当前位置:文档之家› 运用MATLAB学习彩色全电视信号的编码、解码及频谱分析.

运用MATLAB学习彩色全电视信号的编码、解码及频谱分析.

运用MATLAB学习彩色全电视信号的编码、解码及频谱分析.
运用MATLAB学习彩色全电视信号的编码、解码及频谱分析.

电视原理

运用MATLAB学习彩色全电视信号的编码、解码及频谱分析

院系:

专业:

姓名:

2011年6月5日

编码及其频谱分析

【摘要】

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,代表了当今国际科学计算软件的先进水平。

MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。Simulink®是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。.

【关键字】:MATLAB 、Simulink、信号处理、数据分析

PAL制彩色电视编码原理:

PAL是英文(逐行倒相)Phase Alternation Line 的缩写。所以按照其特点PAL制又可称之为“逐行倒相正交平衡调幅”制。PAL制彩色全电视信号由亮度信号、色度信号、色同步信号、复合消隐信号和复合同步信号组成。经过图象信号处理后的三基色信号和各种同步信号同时送入PAL编码器,经过一系列的处理加工后,即可形成PAL 制彩色全电视信号。

具体过程如下:

校正的三基色信号R、G、B由矩阵电路变成亮度信号Y、蓝色差信号(B-Y)和红色差信号R-Y。在亮度通道中,设置有副载波陷波器和延迟线,前者是为了减少进入接收机色度通道的亮度串色,后者是为了均衡色度信号因频率受限而在时间上产生的延迟。通过陷波器和延迟线的Y信号,再经放大、钳位等处理电路,并混入复合消隐信号(BL)和复合同步信号(S)后,便形成黑白全电视信号(VBS)。色度通道里,(R-Y)、(B-Y)先经带宽(1.3MHz)限制,并压缩为V、U信号,再由钳位电路钳定零电平,然后进入平衡调幅器,变成红色度信号和蓝色度信号,两者相加并经低通或者带通滤除调制中产生的谐波之后,形成色度信号F。色度信号F、色同步信号Fb、亮度信号Y与消隐信号BL、同步信号S经混合后输出彩色全电视信号FBAS。

PAL制编码方框图:

MATLAB编码仿真的编码电路:

一、兼容制传送方式

1、要实现彩色与黑白电视兼容,彩色电视要满足以下基本条件:(1)彩色电视信号必须包含一个亮度信号,即黑白全电视信号;(2)必须包含彩色信号,它仅代表色度,可与亮度信号迭加在一起传送。在接收端又可以被分开,同时二者互不干扰。

(3)彩色电视必须与黑白电视具有相同的基本参量。如扫描频率、方式、带宽、同步信号组成、图像载频、伴音载频及图像、音的调制方式。

2. 高频混合原理。

谓高频混合原理,是指在彩色电视的传输中,利用人眼对彩色细节分辨力低于对亮度细节分辨力的特性,将色差信号采用4 窄带传送,而亮度信号采用宽带传送。在接收端,基色信号也只恢复规定带宽以下的低频分量。反映在画面上,是重现彩色图像的粗线条,即大面积的色调,而图像的细节,即高频成份则由同一亮度信号的高频分量代替,这就是高频混合原理。

3.频谱交错原理

色差信号的频带虽经压缩,但由于彩色电视信号中的亮度信

号频谱已占用6MHZ 带宽,因而只有设法将色度信号的频谱插到

亮度信号频谱的间隙,使色度信号不占有额外的频带,才能做到

彩色电视信号只占6MHZ 的频带范围,从而满足与黑白电视兼容的条件。

二、亮度与色差信号

为了实现兼容,彩色电视广播必须传送一个亮度信号。由于彩色摄像机产生的是R、G、B三基色。根据三基色与三要素的关系可知,混合光的亮度为三基色光的亮度之和。又根据人眼相对视敏度特性可知,红、绿、蓝三基色信号中的亮度成分又是不一样的,视敏度高的基色(如绿色)含有的亮度成分多一些。红基色信号(R)、绿基色信号(G)、蓝基色信号(B)可按这个比例混合,可获得一个亮度信号(Y),即亮度方程式为:

Y=0.30R 0.59G+ 0.11B

1、亮度信号产生:

R、G、B、Y:

2、色差信号(R-Y)、(B-Y)的产生:

R-Y、B-Y:

三、色度信号与色同步信号

色差信号的频带虽经压缩,但由于彩色电视信号中的亮度信号频谱已占用6MHZ带宽,因而只有设法将色度信号的频谱插到亮度信号频谱的间隙,使色度信号不占有额外的频带,才能做到彩色电视信号只占6MHZ的频带范围,从而满足与黑白电视兼容的条件。色度信号不能直接简单与亮度信号叠加,因为这样做的话色度信号的频谱将与亮度信号频谱重合,产生严重的干扰。可采用的方法是,选择一个合适的载频,通常称为副载波,以fsc表示。亮度信号频谱与色度信号的频谱是互相交错的,如下图所示:

采用正交平衡调幅制处理色差信号的过程相关电路图如下:

压缩后的色差信号分别为:

U=0.493(B-Y)

V=0.877(R-Y)

色度信号Fv和Fu的形成:

Fu=UsinωSCt

Fv=VcosωSCt

这两个平衡调幅信号频率相等,相差90°,保持着正交关系,将二者相加便得到正交平衡调幅的色度信号:

F=UsinωSCt+VcosωSCt

F常被称为已调色差信号或色度信号,压缩后的色差信号V与+K脉冲混合后与+cosωsc t副载波同时加入平衡调幅器,经平衡调幅电路输出已调色差信号+Fv和色同步信号的F bu分量;色差信号U与-K脉冲混合后,对sinωsc t平衡调幅,得到已调色差信号Fu和色同步信号F bu 分量。以上二色度信号分量与色同步信号分量混合后,得到色度信号F和色同步信号F b。为得到逐行倒相的正交副载波+cosωsc t,需设置90°移相、180°倒相和PAL开关电路、逐行倒相的半行频(7.8kHz)

开关控制信号。

运用MATLAB仿真得到V和U再进行平衡条幅波形如图所示:从上到下依次为U Fu V Fv

四、色同步信号Fb的形成

由于PAL制中对V色度分量即FV进行了逐行倒相, 所以在接收

端还要使逐行倒相复原。因此, 要由色同步信号提供一个识别信号, 用它来保证收、发两端的逐行倒相开关(PAL开关)步调一致, 即同步。色同步信号是由8-12个副载波周期组成的一小串副载波群,其出现周期与行周期相同,且位于行消隐的后肩上,电路如下图:

色同步信号前沿滞后行同步脉冲前沿 5.6us,色同步信号的幅度与行同步脉冲幅度相等

五、全电视信号FNAS的形成

色度信号F、色同步信号Fb、亮度信号Y与消隐信号A、同步信号S经混合电路后输出彩色全电视信号FBAS。此FBAS信号是色差信号进行幅度压缩形成U、V色差信号后, 由已调的红、蓝两个色度分量叠加形成色度信号, 再与亮度、同步、消隐等其它信号混合而成。

MATLAB仿真FBAS电路和FBAS波形和各分信号波形如图所示:

图中从上到下一次是:FBAS F+Fb Y+A+S F Fb

彩色图像信号包括亮度信号与色度信号。从频域来看, 亮度信号与色度信号频谱交错从时域来看, 色度信号叠加在亮度信号电平上, 它们叠加后的信号波形如图图1-18所示。它们与扫描所需的同步信号、色同步信号以及消隐信号合成了彩色全电视信号(即FBAS), 再去调制图像载波。我国彩色电视标准中规定, 采用负极性调制。负极性亮度信号仍以扫描同步电平最高为100%, 黑电平为76%, 白电平最低为20%, 以便于增大色度信号不失真的动态范围

编码过程中的各信号的频谱分析

所谓频谱,就是电信号的能量按频率分布的曲线。全电视信号的频谱,应是它所包含的主体信号与辅助信号的频谱之和。编码频谱分析就是对MATLAB仿真电路中的R信号、G信号、B信号、亮度信号Y和消隐信号A、色度信号、色同步信号F、同步信号S和FBAS

信号的各个频谱进行分析的过程。

MATLAB编码频谱分析仿真电路如图所示:

1、亮度信号Y的频谱分析

亮度信号Y的频谱分析图如下图所示:

由图可看出亮度信号是含有直流成分,亮度信号的主要参数有相对幅度、饱和度和频带宽度,亮度信号与色差信号频谱波形相似, 只是幅值不同而已。放大后可以看到它的主谱线和副谱线。

2、色差信号R-Y和B-Y的频谱分析

(1)色差信号R-Y的频谱分析图如图所示:

由图可看出色差信号是交流信号

(2)色差信号B-Y的频谱分析图如图所

示:

由图可看出色差信号是不含有直流成

分,是交流信号,奇对称。在不计较显像管失真及传输系统非线性失真的情况下还可以证明色差信号受到干扰时,将不影响亮度信号,也不反映到图像的亮度上。

3、色度信号F、Fu和Fv的频谱分析

(1)色度信号F的频谱分析图如图所示:

(2)色度信号Fv的频谱分析图如图所示:

由图可看出色度信号是不含有直流成分的,色度信号的主要参数有相对幅度、饱和度和频带宽度,色度信号的频谱图, 代表各彩条的色度信号的振幅和相位, 不同色调的矢量处在平面不同位置上,虽然被传送的彩色都是100%饱和度, 但色度信号的长度不尽相同,只有互补的两个彩色矢量长度是相同的, 因为互补的二色相加

应为白色, 即此二色的色度信号矢量之和

应为零。色调相同而饱和度不同的彩色,

其色度信号的初相角不变。

4、全电视信号FBAS的频谱分析

全电视信号FBAS的频谱分析图如图所示:

从图中可以看出基波频率为15625行频,它是视频单极性信号, 既有直流成分, 又含有交流成分, 且是上下不对称的信号, 占有0~6MHz的频带宽度。对静止的图像而言, 其电视信号以帧为周期重复, 其场间、行间相关性也较大对活动图像而言, 则可说是帧间、行间相关性较大的非周期信号, 但其同步与消隐信号仍是周期性的。

解码及其频谱分析

PAL制解码器及解码过程:

把彩色全电视信号还原成三基色电信号的过程称为解码,解码是编码的逆过程。它将色度信号分离为FU和±FV 两个色度分离。PAL制解码器框图及各波形:

MATLAB仿真的解码电路如图所示:

具体解码过程分析如下:

一、(Y+A+S)与(F+Fb)的分离

从预视放输出的彩色全电视信号FBAS,经过4.43MHz陷波器和色度带通滤波器进行频率分离,将FBAS分离成亮度信号色度信号两部分。

(1)、用频率分离的方法将FBAS分离为亮度信号、复合同步信号(Y)与高端的色度信号(A)、色同步信号(S)。在亮度通道中,经4.43MHz的陷波器,将彩色全电视信号中的色度信号滤除,保留亮度信号。滤除了色度信号后的亮度信号Y,经0.6秒的延迟电路延时后再送入Y信号放大器进行亮度放大,后送基色矩阵电路。如图:

MATLAB仿真电路如图:

(2)、用时间分离的方法, 将色度信号F和色同步信号Fb分开,在色度通道前,设置有一中心频率为4.43MHz,带宽约为2.6MHz的带通滤波器,它从全电视信号中分离出色度信号。用一个带通滤波器, 其通频带的中心频率也为色副载波, 并具有色度信号占有的带宽, 从彩色全电视信号中选出色度信号。

用MATLAB连接仿真电路及波形分别如图所示:

FBAS F+Fb Y+A+S F Fb

频域相同但时域错开的色度与色同步信号,经色同步选通电路,将色同步信号与色度信号分开。由于色度信号在行扫描正程出现,色同步信号在行逆程出现,故只要用两个门电路,就可将二者按时间分离法进行分离。这两个门电路在控制脉冲控制下交替导通即可实现两种信号的分离

二、梳状滤波器分离色度信号原理

梳状滤波器的任务是将色度信号中的两个分量FU与±FV分离。

由此可以有效地分离开两个色差分量FU和±FV。如图:

PAL制的特殊电路是梳妆滤波器,由它完成奖色度信号中的两个分量Fu与+Fv分离。这样可有效地消除简单解码电路中未能解决的亮、色串扰。

MATLAB仿真电路如图:

三、用频率和相位双重分离的

方法, 将色度信号中的两个正交分量U、V信号分开

用频谱分析仪测量通信信号

用频谱分析仪测量通信信号 一、GSM信号的测量 现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。 典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。 显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。顶部水平线表示0dBm,垂直方向每一格代表10dB。信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。 图1 GSM信道带宽显示和功率测量 GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。该信号很明显是未调制载波,因为它的频谱很窄。实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。 按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。 为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。 与此相比,数字滤波器的形状系数还不到5。例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。 标记1处的信号电平是4.97dBm。为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。 图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。公式1定义了在整个带宽内计算主信道功率的方法。 其中, CHPwr:信道功率,单位dBm CHBW:信道带宽 Kn:噪声带宽与分辨带宽之比 N:信道内象素的数目 Pi:以1mW为基准的电平分贝数(dBm)

用MATLAB进行FFT频谱分析

用MATLAB 进行FFT 频谱分析 假设一信号: ()()292.7/2cos 1.0996.2/2sin 1.06.0+++=t t R ππ 画出其频谱图。 分析: 首先,连续周期信号截断对频谱的影响。 DFT 变换频谱泄漏的根本原因是信号的截断。即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。 实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT 变换可以得到精确的模拟信号频谱。举一个简单的例子: ()ππ2.0100cos +=t Y 其周期为0.02。截断时不同的持续时间影响如图一.1:(对应程序shiyan1ex1.m ) 图 错误!文档中没有指定样式的文字。.1 140.0160.0180.02 截断时,时间间期为周期整数倍,频谱图 0.0250.03 0100200300400500600 7008009001000 20 40 60 80 100 截断时,时间间期不为周期整数倍,频谱图

其次,采样频率的确定。 根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/7.92,取16。 再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。 实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。 实验结果如图一.2:其中,0点位置的冲激项为直流分量0.6造成(对应程序为shiyan1.m ) 图 错误!文档中没有指定样式的文字。.2 ?ARMA (Auto Recursive Moving Average )模型: 将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为 020406080100120140160180200 0.4 0.50.60.7 0.800.050.10.150.20.250.30.350.40.450.5 50100 150

实验报告三.信号的频谱分析

实验三 信号的频谱分析 时间:第 周 星期 节 课号: 院系专业: 姓名: 学号: 座号: ============================================================================================ 一、实验目的 1、观测周期矩形脉冲的频谱特性; 2、掌握对信号振幅频谱的顺序分析法——外差法; 二、实验预习 1、占空比%100%100??=?= f T ττ ,其中τ是正脉冲信号的脉冲宽度。 2、熟悉实验指导书第20页图1-26外差法原理 a 、()t f sn 为被测的矩形脉冲信号(矩形脉冲信号的频率为f ),其中包含的基波分量的频率为 ;二次谐波的频率为 ;n 次谐波的频率为 ; b 、L f 为本振信号(是一个正弦波)。为保证被测信号()t f sn 和本振信号通过混频器后的差频信号的频率为1KHz 。L f 的频率为 。 三、实验内容 (一) 测试KHz f 20=,脉宽s μτ10=,幅度为mv 800峰峰值的矩形正脉冲的频谱。 1、在实验箱上接好线路(注意正负12伏电源均接上) 2、输入信号的设置: )(t f sn :mv KHz f 800V s 1020P -P S ===,,μτ的正脉冲,由信号源A 路输出。 L f :其频率先从KHz 21开始,依次改变至KHz 41,KHz 61,……KHz 201,其幅度均为 成 绩 指导教师 批阅日期 t T τ

mv V P P L 600=-的正弦信号,由信号源B 路输出。 3、在L f (由信号源B 路输出)各频率点附近进行微调,使示波器上显示的输出波形最好,波形的峰峰值为最大; 记下此时信号源B 路输出频率值(即L f 实测值)和示波器上波形的峰峰值。完成表1-3-1内容的测试。 表格中:sn f 为L f 实测值减KHz 1的频率值。n C 为示波器上对应于各频率分量的峰峰值。 (二) 测试KHz f 100=,脉宽s μτ2=,幅度为mv 800峰峰值的矩形正脉冲的频谱。完成表1-3-2内容的测试。 表1-3-1 L f 理论值 (KHz ) L f 实测值(KHz ) (KHz)sn f (mv) n C 表1-3- 2 L f 理论值 (KHz ) L f 实测值(KHz ) (KHz)sn f (mv) n C 4、实验过程中的故障现象及解决方法。

基于Matlab的相关频谱分析程序教程

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()()2 xx S X ωω=,其中()/2 /2 1lim N j n n N n N X x e N ωω→∞ =-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ =∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ --= = ? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ --= = ? ? 上式中的

彩色全电视信号编码及重要信号的频谱分析

信息科学与技术学院 本科论文 论文题目:彩色全电视信号编码及重要信号的频谱分析院系:信息科学与技术学院 专业:08级电子信息科学与技术 学号:0814830014 姓名: 指导教师: 撰写学年:2010 至2011 学年 二零一一年六月

摘要 本文主要对彩色全电视编码过程及其重要信号与其频谱分析进行了详细论述。其中包括色差信号(R-Y,B-Y),亮度信号Y,色度信号(U,FU,V,FV,F)以及行同步,场同步,消隐脉冲,色同步等信号以及最终合成的彩色全电视信号(FBAS)的波形图。此外,文中还介绍了与其相关的应用软件MATLAB 的历史与用途。 关键词MATLAB 彩色全电视信号亮度信号色度信号 大面积着色混合高频频谱交错

目录 引言 (3) 1彩色全电视信号的编码及关键信号的产生 (4) 1.1 MATLAB的历史及其应用 (4) 1.2彩色全电视信号的产生 (4) 1.2.1亮度信号的产生 (4) 1.2.2色度信号的产生 (6) 1.2.3同步信号 (9) 2 重要信号的频谱分析 (10) 2.2 PAL制的主要性能特点 (14) 3总结具体编码过程 (15) 参考文献 (16) 致谢 (17)

引言 为了使我们进一步认识彩色全电视信号的编码过程以及重要信号的频谱,我们特此进行了此次实验。 全电视信号(主要是其中的视频信号)还用来控制显像管的电子束。只要是收,发两端的扫描规律一致,并且扫描与电子束控制配合得当,就可以从显图像。在电视机中,同步分离时要产生一些延时,消隐信号又多用自己产生的,若与视频信号配合不当,将影响图像质量。因此,了解电视标准是很有意义的。 全电视信号中,各合成信号的电平关系是以同步信号电平为100%,黑电平(既消隐电平)为75%,白电平为0,其他亮度的电平介于0-75%之间,随图像内容变化。( 以同步信号的幅值电平作为100%;则黑色电平和消隐电平的相对幅度为75%;白色电平相对幅度为10%~12.5%;图像信号电平介于白色电平与黑色电平之间。) 在多媒体技术和电视行业,全电视信号是由亮度信号和色差信号组成的视频信号、音频信号以及同步信号在内的一帧电视信号。

信号的频域分析及MATLAB实现.doc

《M A T L A B电子信息应用》 课程设计 设计五 信号的频域分析及MATLAB实现 学院: 专业: 班级: 姓名: 学号:

信号的频域分析及MATLAB实现 一、设计目的 通过该设计,理解傅里叶变换的定义及含义,掌握对信号进行频域分析的方法。 二、课程设计环境 计算机 MATLAB软件 三、设计内容及主要使用函数 快速傅里叶变换的应用 1)滤波器频率响应 对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器。其功能就是得到一个特定频率或消除一个特定频率,滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的。 滤波器的类型:巴特沃斯响应(最平坦响应),贝赛尔响应,切贝雪夫响应。 滤波器冲激响应的傅里叶变换就是该滤波器的频率响应。

2)快速卷积 卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。其中表示f 的傅里叶变换。 这一定理对拉普拉斯变换、双边拉普拉斯变换等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。 利用卷积定理可以简化卷积的运算量。对于长度为n 的序列,按照卷积的定义进行计算,需要做2n - 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。 1. 信号的离散傅里叶变换 有限长序列的离散傅里叶变换公式为: kn N j N n e n x k X )/2(10)()(π--=∑= ∑==1_0)/2()(1)(N n kn N j e k X N n x π MATLAB 函数:fft 功能是实现快速傅里叶变换,fft 函数的格式为: ),(x fft y =返回向量x 的不连续fourier 变换。 若)6 cos()(πn n x =是一个N=12的有限序列,利用MATLAB 计算

频谱分析仪和信号分析仪的区别

在实验室和车间最常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察最简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。 频谱分析议和FFT颁谱分析议 传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。 但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;第二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;第三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。 既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。

基于MATLAB的频谱分析及信号去噪仿真研究开题报告

辽宁石油化工大学 信息与控制工程学院 毕业设计(论文)开题报告 论文题目:基于MATLAB的频谱分析及信号去噪仿真研究 学生姓名:徐宏强 专业班级:信息0901 学号: 0903030123 指导教师:崔畅 2013 年 03 月 17日

填写说明: 1.题目的背景和意义 对题目的出处,背景和意义进行说明论述,不少于300字。2.题目研究现状概述 通过调研和查阅文献,对题目所涉及的技术、理论和研究成果进行说明论述,不少于1000字。 3.题目要完成的主要内容和预期目标 对题目要完成的主要内容进行说明,并说明达到的预期目标, 不少于300字 4.进度计划 从设计开始的教学周起,依据任务书的进度安排进行细化并以周为单位给出主要工作和完成的任务。 5.参考文献 对2引用的资料、论文或著作按照引用顺序列出参考文献(格式同论文《参考文献》)。不少于10篇(其中近3年的文献占1/3以上), 注:相应栏不够时自动加页。 排版要求:正文,宋体,小四,行距固定值20磅 要求学生在毕业设计(论文)开始后的第2周末完成《开题报告》,并交到指导教师评阅(交电子稿和双面打印稿)。

1.题目的背景和意义 随着时代的发展,信息的传输方式逐渐发展为通过信号的方式传送,信号在采集和传输的过程中,由于外界的影响及机器自身的原因难免会有噪声夹杂在其中,在这种情况下,会影响对信号的分析,尤其是对一些高精度数据影响更为巨大,所以对信号的去噪,提取出原始信号是一个重要课题,最为传统的去噪方式是让信号通过一个低通或者带通滤波器,通过这种方法滤去噪声,但是在这个过程中可能会使信号变得平滑失去突变信息,现今的数字滤波器分为有限冲激响应滤波器FIR和无限冲激响应滤波器IIR,在各种信号处理与分析的中,最重要的数学工具是傅立叶变换,而常用的处理工具是MATLAB,利用MATLAB设计滤波器,可以随时对比设计要求,并调整滤波器参数,这样更为直观简便,减轻工作量,有利于对滤波器的设计优化,对信号的去噪有更好的帮助。 2.题目研究现状概述 随着计算机的发展,数字信号处理的理论与技术得到飞速发展,20世纪60年代以来,我国形成了一系列的数字信号处理的理论与算法,比如,数字滤波器,快速傅立叶变换(FFT),这些都是数字信号处理的技术基础,随着信息科技的飞速发展,信号处理取得了重大的飞跃。信号的去噪是数字信号处理中的一个很重要的研究课题,在现今的各种信号中,噪声一般分为两类:相干噪声和随机噪声,相干噪声包括面波,多次波等,随机噪声包括测量误差,环境噪声等。而对信号滤除噪声的方法大致分为三种:基于傅立叶变换的去噪法,相干平均去噪法,和基于小波变换的去噪法。信号去噪在雷达的使用和通信中有着极大的作用,经过先辈们不断的研究与实验,运用滤波器进行信号去噪的方法已经相当完美了,数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能,数字滤波器分为IIR数字滤波器和FIR数字滤波器。 信号处理基本涉及到所有的工程技术领域,而信号去噪是信号处理的一个非常重要的分支,而频谱分析又是信号处理中一个非常重要的分析手段,一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员的携带。而利用MATLAB就会免去以上的问题。信号去噪被用于从一堆波音资料中提取有用信息去除干扰,提高波音资料信噪比。为了提高信噪比,人们根据信号和噪声的各种特征差异,设计了许多去噪方法,并在应用中取得了很好的成果。信号去噪的很多方法都是利用短时傅立叶变换来滤波去噪,但是短时傅立叶变换不能同时兼顾时间分辨率和

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

信号频谱分析和测试

信号频谱分析和测 试 返回 一、实验室名称:虚拟仪器实验室 二、实验项目名称:信号频谱分析和测试 三、实验目的 1.了解周期函数的傅立叶变换理论及虚拟频谱分析仪的工作原理; 2.熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 四、实验内容 1.测量典型信号(正弦波、三角波、方波)的频谱并记录; 2.用实验平台的任意波形信号源产生一个任意信号,观察其频谱。 五、实验器材(设备、元器件): 1、计算机一台 2、SJ-8002B 电子测量实验箱一台 3、FG1617函数发生器一台 4、虚拟频谱分析仪程序 5、Q9线一条 六、实验原理 6.1 常见周期信号傅立叶展开公式与波形 1)方波 ,其中的 2)三角波 ,其中的 )7sin 715sin 513sin 31(sin 4)( +ω+ω+ ω+ωπ=t t t t A t f T π=ω2)7cos 4915sin 2513sin 91(sin 8)(2 +ω-ω+ω-ωπ=t t t t A t f T π=ω2

3)锯齿波 ,其中 6.2 信号的离散傅立叶变换(DFT ) x(t)经采样后变为x(nT ’),T ’为采样周期,采样频率fs=1/T ’。离散信号x(nT ’)的傅里 叶变换可以表示为: ,n=0,1,…N-1 X(k)是复数,信号的频谱是它的模,为了方便显示,做归一化处理,用 来表示频谱。 频率分辨率为: FFT 是DFT 的快速算法。 6.3 虚拟频谱分析仪 数字式虚拟频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处 理器系统或计算机来处理.在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须 是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越 接近原始信号,在频谱上展现的频带就越宽。 本频谱分析仪采用快速傅立叶变换的方法,分析信号中所含各个频率份量的幅值。其构 成框图如图4所示: 图4频谱分析仪框图 七、实验步骤 7.1 测量典型信号(正弦波、三角波、方波)的频谱 (1) 准备工作:用Q9线连接信号发生器与实验平台的Ain1端,并用EPP 排线连接实 验平台和计算机之间的EPP 接口,最后打开电源.。信号发生器产生一个频率为10K ,峰峰 值为3V 左右的正弦波,启动实验平台配套的频谱分析软件,观察波形显示并作图。 (2)由信号源产生一个频率为10KHz ,峰值为3V 的正弦波,用数字频谱分析仪对该信 号进行频谱测量,幅度刻度方式设为线性刻度,不加窗函数,起始频率为0Hz ,结束频率为 100KHz ,Y 线性参考电压为2V ,将测量结果填入表1,并计算出频谱的理论值填入表1。 )4sin 413sin 312sin 21(sin 2)( +ω+ω+ω+ωπ+= t t t t A A t f T π=ω2()()N nk j N n e n x k X /210π--=∑=N k X )(f ?N f f s =?N kf k f f s k =??=

基于MATLAB的信号频谱分析仪的实现

基于的信号频谱分析仪的实现 一、概述 信号处理几乎涉及到所有的工程技术领域,而频谱分析又是信号处理中一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员的携带。虚拟频谱分析仪改变了原有频谱分析仪的整体设计思路,用软件代替了硬件,使工程技术人员可以用一部笔记本电脑到现场就可轻松完成信号的采集、处理及频谱分析。 在工程领域中,是一种倍受程序开发人员青睐的语言,对于一些需要做大量数据运算处理的复杂应用以及某些复杂的频谱分析算 法显得游刃有余。本文将重点介绍基于的虚拟频谱分析仪的设计。本文设计的虚拟频谱分析仪的功能包括: () 音频信号信号输入。输入的途径包括从声卡输入、从文件输入、从信号发生器输入; () 信号波形分析。包括幅值、频率、周期、相位的估计,并计算统计量的峰值、均值、均方值和方差等信息; () 信号频谱分析。频率、周期的估计,图形显示幅值谱、相位谱和功率谱等信息的曲线。

二、实验原理 时域抽样定理 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率 大于等于倍的信号最高频 率 ,即 。时域抽样是把连续信号 变成适于数字 系统处理的离散信号 。对连续信号 以间隔抽样,则可得到 的离散序列为 。 图 连续信号抽样的离散序列 若 ,则信号 与 的频谱之间存在: 其中: 的频谱为 , 的频谱为 。 可见,信号时域抽样导致信号频谱的周期化。 ()为抽 样角频率, 为抽样频率。数字角频率Ω与模拟角频率ω的关系为:Ωω。 离散傅立叶变换() 有限长序列)(n x 的离散傅立叶变换()为 )e (j Ω X ()∑∞ -∞=-=n n X T )(j 1sam ωω)e (j ΩX []k X )e (j ωX )j (ωX T sam /2πω=[]k X ()t X []()kT t kT X X ==k ()t X []k X ()t X []()kT t kT X X ==k m sam f f 2≥sam f m f T f sam 1=

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

用Matlab进行信号与系统的时、频域分析

课程实验报告 题目:用Matlab进行 信号与系统的时、频域分析 学院 学生姓名 班级学号 指导教师 开课学院 日期 用Matlab进行信号与系统的时、频域分析 一、实验目的 进一步了解并掌握Matlab软件的程序编写及运行; 掌握一些信号与系统的时、频域分析实例; 了解不同的实例分析方法,如:数值计算法、符号计算法; 通过使用不同的分析方法编写相应的Matlab程序; 通过上机,加深对信号与系统中的基本概念、基本理论和基本分析方法的理解。 二、实验任务 了解数值计算法编写程序,解决实例; 在Matlab上输入三道例题的程序代码,观察波形图; 通过上机实验,完成思考题; 完成实验报告。 三、主要仪器设备

硬件:微型计算机 软件:Matlab 四、 实验内容 (1) 连续时间信号的卷积 已知两个信号)2()1()(1---=t t t x εε和)1()()(2--=t t t x εε,试分别画出)(),(21t x t x 和卷积)()()(21t x t x t y *=的波形。 程序代码: T=0.01; t1=1;t2=2; t3=0;t4=1; t=0:T:t2+t4; x1=ones(size(t)).*((t>t1)-(t>t2)); x2=ones(size(t)).*((t>t3)-(t>t4)); y=conv(x1,x2)*T; subplot(3,1,1),plot(t,x1); ylabel('x1(t)'); subplot(3,1,2),plot(t,x2); ylabel('x2(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1)); ylabel('y(t)=x1*x2'); xlabel('----t/s'); (2)已知两个信号)()(t e t x t ε-=和)()(2/t te t h t ε-=,试用数值计算法求卷积,并分别画出)(),(t h t x 和卷积)()()(t h t x t y *=的波形。 程序代码: t2=3;t4=11; T=0.01; t=0:T:t2+t4; x=exp(-t).*((t>0)-(t>t2)); h=t.*exp(-t/2).*((t>0)-(t>t4)); y=conv(x,h)*T; yt=4*exp(-t)+2*t.*exp(-1/2*t)-4*exp(-1/2*t); subplot(3,1,1),plot(t,x); ylabel('x(t)'); subplot(3,1,2),plot(t,h); ylabel('h(t)'); subplot(3,1,3),plot(t,y(1:(t2+t4)/T+1),t,yt,'--r'); legend('by numberical','Theoretical'); ylabel('y=x*h'); xlabel('----t/s'); (3)求周期矩形脉冲信号的频谱图,已知s T s A 5.0,1.0,1===τ

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

Matlab对采样数据进行频谱分析

使用Matlab对采样数据进行频谱分析 1、采样数据导入Matlab 采样数据的导入至少有三种方法。 第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。 第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。据本人经验,当数据大于15万对之后,读入速度就会显著变慢,出现假死而失败。 第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load 等,如果采样数据保存在txt文件中,则推荐使用 textread命令。如 [a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。强烈推荐! 2、对采样数据进行频谱分析 频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100; t=[0:1/fs:100]; N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t); %上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析 figure(1) plot(t,p); grid on title('信号 p(t)'); xlabel('t') ylabel('p')

基于matlab的频谱分析仪设计

Frequency Analyzer YangXiao M2013705103 HuaZhong University of Science and Technology School of Mechanical Science and Engineering Abstract: Matlab Is a numerical analysis, matrix calculation, scientific data visualization and nonlinear dynamic state system modeling and simulation, and other functions of practical software engineering.It’s easy to use the windows environment and cast off a tradition on the interactive programming language (such as C, Fortran) Edit mode In large range.In this report,The task is to design a frequency analyzer by using matlab. Keyword:frequency analyzer;Matlab;time-domain analysis;frequency-domain analysis;

1.Preface MATLAB is called Matrix Laboratory,which is designed by the United States MathWorks company.It’s a commercial mathematical software. Matlab can be use for Matrix operations, mapping functions and data, algorithm, creating the user interface, connect to other programming languages procedures, mainly used in engineering calculations, control design, signal processing and communications, image processing, signal detection, design and financial modeling analysis and other fields. GUI (Graphical User Interface, referred to as GUI, known Graphical User Interface) is displayed using the graphical user interface of computer operations.. Matlab has a powerful GUl tool. In this report, by using matlab GUI tool we could design a frequency analyzer. Frequency analyzer is the instrument which could be used to study the structure of the electrical signal spectrum, and used to measure the signal parameters of signal distortion, modulation, frequency stability and spectral purity.Frequency analyzer could be used to measure some parameters of amplifier and filter circuit system , and it is a kind of multipurpose electronic measuring instrument. FFT (Fast Fourier Transformation) is the fast algorithm of DFT(discrete Fourier transformtion), which is based on discrete Fourier transform.By using FFT we could get the answer faster than DFT.

相关主题
文本预览
相关文档 最新文档