当前位置:文档之家› EVA太阳能电池封装胶膜市场现状与趋势

EVA太阳能电池封装胶膜市场现状与趋势

EVA太阳能电池封装胶膜市场现状与趋势
EVA太阳能电池封装胶膜市场现状与趋势

EVA太陽能電池封裝膠膜市場現狀與趨勢

伴隨著中國光伏市場的快速發展,EVA太陽能電池封裝膠膜市場也得到了快速增長,許多企業紛紛投入和進入這一市場,但盲目的進入最終導致的肯定是産能過剩和價格競爭,如何剖析當前EVA太陽能電池封裝膠膜的現狀和趨勢呢,筆者結合對這個行業的一些瞭解對此進行了剖析。

一、政策助推産業發展

縱觀近幾年國家出臺的光伏政策,都是利好的,國家住建部、科技部、財政部、能源局等都聯合出臺過多些政策,如2009年住建部聯合財政部推出的《關于加快推進太陽能光電建築應用的實施意見》和《太陽能光電建築應用財政補助資金管理暫行辦法》;財政部與科技部、能源局聯合印發《關于實施金太陽示範工程的通知》;2010年12月,財政部、科技部、住房和城鄉建設部、國家能源局等四部門對金太陽示範工程和太陽能光電建築應用示範工程的組織和實施進行動員部署,幷公布了首批13個光伏發電集中應用示範區名單等等都是在爲光伏産業的快速發展護航,作爲拉動EVA市場快速增長的EVA太陽能電池封裝膠膜,在中國市場得到了快速的增長。

二、EVA太陽能電池封裝膠膜現狀

縱觀目前國內EVA太陽能電池封裝膠膜廠家,主要有杭州福斯特、溫州瑞陽、深圳斯威克、浙江德斯泰、寧波威克麗特等企業,生産原材料的廠家主要有北京有機化工、北京華美、南京揚巴石化等,就全球市場來看,三井、台塑、杜邦、韓華等企業占領了主要的市場,他們在提供原材料的同時也延伸到了膠膜領域,讓EVA太陽能電池封裝膠膜整體市場存在了一些不確定性,目前,國內EVA太陽能電池封裝膠膜推高了EVA在光伏領域的市場需求,超過了13萬噸,幷且進行有上漲趨勢。

三、不確定性環境的剖析

由于中國光伏産業兩頭在外,EVA太陽能電池封裝膠膜的原材料也主要在外,這給整個市場帶來了諸多的不確定性,與此同時,EVM等替代品的出現也讓EVA太陽能電池封裝膠膜市場充滿了變數。

一是光伏市場供過于求的趨勢可能讓市場充滿挑戰,如歐洲原本是中國光伏産品製造商們的最大客戶,但因爲經濟景氣度一直未能有效地回升。今年7月1日起,德國對屋頂光伏系統和移除耕地農場設施的補貼額將减少13%,對轉換地區補貼額將减少8%,其他地區將减少12%,幷從10月1日開始,總補貼額進一步减少3%。同時,影響光伏産品持續銷售的還有,西班牙在今年8月計劃削减太陽能上網電價幅度達45%,對大型屋頂太陽能光伏裝置的上網電價將下降25%,小型的則下降5%。捷克在今年9月出臺政策,規定明年3月,建在農業用地上的太陽能發電廠將不再獲得政府補貼,預計將减少700兆瓦太陽能電站的投資,這接近明年中國的全部投資。作爲需求不斷遞增的意大利,也在9月决定12月31日開始削减對太陽能光伏項目的補貼。英國政府10月也决定下調太陽能補助。

二是原材料市場的不穩定讓市場充滿不確定性。由于一方面目前市場主要的原材料供應商都在國外,都要依靠進口,而且可能會面臨原材料短缺和EVA太陽能電池封裝膠膜的矛盾;另一方面是一些新型的替代品可能會出現幷大規模應用,這都會讓市場存在許多變數。

三是來自政策的不確定性。早在2009年,國務院38號文件對多晶矽産能過剩進行了預警,目前國家的太陽能示範發電工程都是光伏,如果轉向了高溫熱發電,那麽整個政策的推動將會轉型,事實上,高溫熱發電具有更有的性價比和能效比。當然,國家如果能够在光伏發電的幷網運行、上網電等層面得到突破,再加上民用光伏市場的挖掘,那麽整個光伏的春天應該才剛剛開始。

總之,EVA太陽能電池封裝膠膜雖然在整個太陽能電池中占的比重不大,但重要性不小,需要在穩定性、可靠性、耐用性等方面得到保證,特別是新進入者,一定要考慮好自身的能力,在自身産品的技術配方、工藝控制、産品定位等方面把好關,才能分享到市場的份額和贏取市場。

欢迎您的下载,资料仅供参考!

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳电池封装胶膜EVA的研究进展(1)

太阳电池封装胶膜EVA的研究进展 环境污染和能源短缺是人类在21世纪面临的最大挑战。利用太阳电池将清洁的、可再生的能源转变为电能是解决这两个问题的最有效途径之一。为此太阳能利用已成为10年来发展最快的行业之一。 1. 太阳能电池的封装 太阳能电池是将太阳辐射转换成电的装置,是太阳能开发的一项高新技术,是一种新型的特种电源。发电的原理是利用硅等半导体的量子效应,直接把太阳的可见光转换为电能。可是硅若直接暴露于大气中,其光电转换机能会衰减,所以必须将电池封装起来。目前硅晶片电池的封装常用的有4种。 (1)表面为环氧树脂封装。环氧树脂封装的太阳能电池如图1所示。底层用印制电路板作为衬底,中间为太阳能晶片,在晶片上面涂一层透明环氧树脂。这种封装方法常用于小功率(5W以下)的太阳电池,其工艺简单,但环氧树脂经长期日晒后会变色泛黄,影响透光效果。 图1 环氧树脂封装的太阳能电池 (2)表面为玻璃封装。大功率的太阳能电池的封装结构如图2所示。表面用透过率大于90%的玻璃,厚度为3mm,晶片的上、下两

层为抗老化的EV A (乙烯—醋酸乙烯共聚物),衬底用TPT(复合塑料膜),五层材料经高温层压后加上铝合金框而成。 其中层压主要工艺步骤为: 1、叠层:依次将盖板玻璃、EV A 膜、互相连接好的太阳电池、EV A 膜、聚氟乙烯膜(或复合膜)叠在一起。 2、抽真空:把上述叠层件放到双真空层压器的下室。层压器的上、下两室同时抽真空,约5m in。 3、加热:层压器的上下两室保持真空,加热叠层件。 4、加压:叠层件加热到110~120℃时,层压器的上室逐渐取消真空回到常压。这时层压器的下室仍处于真空状态,也就是使上室对下室中的层压件产生一个大气压的压力。 5、保温固化:在固化温度下,恒温固化。 6、冷却:恒温固化后,层压器撤离热源,层压器的下室仍处在真空状态。循环冷却,取消下室真空,取出组合件,用快刀把组合件边缘多余的EV A 切掉。然后封边框和装接线盒,组装成太阳电池组件。 这种太阳能电池封装工艺成熟,为多数太阳能电池生产厂家所采用。

EVA太阳能电池封装胶膜市场现状与趋势

EVA太陽能電池封裝膠膜市場現狀與趨勢 伴隨著中國光伏市場的快速發展,EVA太陽能電池封裝膠膜市場也得到了快速增長,許多企業紛紛投入和進入這一市場,但盲目的進入最終導致的肯定是産能過剩和價格競爭,如何剖析當前EVA太陽能電池封裝膠膜的現狀和趨勢呢,筆者結合對這個行業的一些瞭解對此進行了剖析。 一、政策助推産業發展 縱觀近幾年國家出臺的光伏政策,都是利好的,國家住建部、科技部、財政部、能源局等都聯合出臺過多些政策,如2009年住建部聯合財政部推出的《關于加快推進太陽能光電建築應用的實施意見》和《太陽能光電建築應用財政補助資金管理暫行辦法》;財政部與科技部、能源局聯合印發《關于實施金太陽示範工程的通知》;2010年12月,財政部、科技部、住房和城鄉建設部、國家能源局等四部門對金太陽示範工程和太陽能光電建築應用示範工程的組織和實施進行動員部署,幷公布了首批13個光伏發電集中應用示範區名單等等都是在爲光伏産業的快速發展護航,作爲拉動EVA市場快速增長的EVA太陽能電池封裝膠膜,在中國市場得到了快速的增長。 二、EVA太陽能電池封裝膠膜現狀 縱觀目前國內EVA太陽能電池封裝膠膜廠家,主要有杭州福斯特、溫州瑞陽、深圳斯威克、浙江德斯泰、寧波威克麗特等企業,生産原材料的廠家主要有北京有機化工、北京華美、南京揚巴石化等,就全球市場來看,三井、台塑、杜邦、韓華等企業占領了主要的市場,他們在提供原材料的同時也延伸到了膠膜領域,讓EVA太陽能電池封裝膠膜整體市場存在了一些不確定性,目前,國內EVA太陽能電池封裝膠膜推高了EVA在光伏領域的市場需求,超過了13萬噸,幷且進行有上漲趨勢。 三、不確定性環境的剖析 由于中國光伏産業兩頭在外,EVA太陽能電池封裝膠膜的原材料也主要在外,這給整個市場帶來了諸多的不確定性,與此同時,EVM等替代品的出現也讓EVA太陽能電池封裝膠膜市場充滿了變數。

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性 一、钢化玻璃 1. 加工原理 钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能电池组件对钢化玻璃的透光率要求很高,须大于91.6%,对大于1200nm 的红外光有较高的反射率。另外,厚度要求在3.2mm 。 1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。 2)化学钢化玻璃是通过改变玻璃表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃。 2. 钢化玻璃的主要优点: 1)强度比普通玻璃提高数倍,抗弯强度是普通玻璃的3-5倍,抗冲击强度是普通玻璃5-10倍,提高强度的同时亦提高了安全性。 2)使用安全,其承载能力增大,改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,极大地降低了对人体的伤害。钢化玻璃的耐急冷急热性比普通玻璃提高2-3倍,一般可承受150LC 以上的温差变化,对防止热炸裂有明显的效果。

钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。 3. 钢化玻璃的缺点: 1)钢化后的玻璃不能再进行切割或加工,只能在钢化前就对玻璃进行加工至需要形状,再进行钢化处理。 2)钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。(钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。) 4. 自爆现象: 1)玻璃质量缺陷的影响 A .玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。 结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数, 玻璃钢化后结石周围裂纹区域的应力集中成 倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态,伴随结石而存在的裂纹扩展极易发生。 B .玻璃中含有硫化镍结晶物 硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS ,其中X=0-0.07。只有NI1-XS 相是造成钢化玻璃自发炸碎的主要原因。

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

太阳能电池极板材料的研究方向及性能对比

太阳能电池极板材料的研究方向及性能对比 摘要:对于太阳能电池的两大类材料的一些新兴研究成果进行了总结归纳,具体介绍一些热门材料的生产加工工艺以及性能评估,并做出横向对比与评价,并由此对于太阳能电池的发展方向做出展望。 关键词:多晶硅薄膜太阳能电池;碲化镉;铜-铟硒化物/硫化物;染料敏化太阳能电池;有机太阳能电池;转换效率。 1引言 尽管地球上的能源危机以及环境问题在新世纪中已经被一而再再而三的提及,并在一定程度上得到了重视,但人类真正能够改变这一困境的方法和能力还在进一步摸索与加强中。太阳能电池的研究,正是在这方面努力中不可忽视的一部分。 与传统矿石燃料相比,太阳能的优势显而易见:取之不尽用之不竭;清洁无污染;可利用范围广泛;适宜采用新兴的分布式发电进行配送,保证电能的充分利用。遗憾的是,从目前看,太阳能发电(即光伏发电)的成本依旧难以得到有效削减,导致其应用领域局限于一些特定场合,如卫星供电,以及在光能充足的地区集中发电以提高效率。成本在很大程度上取决于极板材料的价格,而研发新型高效低价的极板材料正是光伏发电领域最重要的课题。 目前研究领域最主流的两类光伏材料是:1.无机材料,包括单晶、多晶、无定形硅材料,碲化镉材料,CuInSe铜铟硒化物,以及GaAs砷化镓等半导体材料;2.有机材料,即塑料类的高分子有机物材料及染料敏化材料,主体为在二氧化钛涂层中渗透的化学染料。下面就详细介绍这三大类材料的研究进展。 2 光伏效应 当太阳能电池受到阳光照射时,光与半导体相互作用可以产生光生载流子,所产生的电子-空穴对靠半导体内形成的势垒分开到两极,正负电荷分别被上下电极收集。由电荷聚集所形成的电流通过金属导线流向电负载。 太阳能电池将太阳光转换为自然光中的量子光子。当光照射太阳电池时,将产生一个由n区到p区的光生电流Ipn。同时,由于pn结二极管的特性,存在正向二极管电流ID ,此电流方

EVA胶膜项目招商引资报告

EVA胶膜项目招商引资报告 规划设计/投资方案/产业运营

EVA胶膜项目招商引资报告 全球光伏发展前景广阔。过去10年,全国光伏新增装机规模增长超过了10倍,主要原因一方面是包括中国在内的主要国家都出台了支持光伏行业发展的政策,另一方面光伏组件的价格在过去10年间下降幅度超过了90%从而为新增装机打开了空间。预计2019年全球新增光伏装机约120GW,累计光伏装机预计将达到600GW,2020年全球新增光伏装机约140GW,同比增长约20%。行业装机的增长也将增加对EVA胶膜的需求。 该EVA胶膜项目计划总投资14644.50万元,其中:固定资产投资10667.76万元,占项目总投资的72.84%;流动资金3976.74万元,占项目总投资的27.16%。 达产年营业收入31230.00万元,总成本费用24794.59万元,税金及 附加264.38万元,利润总额6435.41万元,利税总额7587.43万元,税后净利润4826.56万元,达产年纳税总额2760.87万元;达产年投资利润率43.94%,投资利税率51.81%,投资回报率32.96%,全部投资回收期4.53年,提供就业职位638个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做 好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯彻“安

全生产,预防为主”的方针,确保投资项目建成后符合国家职业安全卫生的要求,保障职工的安全和健康。 ......

EVA胶膜项目招商引资报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

EVA胶膜测试项目及方法

太阳能胶膜性能测试方法(2010-2-22) 1.厚度检验 1.1测量仪器 精度为0.01mm的测厚仪。 1.2测量方法 用1.1的测厚仪在胶膜横向方向上等间距测5点,在胶膜的纵向上等间距测5点,求取算术平均值。 2.幅度检验 2.1测量器具 用精度为1mm钢制卷尺或直尺。 2.2测量方法 用2.1测量器具,在胶膜样品的长度方向等间距测量5处,求取算术平均值。 3.透光率测试方法 3.1仪器 透光率-雾度计。 3.2试片制作 采用50mm×50mm×1.2mm的载玻玻璃,以玻璃/EV A胶膜/玻璃三层叠合,置制作太阳电池板的层压机内,140℃(EV10G1),抽气时间为6min,加压时间为1min,层压时间为15min 。3.3透光率试验方法 用3.1仪器测定试片透光率(取3点平均值)为其结果。 4.粘接力测试方法 4.1 与白PET粘接力 4.1.1准备好5cm宽、3mm厚的玻璃,宽5cm的白色PET及5cm宽,长10cm的胶片,将玻璃洗净、擦干。 4.1.2用玻璃做刚面,PET为挠面,胶片放于两者之间,用透明胶带将PET固定于玻璃上,组成粘合组合体。 4.1.3将层压机温度设置为140℃(EV10G1),抽气时间为6min,加压时间为1min,层压时间为15min。

4.1.4待层压机升温到达设定温度并恒温10分钟以上后,将粘合组合体迅速放于两层高温布之间,关盖,开始层压程序。 4.1.5层压程序完成后,取出粘合组合体。 4.1.6将粘合组合体分割成5个宽度为10mm 的试样进行180度剥离,记录数据(剥离速度为100mm/min )。 4.2 与玻璃粘接力 4.2.1准备好2.5cm 宽、3mm 厚的玻璃,宽2.5cm 的帆布及2.5cm 宽,长10cm 的胶片,将玻璃洗净、擦干。 4.2.2用玻璃做刚面, 帆布为挠面,胶片放于两者之间,用透明胶带将帆布固定于玻璃上,组成粘合组合体(每一胶膜样品做3个粘接合组合体)。 4.2.3将层压机温度设置为140℃(EV10G1),抽气时间为6min ,加压时间为1min ,层压时间为15min 。 4.2.4待层压机升温到达设定温度并恒温10分钟以上后,将粘合组合体迅速放于两层高温布之间,关盖,开始层压程序。 4.2.5层压程序完成后,取出粘合组合体。 4.2.6将试样进行180度剥离,记录数据(剥离速度为100mm/min )。 5.收缩率测试方法 ● 准备:取尺寸为100*100mm 的EV A 胶膜试样,如图所示,a1 A1 b1 B1 均为所在 边的中点, a1 A1 、 b1 B1长度均为100mm (L1)。 ● 收缩:将EV A 试样(放于PTFE 板上,要求平整)放入120℃(+1℃)烘箱中加 热3分钟,取出。 ● 计算: 平均值:测收缩后 a1 A1 、 b1 B1的长度,分别为L2,L3。

太阳能电池材料

太阳能电池材料 1.说明三氯氢硅还原法制备高纯硅的具体步骤 答:工业级硅经过酸洗、粉碎(60~100目),符合粒度的送入干燥炉,经热氮气流干燥后,送入沸腾炉,同时从炉底部通入适量的干燥HCL,进行三氯氢硅的合成。 2.论述拉制无错位单晶硅的工艺 无错位晶核是生长无错位单晶的基础 3.论述直拉法工艺的定义、工艺流程、需控制的参数、特点 答:生长方法:在直拉单晶炉内,向盛有熔硅坩埚中,引入籽晶作为非均匀晶核。然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按籽晶的方向长大。直拉法工艺流程:炉体、籽晶、多晶硅、掺杂剂、石英坩埚;清洁处理;装炉;抽真空(或通保护气体);加热熔化;单晶生长;降温出炉;性能测试。 单晶工艺流程:1.熔化;2.稳定;3.引晶;4.缩颈;5.放肩;6.等径;7.收尾。需控制的参数、特点:坩埚的位置、转速、上升速度,以及籽晶的转速和上升速度,热场的设计和调整。 4.论述在直拉法中杂质的掺入方法以及单晶中杂质均匀分布的控制方法 答:共熔法:纯材料与杂质(不易挥发的材料)一起放入坩埚熔化; 投杂法:向已熔化的材料中加入杂质(易挥发的材料) 单晶中杂质均匀分布的控制方法:1.直拉法单晶纵向电阻率均匀性的控制:变速 拉晶法:原理C S =KC L 。双坩埚法:连通坩埚法和浮置坩埚法。2.径向电阻率均匀 性的控制:在晶体生长过程中,如果熔体搅拌均匀,则固液交界面是等电阻面。 5.论述直拉工艺中降低氧含量的措施 6.什么是分凝现象?平衡分凝系数?有效分凝系数?小平面效应? 答:分凝现象:将含有杂质的晶态物质熔化后再结晶时,杂质在晶体的固体浓度Cs和未结晶的液体中浓度C l不同的现象。 平衡分凝系数:在一定温度的平衡状态下,杂质的固液两相中浓度的比值:K0=C S/C L

太阳能电池及材料研究和发展现状

第19卷第5期2006年9月 浙江万里学院学报 JournalofZhejiangWanliUniversity V01.19No.5 Sep.2006太阳能电池及材料研究和发展现状 汪建军,刘金霞 (浙江万里学院,宁波315101) 摘要:文章介绍了不同材料的太阳能电池,如单晶硅、多晶硅、多晶硅薄膜、非晶硅薄膜、CulnSe2、 CdTe、染料敏化等太阳电池主要制各工艺、典型结构与特性.简要说明不同电池商品化生产情况及光伏产业 发展趋势. 关键词:太阳能电池;高效电池;光伏产业 中图分类号:TK512文献标识码:A文章编号:1671--2250(2006)05一0073—05 收稿日期:2006--01一ll 作者简介:汪建军,浙江万里学院基础学院实验师;刘金霞,浙江万里学院基础学院副教授. 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽度&应在1.1eV.1.7eV之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产.1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后lO多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量已经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等几大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1.1晶体硅太阳电池晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的….1.2硅基薄膜太阳电池多晶硅(ploy.Si)薄膜和非晶硅(a.Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对阳光的吸收系数高,活性层只有llam厚,材料的需求量大大减少,沉积温度低(约200℃),可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长波区域不敏感,限制了非晶硅电池的效率,且其效率会随着光照时间的延续而衰减(即光致衰退),使电池性能不稳定.

太阳能电池组件的封装(精华)

太阳能电池组件的封装(精华) 导读:单件电池片由于输出功率太小,难以满足常规用电需求,因此需要将其封装为组件以提高其输出功率。封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,再好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以组件的封装质量非常重要。 具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置,叫太阳能电池组件,即多个单体太阳能电池互联封装后成为组件。太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。 1.防止太阳能电池破损。晶体硅太阳能电池易破损的原因:晶体硅呈脆性;硅太阳能电池面积大;硅太阳能电池厚度小。 2.防止太阳能电池被腐蚀失效。太阳能电池的自然抗性差:太阳电池长期暴露在空气中会出现效率的衰减;太阳电池对紫外线的抵抗能力较差;太阳电池不能抵御冰雹等外力引起的过度机械应力所造成的破坏;太阳电池表面的金属化层容易受到腐蚀;太阳电池表面堆积灰尘后难以清除。 3.满足负载要求,串联或并联成一个能够独立作为电源使用的最小单元。由于单件太阳电池输出功率难以满足常规用电需求,需要将它们串联或者并联后接入用电器进行供电。 太阳能电池组件的种类较多,根据太阳能电池片的类型不同可分为晶体硅(单、多晶硅)太阳能电池组件、非晶硅薄膜太阳能电池组件及砷化镓电池组件等;按照封装材料和工艺的不同可分为环氧树脂封装电池板和层压封装电池组件;按照用途的不同可分为普通型太阳能电池组件和建材型

太阳能电池组件。其中建材型太阳能电池组件又分为单面玻璃透光型电池组件、双面夹胶玻璃电池组件和双面中空玻璃电池组件。由于用晶体硅太阳能电池片制作的电池组件应用占到市场份额的85%以上,在此就主要介绍用晶体硅太阳能电池片制作的电池组件。 单晶硅组件 多晶硅组件 非晶硅组件 第一代室温硫化硅橡胶封装 第二代聚乙烯醇缩丁醛 (PVB )封装 第三代乙烯-醋酸乙烯共聚物(EVA )封

常见EVA胶膜性能指标

常见EV A胶膜性能指标 项目单位福斯特枫华塑胶海优威永固尚美瑞阳浙江化工斯威克飞宇奥特昇帝龙台湾暘益密度g/cm30.96 0.96 0.952 0.96 0.96 0.96 0.96 0.96 0.96 拉伸强度MPa 16 20 26 16 20 16 断裂伸长率% 550 520 420 600 580 590 杨氏模量MPa 4.7 6 4.33 UV cut-off nm 360 360 360 360 交联度% 75~90 75 >80 75~85 ≥85 ≥85 75~85 75~90 85±5 80~90 80~90 86±2 粘结强度/玻璃N/cm >50 52 >50 >70 >30 ≥50 ≥30 >50 >40 >60 ≥50 100~140 粘结强度/TPT N/cm >40 74 >20 >60 >40 ≥50 ≥20 >40 >40 >50 >40 50~60 收缩率TD% <2.0% <3 <5 <3 <2 <4 <3 <4 厚度mm 0.3~0.8 0.6 0.3~0.8 0.3~0.8 0.3~0.7 宽度mm 200~2200 810 200~2200 200~2200 100~2000 软化点o C 62 65 62 58 60 58 透光率% 91 91 90 >91 ≥91 ≥91 91 >91 >91 ≥91 91~92 比热J/o C·g 2.3 2.3 导热性W/mk 0.3 吸水性% 0.1 <0.01 ≤0.1 <0.1 <0.1 0.1 0.2~0.3 抗紫外YI ≥87% <2 >90% ≤2 <2 <5(功率变化) <2 >90% 耐湿热YI ≥85% <2 88% <2 ≤2 <2 <5(透光率变化) <3 >90% 折光指数 1.48 1.483 熔融指数g/10min 32 30 30 绝缘强度kV/mm 19 体积绝缘电阻Ω·cm 5.4×1015 吸光度% <1.2

光伏封装胶膜介绍

光伏封装胶膜介绍 光伏封装胶膜作用是将光伏玻璃、电池片和背板粘在一起。一般而 言封装胶膜需要透光、可粘接、耐紫外线及高温、低透水、高电阻率(减少漏电流)。 光伏用胶膜主要分为透明EVA、白色EVA、聚烯烃POE、共挤型POE、与其他封装胶膜(PCMS/Silicon 、PVB胶膜、TPU胶膜)等。2019 年市场上主要以透明EVA胶膜为主。 透明EVA胶膜是较为传统的胶膜产品,目前为市场主流,市场占比约70%。透明EVA技术成熟且成本较低,但封装后的组件衰减率高。为配合行业降本增效,目前封装胶膜企业主要围绕低入射光损耗、低衰减以及高性价比这几个关键点来进行研发。 白色EVA产品为近些年胶膜企业研发的新产品,白色EVA成本高于普通透明EVA,但其具有独特的高反射性能,通过增加电池片间隙入射光反射(白色EVA光反射率达到90%以上),提高组件对太阳光的有效利用,能够使一块60片单/ 双玻组件功率提升7- 10W/1.5-3W。同时也解决了组件层压后的白色胶膜溢白问题,还可简化背板降低成本,目前多实用于单玻组件和双玻组件的背层封装。 白色EVA在2012 年时就被我国胶膜龙头企业海优威提出,但由于其流动性大导致组件外观缺陷而被搁置。2013-2017 年间,海优威通过 引入电子束辐照预交联技术消除了白色EVA胶膜的流动性, 提高了耐热性和尺寸稳定性,防止组件外观缺陷产生。目前,经电子光束预交联处理的低流动性白色EVA已投入量产。

但传统EVA胶膜透水率较高,在使用过程中水汽进入组件,EVA 遇水降解后形成可以自由移动的醋酸根(-COOH),醋酸根与玻璃表面析出的碱反应产生可以自由移动的钠离子(Na+),钠离子在外加电场的作用下向电池片表面移动并富集到减反层从而导致PID 现象,导致组件功率衰减。而双面组件由于需要激光在背钝化层开槽,背面钝化不完全,背面用细小铝线印刷铝栅格,比常规电池的全铝背场更容易被酸腐蚀,并且双面组件部分采用另外无边框或半边框,胶膜与空气接触几率大,若无特殊防护,双面PERC电池背面PID 衰减可达到15-50%。 聚烯烃POE胶膜随之诞生,其具有优异的水汽阻隔能力和离子阻隔能力,水汽透过率仅为EVA的1/8 左右。且其分子链结构稳定,老化过程中不会分解产生酸物质,优秀的水汽阻隔性、耐候性能、光透过率与粘接性能,使其能够更好的保护组件在高湿环境下的正常工作,使组件具有更加长效的抗PID 性能。近年来在领跑者项目的带动下,双面电池及组件的应用越来越广泛,但双面组件存在的PID 衰减问题是常规封装胶膜难以解决的,为此有胶膜企业研发出强抗PID双面PERC电池专用POE胶膜,能够在组件端使用中大幅改善层压溢胶、并串等问题,同时可加快交联速度、提升交联度,缩短层压时间,提升组件良率。

太阳能电池材料

太阳能材料的研究和发展 1 引言 随着人类社会的不断发展,人与自然的矛盾也愈来愈突出。目前全世界范围面临的最为突出的问题是环境与能源,即环境恶化和能源短缺。这个问题当然要通过各国政府采取正确的对策来处理,发展新材料及相应的技术.将是解决这一问题最为有效的方法。事实上近年来人们对太阳能材料的研制和利用,已显示了积极有效的作用。这一新型功能材料的发展,既可解决人类面临的能源短缺,又不造成环境污染。尽管太阳能材料的成本还较高和性能还有待进一步提高,但随着材料科学的不断进步,太阳能材料愈来愈显示了诱人的发展前景。可以预见,在下个世纪,太阳能材料将扮演更为重要的角色。就象半导体等功能材料的发展带来电信和计算机产业的兴起和发展一样,太阳能材料及相关技术也将带来太阳能器件的产业化的发展,使人类在环境保护和能源利用两方面的和谐达到更加完善的境界。大阳能是人类取之不尽,用之不竭的可再生能源,也是清洁能源,不产生任何的环境污染。为了充分有效地利用太阳能,人们发展了多种太阳能材料。按性能和用途大体上可分为光热转换材料,光电转换材料,光化学能转换材料和光能调控变色材料等。由此而形成太阳能光热利用,光电利用,光化学能利用和太阳能光能调控等相应技术。从目前世界范围内经济发展状况来看,太阳能材料及相应利用技术是发展最快和最有发展前景的高科技产业之一。随着科学技术的不断进步,将不断地出现更为经济,性能更好的新型太阳能材料。太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽; ②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太

EVA太阳能电池封装膜的介绍[1]

EVA太阳能电池封装膜的介绍和封装工艺简介 1. EVA太阳能电池封装膜的介绍、太阳能电池的工作原理简介和封装工艺简介 1.1EVA太阳能电池胶膜产品简介 太阳能电池胶膜是用EVA(乙烯-醋酸乙烯共聚物)为主要原料,添加各种助剂后,经加热挤出成型的产品。该胶膜在常温时无粘性,便于裁切分割操作。目前,本胶膜主要用于太阳能电池板的封装。在封装时,先裁切所需尺寸的胶膜,按玻璃-胶膜-电池板-胶膜-TPT叠合于铝合金框内;然后,放入层压机内加热、加压、并抽真空;最后,放入设定温度的固化炉中恒温所需时间即可。 EVA 胶膜特点描述 1:高透光率,提高组件的光电转化效率。 2:合理的交联度,保证组件良好的稳定性和可使用寿命。 3:卓越的耐紫外老化性能和优秀的耐湿热老化行能,保证组件在户外长达25 年的使用寿命。 4:极低的收缩伸长率,保证您的组件尺寸稳定性和一致性。 5:对各种背板和玻璃较强的粘接性能,保证组件安全高效的运行。 1.2太阳能电池简单介绍 1.2.1什么是太阳能电池

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.2.2太阳能电池的原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。 (2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的. 1.2.3太阳能电池的分类 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形 (a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌(Zn 3 p 2 )等。 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 (2)多元化合物薄膜太阳能电池 多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。 (3)聚合物多层修饰电极型太阳能电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材

EVA胶膜的尺寸稳定性控制

EV A胶膜的尺寸稳定性控制 在EV A封装胶膜使用过程中,首先要在热板上预热并抽真空,期间EV A胶膜可能由于尺寸不稳而发生收缩变形, 从而导致层压过程中组件位移或气泡产生等缺陷,因此,业界对EV A胶膜的收缩率均有严格要求.国外产品在这方面也确实表现出对国内产品明显的优势, 美国STR公司的产品更号称采用特定的“用户友好”工艺使得产品为零收缩,其他诸如BRIDGESTONE和MITUI CHEMICAL的产品也135℃/3min的测试中表现出较小且很好的收缩均匀性能. 目前,太阳能组件厂对收缩的要求并没有统一的测试标准,一般常采用100mmX200mm(TDXMD)的样品膜直接放在120-140℃的热板上3min后冷却测定尺寸的变化. 如下是过程照片:

EV A封装胶膜的收缩率,取决于胶膜的生产方式. 一般用压延方式生产,可能横向(TD)可能会有一定的收缩; 而采用挤出方式生产的胶膜通常只有MD方向的收缩率. 对于挤出方式生产的胶膜,为了更好地减少收缩率,一般根据收缩产生的原因加以工艺调整和适当的设备配置变化即可,调整配方很难得到好的效果. 挤出过程中,片膜产生纵向收缩的原因大致有以下几个方面: 1、模头拉伸比 口模流出速度与牵引速度之比,一般定义为模头拉伸比,但对 于出模膨胀大的情形这种计算方式不太准确。对于EV A胶膜 生产而言,由于低温挤出特性,出模膨胀高大4-5倍,因此计 算时应以出模膨胀后片胚的最大厚度计算拉伸状况。 2、片胚的温度 片胚温度高,片胚在经受模头拉伸时的松弛时间短,不容易形

成过分的冷拉,胶膜的收缩会得到很好的控制 3、压辊与流延辊的速差 4、熔池的大小 熔池大相当于增加压辊与流延辊的直径,从而改变速差,因此 导致较大的收缩; 5、压辊温度 温度高有利于熔体松弛,可以减少收缩,但温度高可能导致粘 辊,因此应以不粘辊为前提,尽可能提高辊温。 6、生产线速度 生产线速度低,有利于收缩应力的松弛,低速生产可以得到较 小的收缩率,这是目前国内生产线速度慢的原因之一 7、牵引张力 牵引张力是胶片生产过程中实现收卷、切边等操作的必要要 求,但牵引张力过大会引起膜片的拉伸变形,增大收缩。因此, 在生产线设计时一定要得到低张力收卷和切边的功能。 8、退火处理 在生产线中加入有效的退火单元,可以有效的减少膜片的收 缩。但需要形成适当的退火工艺。 通过对以上8个方面的控制和改善可以制得收缩很小甚至为零的EV A胶膜。

相关主题
文本预览
相关文档 最新文档