定网络安全区域应同时考虑数据通信、地理/物理隔离以及独立性等方面;(3)除非能够从网络安全防范角度有效的过滤和监测分隔之间的通信,否则由多个子列组成的仪控系统应划分到同一个网络安全区域中。 2.2网络安全的生命周期 核电厂数字化仪控系统网络安全的防范活动是一个动态的过程,根据不同时间的环境情况对网络安全的防范措施进行维护和更新,始终使核电厂的网络处于安全稳定的运行状态。核电厂数字化仪控系统网络安全控制的生命周期分为评估、设计、实施、维护四个阶段,每个阶段活动完成后才可以进行下一阶段的活动。 第一阶段:评估 对核电厂运行环境、数字化仪控系统运行状态、现场安全控制策略、各种风险等内容进行评估后,制定核电厂网络安全控制的需求,以此作为设计阶段的输入。

新建核电厂数字化仪控系统变更控制研究

Vol. 39 No. 5 Oct. 2019第39卷第5期2019年]0月核科学与工程Nuclear Science and Engineering 新建核电厂数字化仪控系统变更控制研究 朱高试,穆海洋,段M (中国核电江苏核电有限公司,江苏连云港222042) 摘要:新建核电站数字化仪控系统(也称DCS 系统)招投标程序完成后,工程造价基本确定,但是项目执 行期间的变更数量及变更费用往往难以控制。本文结合田湾核电站一期、二期DCS 项目的执行情况, 首先对变更的原因进行分析,然后通过一些标志性节点将DCS 项目执行分为不同的阶段,根据每个阶 段的工作侧重点不同,提出了变更预防及控制的策略,以期推动核电站DCS 项目管理水平的提升。关键词:核电站;数字化仪控;变更控制 中图分类号:TL48 文章标志码:A 文章编号:0258-0918(2019)05-0821-05 Research on Change Control of Digital I&C System in Newly-built Nuclear Power Plants ZHU Gaobin, MU Haiyang , DUAN Peng (Jiangsu Nuclear Power Corporation, Lianyungang of Jiangsu Prov. 222042,China) Abstract : With the constant development of computer and information automation technology > newly built NPPs all choose digitalized I&C system (also known asDCS system) in the form of tendering and bidding. At present , technology of main stream DCS system is quite mature , but it is difficult to control thequantity and cost of changes during the project implementation. The paper is to analyze reasons of changes based on the experiences of project implementation in Phases [&II of Tianwan Nuclear Power Station? and to discuss enhancement to change con -trol of Digitalized I&C system in theperspective of project management. Key words :Nuclear Power Plants ;Digital I&C System ;Change Control 数字化仪控系统是指以微处理芯片构成 的,以数字处理技术为特点的智能化电子设备 和计算机系统,它除了具有常规测量仪表的测 量和控制功能外,还具有极强的数据处理和通 讯能力,并且数字化仪控系统采用统一的人机 界面,为电厂的运行和维护提供了便利。1998年,田湾核电厂一期工程(1、2号机组) 在国内首次引进数字化仪控系统(SIEMENS/ Framatome Teleperm-XP + Teleperm-XS)^1^ o 此后,各新建核电厂均以招投标的形式选择数字收稿日期=2019-03-20 作者简介:朱高斌(1975-),男,江苏连云港人,高级操纵员,学士,现主要从事核电厂仪控系统的项目管理工作821

核电厂仪控系统三维建模设计方法研究

核电厂仪控系统三维建模设计方法研究 发表时间:2018-12-12T15:39:08.160Z 来源:《电力设备》2018年第23期作者:符江唐磊李德权赵志玲陈宝伟 [导读] 摘要:台山核电厂首次采用三维建模的方法进行仪控系统的设计,具体阐述了国内第三代首堆核电站核岛内仪控系统在三维模型里的仪表架和仪表管系的布置设计过程,目的在于总结台山核电厂仪控系统优秀的设计方法和先进设计理念。 (苏州热工研究院有限公司深圳 518001) 摘要:台山核电厂首次采用三维建模的方法进行仪控系统的设计,具体阐述了国内第三代首堆核电站核岛内仪控系统在三维模型里的仪表架和仪表管系的布置设计过程,目的在于总结台山核电厂仪控系统优秀的设计方法和先进设计理念。旨在为未来国内更高水平自主化核电厂的设计建造及运营中技术改造提供参考。结果表明:三维建模方法的应用有利于提高数字化核电厂设计建造质量,升级优化改造,效果好。 关键词:核电厂;三维建模;压水堆;仪控系统;仪表架;仪表管系 引言 台山核电厂使用了全数字仪控平台[1],仪控系统多,设计任务重,交叉专业多的特点[2],首次采用了PDMS工厂三维设计软件进行设计,相比于其它核电站设计项目,设计者提高了工作效率和准确率,缩短了时间,降低了成本。本文针对核电厂内仪控系统三维模型下仪表设备以及仪表管道的布置设计工作进行分析研究和总结,旨在为后期电厂运行中升级改造工作提供帮助和参考。 1 仪控系统设计输入文件 台山核电站内仪控系统设计输入文件主要的文件主要包括PID文件、VPE文件、NPTJE DC 20007文件和交叉专业输入文件,PID文件、VPE文件和NPTJE DC 20007文件由法国AREVA负责提供。 参考PID文件的目的是为了核查设计过程中是否满足工艺要求,以及确定仪表设备布置的具体位置;VPE文件包含了每个仪控系统中仪表设备的种类,以及每个仪表设备的属性,例如工作压力、温度、安装位置、电气分区、安全等级等;而NPT JE DC 20007文件则是仪表设备安装参考设计标准图,此标准图可以为布置仪表设备和仪表管提供设计方案;交叉专业的设计输入文件则是在整个协同设计过程中更好的利用空间,避免碰撞而使用。 2 传感器与仪表架介绍 台山核电站内传感器主要分为8类,分别可以对压力、流量、温度、液位的模拟量和开关量进行检测,出于安全等级的要求,大多数传感器都采用仪表架进行保护。 为了区分在核电站内数量繁多的仪表和仪表架,仪表和仪表架都有唯一编号,以DVW-Demineralization plant ventilation and air conditioning system(非控制区厂房通风系统)内传感器1DVW1141MPL为例,1表示1号核岛,1141是系统随机编码,MPL表示就地显示压力表。而其相应的仪表架1KRG9009CQ-,其中1表示1号核岛,KRG表示仪表架在系统内默认代码,9009是系统随机分配代码,CQ-表示普通仪表架,创建的仪表架和传感器一定要遵循上述规则[3]。 2.1 传感器与仪表架的布置设计 通过在三维模型中查询1DVW1141MPL周边环境,其前方区域为空置区域无遮挡,上方区域为风管,左右各有其他系统的仪表架已经布置,因为考虑到1DVW1141MPL会和其他传感器共用仪表架,而相邻传感器测量点并不在一起,传感器1DVW1141MPL旁边有一个阀门,并且阀门有保护区域,这个保护区域是不能侵占的,否则会对后期阀门的使用和检修带来麻烦,同时因为其右端的共用仪表架也是就地显示仪表,所以将两个共用仪表架布置在一起方便了后期的使用和维护。在确定了传感器和仪表架的期望布置位置后,通过NPT JE DC20007文件可以确定合适的仪表设计标准,对传感器1DVW1141MPL和其相应仪表架的布置设计,人为制造仪表管系的测量最低点,可方便后期检修仪表排放管道废液时使用。 2.2 仪表管布置设计 经查询VPE文件得知,传感器1DVW1141MPL测量介质为水,最大工作压力0.1MPA,性质温和,无腐蚀性,所以使用规格为DN8的仪表管进行设计。 2.2.1仪表管坡度设置 传感器1DVW1141MPL仪表管必须始终保证5%的坡度值,并且坡度方向一定是一次阀坡向传感器,在传感器测安装排污阀可以保证测量系统检修时的便利性和测量的准确性。 2.2.2仪表管支架布置 仪表管支架的设计与仪表管设计同样重要,对于所有的仪表管,仪表架布置的间距都是一致的,分别是水平管上不超过1200mm,竖直管道上不超过1700mm,其中仪表管支架分为CB支架和GL支架两类,CB支架为横向﹑竖向和纵向均不能移动支架,GL支架为横向和竖向不能动支架,但是纵向可以活动支架,从测量点算起,测量点可以看做是一个固定支架,自测量点开始1000~1600mm的区间里可以放置第一个支架。 如果第一个支架设置为CB支架,CB支架距离下一个弯管的距离L大于150mm而小于400mm时,弯管距离之后的仪表管支架距离D应大于400mm,若CB支架距离下一个弯管的距离L大于400mm时,则弯管距离之后的仪表管支架的距离D应满足表1所示。表中L和D的关系,实质就是一个大致的管道膨胀及吸收问题。 表1 L和D的关系数据表(mm) X>150mm任何情况下,弯管距离CB支架的距离必须大于150mm 传感器1DVW1141MPL的仪表管设计测量起点为一次阀,从测量点开始算起1000~1600mm的区间内可以设置第一个仪表管支架,将第一个仪表管支架设置在了距测量起点1066mm的位置上,并一直保持5%的坡度一直坡向传感器,因为仪表管支架所在的仪表管支管是长

核电厂仪控系统安全和网络安全协调要求

核电厂仪控系统安全和网络安全协调要求 随着社会的不断发展,工业技术取得了很大的进步,尤其是信息化技术的发展,极大的促进了工业系统的进步,越来越多的工业控制系统采用通用的通信协议和软硬件系统,并以合适的接入方式与网络连接,改善了原有系统的封闭性与专用型,但是同时也为系统带来了安全威胁,容易形成木马入侵、病毒感染等安全威胁。因而,工控领域的信息安全问题日益严重,在核电厂中,仪控系统的安全问题是其运转中关注的核心。因而,如何协调好仪控系统安全与网络安全,是重要内容。 一、核电厂仪控系统的总体构架要求 (一)各个仪控系统分配到不同的纵深防御层级中,以便在一个层级中的仪控系统发生故障时,其他层级的仪控系统对其功能进行补偿或纠正以避免产生有害后果。 (二)保持纵深防御层级间和安全等级间的独立性,以便对一个纵深防御层级的仪控系统产生不利影响的事件,不应对其他层级执行安全重要功能的仪控系统产生影响。 (三)对一个仪控系统产生不利影响的事件,不应对其他执行安全重要功能的仪控系统产生影响。 (四)根据核安全等级要求,进行仪控功能分类和仪控系统分级。 (五)根据信息安全要求,把仪控功能和仪控系统放入对应的信息安全区中。严格控制仪控系统的复杂性,消除不必要的复杂性。 (六)仪控设备应处于适当位置和提供合理保护以便抵御不良环境因素的影响。 二、核电厂仪控系统安全和网络安全协调要求 (一)网络安全区域划分的要求 为了提高系统安全,将对网络安全区域进行划分,将仪控系统中的基于计算机的和基于数字逻辑的系统划分为若干安全区域,并且将

对安全设备的功能等级有着同等重要性的划分为一组,方便管理并采取安全保护措施。安全区域的定义标准包括组织问题、本地化、架构或技术方面,主要划分原则如下: 首先,在安全区域的划分中,应该考虑相关设备的独立性与物理独立性; 其次,安全區域的划分应该考虑数据通信、地理/物理隔离以及独立性等方面; 再次,从网络安全的角度,如果可以有效过滤和监测分隔之间的通信,则各个子列可以互相独立,反之则各个子列应该被划分到同一个安全区域。 (二)共因故障处理要求 在一些特殊的情况下,共因故障处理能够加强网络安全。在共因故障的处理中,相关负责人要根据特定的场景,对可能出现的恶意攻击和威胁进行评估。在网络安全的防范中,使用多样性手段,对相关利弊进行串联分析,提高安全防范效果,但是这种方式相对较复杂;以并联方式则可能增加系统接入路径和漏洞对于集成到系统中的网络安全防范措施,对多样化系统中出现共因故障的风险,并做好预防措施,既要求能保证网络安全,还应该降低共因故障的发生率。 (三)隔离要求 隔离设计在某些情况下也可用于网络安全防范。由负责网络安全的人员按照场景进行分析,利用隔离措施促进安全防范。功能安全相关标准所提出的用于支持A类功能的控制系统的独立性要求,对网络安全是有益的,针对具体场景进行评估和验证,以便在网络安全防范中纳入这些措施。独立性要求包括: 1.对于A类信号,主要目的是检测和保护,或者用于控制系统,对于后者来说,要特别关注,因为如果传感器发生故障,可能会导致控制系统的测量值超出需求容许值,发生不全的控制动作,同时还会对方案保护系统发生不安全工况的探测。 2.保护系统和控制系统按照如下要求设计:对于在两个系统之间

核电数字化仪控远程智能运维系统的应用分析

核电数字化仪控远程智能运维系统的应用分析 发表时间:2019-12-11T11:00:27.253Z 来源:《建筑学研究前沿》2019年18期作者:钱双龙汤吉星[导读] 数字化仪控系统在核电厂中的应用,为核电厂工作人员提供了更加精准的电路信息,从而促进了核电厂的正常运行。 钱双龙汤吉星 福建福清核电有限公司福建福清 350318 摘要:数字化仪控系统在核电厂中的应用,为核电厂工作人员提供了更加精准的电路信息,从而促进了核电厂的正常运行。在核电厂数字化仪控系统中,通信网络系统占据核心地位,为控制系统的建立和各个控制站间的数据交互提供可实现的基础前提。本文主要分析了当前我国常见的几种核电厂数字化仪控系统中的通信网络,并对各类型通信网络进行了性能对比,探讨在核电厂数字化仪控系统中适用性 最强的通信网络。 关键词:核电厂;数字化仪控系统;远程智能运维 引言 现阶段,我国核电厂的仪控系统已经开始逐步应用全数字化的仪控系统,而在数字化仪控系统中,通信网络系统占据重要地位,为建立控制系统和提高各控制站间的数据交互质量提供了重要基础。在核电厂仪控系统中,有安全级与非安全及两种系统,前者需要具有执行紧急堆停、安全壳隔离等核安全功能,因此对仪控系统性能和仪控设备的安全可靠性有着较高的要求。通信网络系统作为数字化仪控系统的核心,在安全级数字化仪控系统中的重要地位更加凸显。因此,保证通信网络设计具有功能冗余性、独立性以及多样性,满足单一故障准则和故障安全准则等,是确保通信网络安全可靠的设计原则。 1概述 核电数字化仪控系统(Digtal Instrument&Contral System,简称DCS)是整个核电厂的“中枢神经”系统,对保证核电站的安全、可靠、稳定运行发挥着重要作用。运维作为核电站生命周期的关键阶段,是保证核电站安全、高效、可靠运行的重要手段。随着新建核电站不断投运,已有的核电站不断升级,核电站目前已经普遍使用数字化仪控系统实现核电站的运行、控制和保护。数字化仪控系统产品因大规模集成电路等的应用、智能化程度不断提高,核电DCS运维的复杂性和多样性日趋提高。传统的人员纠正性维修、预防性维修、备件预留库存等方式已经无法满足核电DCS的维护要求,亟待进一步提高运维技术及运维管理水平。同时,核电站数字化仪控系统产品设备维护需要维护人员介入,在现场维修窗口申请、平台深层次问题分析方面需要投入大量工作,综合成本较高。DCS产品自身故障严重依赖控制系统产品提供商的分析,采用的方式维护人员现场拷贝故障数据,发送给DCS厂家进行分析,不能对DCS系统状态进行实时在线评估,问题处理时效性差。而DCS产品本身的设备运行状态数据资产也没有得到有效开发利用。随着大数据、互联网等技术发展,平行理论、数字双胞胎理论的应用,可通过信息化、网络化、智能化等先进技术实现与运维服务的结合,建立DCS远程智能运维系统平台,获取核电站DCS自诊断、环境等数据后,通过安全网络传输至DCS远程智能运维平台,可以实现故障远程诊断、风险分析及工作指令建议,降低现场维护人力及物力成本。运用设备本身及DCS诊断数据,以及可靠性分析、系统安全评价等多种手段,诊断DCS系统及设备的健康状况,实现预测性维修、物项替代,从而提高系统安全性及经济性,也为DCS设备供应商后续产品改进提供更多分析数据;另一方面,通过DCS远程智能运维系统可实现DCS备件的集约化共享管理,减少各核电站的DCS备件库存,最终实现各核电站DCS备件的零库存,为核电站降本增效。同时,因为DCS备件的集约化管理,实现了备件产品的动态调配、快速配送、备件保鲜等功能,提升备件质量及安全性,通过核电DCS远程智能运维的预测性维修,降低核电机组非计划停机风险及预防性维修数量,对核电站安全性及经济性提高有重要意义。 图1 总体功能架构图

核电厂仪控系统安全和网络安全协调

核电厂仪控系统安全和网络安全协调 1引言 随着现代工业技术的发展,工业化与信息化正在不断融合,工业控制系统越来越多采用通用的通信协议和软硬件系统,并且以各种方式接入网络,从而打破了这些系统原有的封闭性和专用性,造成病毒、木马等安全威胁向工控领域迅速扩散。工业控制系统所面临的信息安全问题日益严重,而且呈现出诸多与传统IT系统不同的特点。核电厂作为国家关键基础设施,是关注的核心,重中之重。仪控系统作为核电厂的神经中枢、关键数字资产,是重点保护对象。而仪控系统从功能安全角度已有完整的法规标准和技术。如何在不降低安全的情况下考虑加强信息安全,有必要提出协调功能安全和信息安全的整体框架。 2安全和网络安全协调要求 2.1基本原则 数字式仪控系统整体结构层面应考虑以下原则:(1)网络安全措施不能影响核电厂安全目标。网络安全措施不应损害仪控系统架构实施的多样性和纵深防御的有效性。(2)首先按照IEC61513的要求,进行仪控系统功能初次分配,并进行仪控系统架构总体设计,然后考虑可能影响整体系统架构的网络安全要求。通过迭代设计过程,将可能影响系统架构的网络安全要求整合到一起。(3)网络安全功能不得对安全重要功能所要求的性能、有效性、可靠性和可操作性产生不利影响。(4)安全重要系统增加的网络安全特征应进行失效模式和后果分析,并考虑预防、控制或缓解措施.(5)当两种架构设计有相同等级的安全性时,优先考虑具备网络安全防范特性的设计。但应避免不必要的复杂设计,因为复杂设计既不利于功能安全也不利于网络安全。 2.2网络安全区域划分原则 为了更切实地实施分级方法,需要将仪控系统中的基于计算机的和基于数字逻辑的系统划分为若干安全区域,分级保护原则适用于各个安全区域。区域允许将在安全和设备功能方面有着相似重要性的系统分为一组,以管理并应用保护措施。定义安全区域的标准可能包括组织问题、本地化、架构或技术方面。划分网络安全区域应考虑如下原则:(1)网络安全区域的划定应考虑和利用为加强安全目的而引入的独立性和物理隔离要求;(2)划定网络安全区域应同时考虑数据通信、地理/物理隔离以及独立性等方面;(3)除非能够从网络安全防范角度有效的过滤和监测分隔之间的通信,否则由多个子列组成的仪控系统应划分到同一个网络安全区域中。 2.3共因故障处理原则 在某些情况下,共因故障的措施,有利于网络安全防范。具体情况需由负责网络安全人员基于特定场景可能的恶意攻击和潜在威胁进行评估。多样性手段在网络安全防范中使用,利弊需要具体分析。以串联方式可以增加网络安全效果,但是会引入复杂性;以并联方式则可能增加系统接入路径和漏洞。对于集成到系统中的网络安全防范措施,应分析其可能在多样性系统间引入共因故障的潜在风险。存在风险时,应考虑替代措施,在保证充分的网络安

核电站数字化仪控系统信息安全特征分析

核电站数字化仪控系统信息安全特征分析 发表时间:2019-09-16T17:07:20.657Z 来源:《建筑学研究前沿》2019年11期作者:石祎昉[导读] 分析方法和威胁范围三个角度对其进行了分析。未来的工作将进一步基于信息安全特征提出基于该标准体系的信息安全设计准则。福建福清核电有限公司福建福清 350300 摘要:笔者从国际电工委员会/核仪器技术委员会(IEC?SC45A)的标准体系出发,分析和阐述了对数字化仪控系统的信息安全设计准则。准则重点从纵深防御、安全隔离和信息安全与功能安全相互协调这三个方面对仪控系统设计要求进行了阐述,可用于指导核电厂等核设施信息安全防护措施的设计和实施。 关键词:信息安全;功能安全;核电站数字化 引言 核电站是国家的重大基础设施,核电站的仪表和控制系统是核电站的控制中枢,是事关电站安全的重要系统。而我国已经投产的和正在建设的核电站其仪控系统大多由数字式系统构成,而这就给网络攻击创造了客观条件,所以数字化仪控系统已经成了核电站重要的信息安全保障对象。本文首先依照国际标准对该领域的信息安全主要特征进行了分析,并总结了若干主要原则和约束条件。 1信息安全的主要特征 1.1保障对象的拓展 数字化仪控系统中的设备可以分为基于数字式计算机技术实现的系统(CB)和基于数字逻辑实现的系统(HPD)两类。目前信息安全乃至工控信息安全领域的主要讨论对象都是基于数字式计算机实现的系统,较少的涉及采用FPGA或CPLD等可编程数字逻辑器件实现的系统。在IEC62645-2014中,已经明确地把可编程逻辑器件所构建的系统作为与基于数字计算机技术实现的系统相并列的对象进行讨论。基于HDL可编程数字逻辑技术实现的系统已经不可避免的被列入了信息安全的讨论范围之内,而这一改变对信息安全相关技术活动的影响需要综合参照IEC62645-2014和IEC62566-2012作为标准基础。 1.2主要威胁范围的限定 威胁利用系统的脆弱性对资产产生破坏是分析信息安全风险的最基本范式,定义对象系统的信息安全威胁是需要解决的问题。依据ISO27000标准体系,物理防护、电力供应、运行环境以及综合性的自然灾害所造成的破坏,均被视作对特定信息安全保障对象的威胁。但是,作为核电厂数字化仪控系统,其运行的物理环境和相关的人员管理措施均被其他法律法规所约束,也被较完善的国际和国内标准所指导和限制,所以IEC62645-2014和IEC62859-2016中都不以这些威胁途径作为主要的讨论和分析对象,而是把讨论的范围限定在数字式攻击(即网络攻击Cyberattacks)。基于同样的理由,这些标准同时把非恶意的活动和偶然事件排除在主要威胁范围之外。虽然这些被包含在ISO/IEC27000标准族、IEC62443标准族[10]或者NIST的相关出版物质的讨论框架内,但为了集中讨论主要威胁,SC45A的主要标准将主要的威胁分析对象限定为以数字式手段进行的攻击活动。 1.3基于功能安全后果导向的分级方法 实现功能安全是仪控系统的主要设计任务,而信息安全的等级划分也来自功能安全后果导向。IEC62645-2014中对系统的信息安全分级方法可以概括如下:1)应根据信息安全威胁所可能产生的最大安全后果向系统分配程度S1至S3。2)向数字化仪控系统分配安全程度应依照如下原则:–向处理A类安全功能的数字化仪控系统分配的安全程度为S1;–向需要实时操作的数字化仪控系统以及处理B类安全功能的数字化仪控系统分配的安全程度不得低于S2;–根据信息安全威胁所可能产生的最大安全后果,向处理C类功能的数字化仪控系统以及协助工厂运行和维护的数字化仪控系统的辅助系统分配的安全程度为S3。 1.4划定信息安全防护区域时的注意事项 依据IEC62645-2014里的定义,信息安全防护区域允许将功能安全具有相同重要性的仪控系统分组在一起以用于管理和应用保护措施。在实践中,应考虑如下的原则。第一,根据IEC62645-2014,信息安全区域的划定应考虑和利用为加强安全目的而引入的独立性和物理分离要求。第二,数据通信方面(包括逻辑分离)和地理/物理分离以及独立方面应共同考虑,以划定安全区。对于多分隔系统,要额外考虑如下原则。第一,给定的数字化仪控系统的分隔(或列)应分组在同一个信息安全防护区域,除非能从信息安全角度有效的过滤和监测分隔之间的通信。第二,给定的数字化仪控系统的分隔(或列)如果使用通用工程工具进行配置,则应分组在同一信息安全防护区域。 2核电DCS系统设计 2.1硬件构架 本装置的硬件部分主要包括:服务器、调试箱、与DCS控制器机柜的接口,硬件架构如图2所示。服务器用于运行电厂工艺模型、DCS一层仿真系统软件、通讯以及工程调试管理软件。在开发阶段,采用机架式服务器;工程应用阶段,为了方便移动,可采用便携式移动终端配合服务器使用。便携式调试装置主要包括电源、通讯控制器、I/O模块和小型交换机等,主要用于将模型软件计算出的工艺过程数据传递给实际机组的DCS控制机柜,同时将DCS控制机柜的控制输出信号反馈到服务器中。调试装置将根据电厂实际DCS机柜的通道类型和通道数,来配置不同种类和数量的I/O模块。为了在工程应用中方便携带,移动测试不同系统的DCS控制机柜,所有的I/O模块集成在旅行箱形状的调试装置中。

核电厂仪控设备的可靠性及老化管理研究与实践 吴军

核电厂仪控设备的可靠性及老化管理研究与实践吴军 发表时间:2019-08-26T16:38:42.660Z 来源:《建筑学研究前沿》2019年10期作者:吴军[导读] 经过在核电站的实践验证,采用白名单技术防护的网络区域可以有效防止恶意软件的破坏,阻止恶意报文的传输,从而保护核电厂仪控系统的安全。 福建福清核电有限公司福建福清 350300摘要:核能行业网络安全事件暴露了核电厂仪控系统缺少网络、主机、应用、数据等各方面的网络安全防护手段,一旦发生网络安全事件后果严重。基于对核电相关网络安全标准的分析,研究了白名单策略与黑名单策略的技术差异,提出了在核电厂场景应用白名单防护策略的工作方向。详细分析了程序白名单、外设白名单、工控协议白名单、工控行为白名单的基本概念、技术特点和实际应用场景;描述了 白名单防护策略的具体实施方案,包括规划、设计、验证、实施和维护5个步骤,并在实际的核电站进行产品部署。经过在核电站的实践验证,采用白名单技术防护的网络区域可以有效防止恶意软件的破坏,阻止恶意报文的传输,从而保护核电厂仪控系统的安全。 关键词:核电厂;仪控系统;可靠性 引言 核电作为一种新型的清洁能源,对核电的开发有利于改变我国的能源结构,改善环境,也有利于我们国家的安全发展。我国核电事业的发展将会持续进行。为了配合我们国家核电行业的发展国家也下发了相关课题。本篇文章就旨在研究中国核电设备的可靠性标准体系以及分析需求,找出核电设备行业当前可靠性标准体系建设的不足,结合核电设备的实际需求,为中国核电设备可靠性标准体系需求提供一些建议。 1仪控设备老化机理研究 仪控设备寿命与其内部所有元器件老化降质有关,最短寿命的元器件通常决定仪控设备的寿命。元器件“老化”的实质是材料或设备的特性随时间发生变化。大多数情况下,一个电子元器件的寿命受限于绝缘材料老化,这是由于介电强度退化。此外,电子元器件的参数随时间发生变化,如漏电流或直流增益增大会导致这些元器件老化。许多物理应力会导致元器件老化,如电流、电压或电阻发热是电子元件的固有现象。外部应力,如环境温度、辐射、振动、冲击,或其他机械和化学应力都会加速元器件的老化。高温以及温度循环也是电子元器件和电子设备老化的主要原因。但并不是所有失效都与老化相关,也会有其他原因,如器件制造质量或设计缺陷。限于篇幅,本文仅简要分析两种典型仪控设备的老化失效机理作为参考。 1.1电解电容 电解电容的主要老化机理是电解液通过端盖的密封泄漏,这是一个与橡胶密封有关的特殊问题,如果橡胶性能严重降质,会形成电解液泄漏通道。当温度为20℃时,一个典型的电解电容的老化过程可能需要10年(根据制造的工艺和材料品质,寿命有所不同),高温则可加快这个老化过程。温度(环境)、电压和纹波是导致电解电容故障的诱导因素,会加速电解液蒸发。电解液的流失增大了等效串连电阻,减小了电容容量,最后电容会因开路或短路而失效。 1.2中子通量探测器 堆芯外探测器一般根据电离原理运行,堆芯内探测器通常由含有镀铀电极的裂变室构成。中子通量探测器的使用寿命要一般小于反应堆的寿命,探测器属于耗损部件,需要定期更换,老化机理主要与探测器的类型有关。制造工艺也对老化机理有着重要的影响,如制造缺陷造成电离室的密封和绝缘退化,导致泄漏和中子通量测量异常。计数器对气体质量特别敏感,若气体中存在杂质或湿度,会改变传感器的特性。杂质有可能是传感器制造期间进入的,湿度可能是测量室泄漏引起的。电离室探测器的退化主要与敏感涂层(例如硼)的退化有关。敏感涂层属于耗损部件。通常这类传感器作为源量程探测器可能具有5~8年的运行寿命,作为中间量程或功率量程探测器可能有10~20年的运行寿命。 2仪控设备可靠性及老化管理方法 2.1核电设备可靠性分析方法 传统的可靠性分析是建立在很多数据基础之上的。如今我国核电事业发展快速,虽然新建的机组很多,但是在运的机组却很少,所以这就导致我们能够分析的设备对象很少,很多核电设备的可靠性都非常高,也导致失效数据非常的少。这种状况之下,很多的设备部件不能够依靠传统的可靠性分析方法,需要结合外部失效,行业失效率以及数据并运用数学方法加以分析。对于核电设备可靠性分析的需要,建立一个分析体系。设备部件可靠性的定量分析结果,作为系统的可靠性定量分析输入,这就能够很大范围的提高设备可靠性分析的准确率。部件可靠性定量分析的主体就是设备的主要部件,所以在确定了失效分布的类型之后结合每个输入数据来判断选择合适的分析方法。一般来说,核电站实际的运行的部件在投入运行之前就已经经过了实验与调试阶段,而这两个阶段也在过程当中经过了失效的过程,所以说,在设备实际运行的时候,设备设计的寿命已经到达或者接近时,设备部件已经处于损耗时期,这个时期之前部件都处在偶然的失效期内。如果实际的工作状况比设计的要恶劣时,设备的损耗时期就会提前,时间会缩短。与此同时还能依据数据来判断设备的寿命时期,当设备发生故障的几率低或者是发生的时间很分散,这时设备部件就会处于寿命的偶然失效时期,但是设备部件如果在某个时间段内有很多的失效问题时,部件就处于损耗时期了。核电设备可靠性标准体系分析方法是设备部件可靠性分析里,特别是几乎没有失效数据时,来保证分析的准确度的重要环节。相同的数据,如果选择的分析方法不一样,那么所得到的结果也会有很大的差别。这种差别可能是数量级的。在选择分析方法的时候,要结合核电行业的发展状况,失效情况,数据的特征,实际情况多个角度来考虑。当有核电厂家或者专家机构发表的核电设备的都可以使用的失效率后,可以综合考虑电厂的失效数据,核电厂的部件运行的具体状况来修改更正;当不存在核电厂的失效数据与外部失效数据时,可以通过核电厂的设备运行的数据来对通用失效率进行在r等于0的情况下的修改更正;当存在上述的失效数据时,根据数据的多少来进行选择:如果数据比较少,那么可以通过电厂运行数据对通用失效率进行r不等于0情况下的修改更正;如果数据比较多,那么可以通过经典的设备可靠性评估方法来对其进行分析。在这种情况下,还需要根据设备失效数据是否为完全的失效数据,来判断采用极大似然估计方法分析还是使用非完全失效数据适用的最小二乘平均秩次方法进行分析。 2.2可靠性及老化管理目标与组织机构

相关主题
文本预览
相关文档 最新文档