当前位置:文档之家› 数字电压表设计报告

数字电压表设计报告

数字电压表设计报告
数字电压表设计报告

数字电压表设计报告

课程设计报告

目:数字电压表

学生姓名:张强

学生学号:1214010242

别:电气信息工程学院

业:自动化(2)班

别:20XX

指导教师:

徐峰

1

设计总体方案

1.1设计要求

⑴以MCS-51系列单片机为核心器,组成一个简单的直流数字电压表。

⑵采用1路模拟量输入,能够测量0-5V之间的直流电压值。

⑶电压显示用4位一体的LED数码管显示,至少能够显示两位小数。

⑷尽量使用较少的元器。

1.2

设计思路

⑴根据设计要求,选择AT89C51单片机为核心控制器。

⑵A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。

⑶电压显示采用4位一体的LED数码管。

⑷LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。

1.3

设计方案

硬电路设计由6个部分组成;

A/D转换电路,AT89C51单片机系统,LED显示系统、时钟电路、复位电路以及测量电压输入电路。硬电路设计框图如图1所示。

时钟电路

复位电路

A/D转换电路

测量电压输入

显示系统

P1

P2

P2

P0

图1

数字电压表系统硬设计框图

2

硬电路设计

2.1

A/D转换模块

现实世界的物理量都是模拟量,能把模拟量转化成数字量的器称为模/数转换器(A/D转换器),A/D转换器是单片机数据采集系统的关键接口电路,按照各种A/D芯片的转化原理可分为逐次逼近型,双重积分型等等。双积分式A/D转换器具有抗干扰能力强、转换精度高、价格便宜等优点。与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0809、ADC0808等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送到单片机进行分析和显示。一个n位的逐次逼近型A/D转换器只需要比较n次,转换时间只取决于位数和时钟周期,逐次逼近型A/D转换器转换速度快,因而在实际中广泛使用[1]。

逐次逼近型A/D转换器原理

逐次逼近型A/D转换器是由一个比较器、A/D转换器、存储器及控制电路组成。它利用内部的寄存器从高位到低位一次开始逐位试探比较。

转换过程如下:

开始时,寄存器各位清零,转换时,先将最高位置1,把数据送入A/D转换器转换,转换结果与输入的模拟量比较,如果转换的模拟量比输入的模拟量小,则1保留,如果转换的模拟量比输入的模拟量大,则1不保留,然后从第二位依次重复上述过程直至最低位,最后寄存器中的内容就是输入模拟量对应的二进制数字量[5]。其原理框图如图2所示:

顺序脉冲发生器

逐次逼近寄存器

ADC

电压

比较器

输入电压

输入数字量

图2

逐次逼近式A/D转换器原理图

2.1.2

主要特性

ADC0808是CMOS单片型逐次逼近式A/D转换器,带有使能控制端,与微机直接接口,片内带有锁存功能的8路模拟多路开关,可以对8路0-5V输入模拟电压信号分时进行转换,由于ADC0808设计时考虑到若干种模/数变换技术的长处,所以该芯片非常适应于过程控制,微控制器输入通道的接口电路,智能仪器和机床控制等领域[5]。

ADC0808主要特性:8路8位A/D转换器,即分辨率8位;具有锁存控制的8路模拟开关;易与各种微控制器接口;可锁存三态输出,输出与TTL兼容;转换时间:128μs;转换精度:

0.2%;单个+5V电源供电;模拟输入电压范围0-

+5V,无需外部零点和满度调整;低功耗,约15mW[6]。

2.1.3

ADC0808的外部引脚特征

ADC0808芯片有28条引脚,采用双列直插式封装,其引脚图如图3所示。

图3

ADC0808引脚图

下面说明各个引脚功能:

IN0-IN7(8条):8路模拟量输入线,用于输入和控制被转换的模拟电压。

地址输入控制(4条):

ALE:地址锁存允许输入线,高电平有效,当ALE为高电平时,为地址输入线,用于选择IN0-IN7上那一条模拟电压送给比较器进行A/D转换。

ADDA,ADDB,ADDC:3位地址输入线,用于选择8路模拟输入中的一路,其对应关系如表1所示:

表1

ADC0808通道选择表

地址码

对应的输入通道

C

B

A

1

1

1

1

1 1 0 0 1 1 0 1 0 1 0 1 0 1 IN0 IN1 IN

2 IN

3 IN

4 IN

5 IN6

START:START为“启动脉冲”输入法,该线上正脉冲由CPU 送来,宽度应大于100ns,上升沿清零SAR,下降沿启动ADC工作。

EOC:

EOC为转换结束输出线,该线上高电平表示A/D转换已结束,数字量已锁入三态输出锁存器。

D1-D8:数字量输出端,D1为高位。

OE:OE为输出允许端,高电平能使D1-D8引脚上输出转换后的数字量。

REF+、REF-:参考电压输入量,给电阻阶梯网络供给标准电压。

Vcc、GND:

Vcc为主电源输入端,GND为接地端,一般REF+与Vcc连接在一起,REF-与GND连接在一起.

CLK:时钟输入端。

2.1.4

ADC0808的内部结构及工作流程

ADC0808由8路模拟通道选择开关,地址锁存与译码器,比较器,8位开关树型A/D转换器,逐次逼近型寄存器,定时和控制电路和三态输出锁存器等组成,其内部结构如图4所示。

图4

ADC0808的内部结构

其中:

(1)8路模拟通道选择开关实现从8路输入模拟量中选择一路送给后面的比较器进行比较。

(2)地址锁存与译码器用于当ALE信号有效时,锁存从ADDA、ADDB、ADDC

3根地址线上送来的3位地址,译码后产生通道选择信号,从8路模拟通道中选择当前模拟通道。

(3)比较器,8位开关树型A/D转换器,逐次逼近型寄存器,定时和控制电路组成8位A/D转换器,当START信号有效时,就开始对当前通道的模拟信号进行转换,转换完成后,把转换得到的数字量送到8位三态锁存器,同时通过引脚送出转换结束信号。

(4)三态输出锁存器保存当前模拟通道转换得到的数字量,当OE信号有效时,把转换的结果送出。

ADC0808的工作流程为:

(1)输入3位地址,并使ALE=1,将地址存入地址锁存器中,经地址译码器从8路模拟通道中选通1路模拟量送给比较器。

(2)送START一高脉冲,START的上升沿使逐次寄存器复位,下降沿启动A/D转换,并使EOC信号为低电平。

(3)当转换结束时,转换的结果送入到输出三态锁存器中,并使EOC信号回到高电平,通知CPU已转换结束。

(4)当CPU执行一读数据指令时,使OE为高电平,则从输出端D0-D7读出数据。

2.2

单片机系统

2.2.1

AT89C51性能

AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含有4KB的可反复擦写的只读程序存储器和128字节的随机存储器。该器采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容,由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,它为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89C51功能性能:与MCS-51成品指令系统完全兼容;4KB可编程闪速存储器;寿命:1000次写/擦循环;数据保留时间:10年;全静态工作:0-24MHz;三级程序存储器锁定;128*8B内部RAM;32个可编程I/O口线;2个16位定时/计数器;5个中断源;可编程串行UART通道;片内震荡器和掉电模式[6]。

2.2.2

AT89C51各引脚功能

AT89C51提供以下标准功能:4KB的Flash闪速存储器,128B 内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量

两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路,同时,AT89C51可降至0Hz静态逻辑操作,并支持两种软可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作,掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有工作直到下一个硬复位。AT89C51采用PDIP封装形式,引脚配置如图5所示[7]。

图5

AT89C51的引脚图

AT89C51芯片的各引脚功能为:

P0口:这组引脚共有8条,P0.0为最低位。这8个引脚有两种不同的功能,分别适用于不同的情况,第一种情况是89C51不带外存储器,P0口可以为通用I/O口使用,P0.0-P0.7用于传送CPU的输入/输出数据,这时输出数据可以得到锁存,不需要外接专用锁存器,输入数据可以得到缓冲,增加了数据输入的可靠性;第二种情况是89C51带片外存储器,P0.0-P0.7在CPU访问片外存储器时先传送片外存储器的低8位地址,然后传送CPU对片外存储器的读/写数据。P0口为开漏输出,在作为通用I/O使用时,需要在外部用电阻上拉。

P1口:这8个引脚和P0口的8个引脚类似,P1.7为最高位,P1.0为最低位,当P1口作为通用I/O口使用时,P1.0-P1.7的功能和P0口的第一功能相同,也用于传送用户的输入和输出数据。

P2口:这组引脚的第一功能与上述两组引脚的第一功能相同即它可以作为通用I/O口使用,它的第一功能和P0口引脚的第二功能相配合,用于输出片外存储器的高8位地址,共同选中片外存储器单元,但并不是像P0口那样传送存储器的读/写数据。

P3口:这组引脚的第一功能和其余三个端口的第一功能相同,第二功能为控制功能,每个引脚并不完全相同,如下表2所示:

表2

P3口各位的第二功能

P3口各位

第二功能

P3.0

RXT(串行口输入)

P3.1

TXD(串行口输出)

P3.2

/INT0(外部中断0输入)

P3.3

/INT1(外部中断1输入)

P3.4

T0(定时器/计数器0的外部输入)

P3.5

T1(定时器/计数器1的外部输入)

P3.6

/WR(片外数据存储器写允许)

P3.7

/RD(片外数据存储器读允许)

Vcc为+5V电源线,Vss接地。

ALE:地址锁存允许线,配合P0口的第二功能使用,在访问外部存储器时,89C51的CPU在P0.0-P0.7引脚线去传送随后而来的片外存储器读/写数据。在不访问片外存储器时,89C51自动在ALE线上输出频率为1/6震荡器频率的脉冲序列。该脉冲序列可以作为外部时钟源或定时脉冲使用。

/EA:片外存储器访问选择线,可以控制89C51使用片内ROM 或使用片外ROM,若/EA=1,则允许使用片内ROM,若/EA=0,则只使用片外ROM。

/PSEN:片外ROM的选通线,在访问片外ROM时,89C51自动在/PSEN线上产生一个负脉冲,作为片外ROM芯片的读选通信号。

RST:复位线,可以使89C51处于复位(即初始化)工作状态。通常89C51复位有自动上电复位和人工按键复位两种。

XTAL1和XTAL2:片内震荡电路输入线,这两个端子用来外接石英晶体和微调电容,即用来连接89C51片内OSC(震荡器)的定时反馈回路。

2.4

LED显示系统设计

2.4.1

LED基本结构

LED是发光二极管显示器的缩写。LED由于结构简单、价格便宜、与单片机接口方便等优点而得到广泛应用。LED显示器是由若干个发光二极管组成显示字段的显示器[6]。在单片机中使用最多的是七段数码显示器。LED七段数码显示器由8个发光二极管组成显示字段,其中7个长条形的发光二极管排列成“日”字形,另一个圆点形的发光二极管在显示器的右下角作为显示小数点用,其通过不同的组合可用来显示各种数字。LED引脚排列如下图8所示:

图8

LED引脚排列

2.4.2

LED显示器的选择

在应用系统中,设计要求不同,使用的LED显示器的位数也不同,因此就生产了位数,尺寸,型号不同的LED显示器供选择,在本设计中,选择4位一体的数码型LED显示器,简称“4-LED”。本系统中前一位显示电压的整数位,即个位,后两位显示电压的小数位。

4-LED显示器引脚如图9所示,是一个共阴极接法的4位LED 数码显示管,其中a,b,c,e,f,g为4位LED各段的公共输出

端,1、2、3、4分别是每一位的位数选端,dp是小数点引出端,4位一体LED数码显示管的内部结构是由4个单独的LED组成,每个LED的段输出引脚在内部都并联后,引出到器的外部。

图9

4位LED引脚

对于这种结构的LED显示器,它的体积和结构都符合设计要求,由于4位LED阴极的各段已经在内部连接在一起,所以必须使用动态扫描方式(将所有数码管的段选线并联在一起,用一个I/O接口控制)显示。

2.4.3

LED译码方式

译码方式是指由显示字符转换得到对应的字段码的方式,对于LED数码管显示器,通常的译码方式有硬译码和软译码方式两种。

硬译码是指利用专门的硬电路来实现显示字符码的转换。

软译码就是编写软译码程序,通过译码程序来得到要显示的字符的字段码,译码程序通常为查表程序[3]。

本设计系统中为了简化硬线路设计,LED译码采用软编程来实现。由于本设计采用的是共阴极LED,其对应的字符和字段码如下表3.3所示。

表3.3

共阴极字段码表

显示字符

共阴极字段码0

3FH

1

06H

2

5BH

3

4FH

4

66H

5

6DH

6

7DH

7

07H

8

7FH

9

6FH

2.4.4

LED显示器与单片机接口设计

由于单片机的并行口不能直接驱动LED显示器,所以,在一般情况下,必须采用专用的驱动电路芯片,使之产生足够大的电流,显示器才能正常工作[7]。如果驱动电路能力差,即负载能力不够时,显示器亮度就低,而且驱动电路长期在超负荷下运行容易损坏,因此,LED显示器的驱动电路设计是一个非常重要的问题。

为了简化数字式直流电压表的电路设计,在LED驱动电路的设计上,可以利用单片机P0口上外接的上拉电阻来实现,即将LED的A-G段显示引脚和DP小数点显示引脚并联到P0口与上拉电阻之间,这样,就可以加大P0口作为输出口德驱动能力,使得LED能按照正常的亮度显示出数字,如图10所示。

图10

LED与单片机接口间的设计

2.5

总体电路设计

经过以上的设计过程,可设计出基于单片机的简易数字直流电压表硬电路原理图如图11所示。

图11

简易数字电压表电路图

此电路的工作原理是:+5V模拟电压信号通过变阻器VR1分压后由ADC08008的IN0通道进入(由于使用的IN0通道,所以ADDA,ADDB,ADDC均接低电平),经过模/数转换后,产生相应的数字量经过其输出通道D0-D7传送给AT89C51芯片的P1口,

AT89C51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码传送给四位LED,同时它还通过其四位I/O口

P2.0、P2.1、P2.2、P2.3产生位选信号控制数码管的亮灭。此外,AT89C51还控制ADC0808的工作。其中,单片机AT89C51通过定时器中断从P2.4输出方波,接到ADC0808的CLOCK,P2.6发正脉冲启动A/D转换,P2.5检测A/D转换是否完成,转换完成后,P2.7置高从P1口读取转换结果送给LED显示出来[3]。

简易数字直流电压表的硬电路已经设计完成,就可以选取相应的芯片和元器,利用Proteus软绘制出硬的原理,并仔细地检查修改,直至形成完善的硬原理图。但要真正实现电路对电压的测量和显示的功能,还需要有相应的软配合,才能达到设计要求。

3

程序设计

3.1

程序设计总方案

根据模块的划分原则,将该程序划分初始化模块,A/D转换子程序和显示子程序,这三个程序模块构成了整个系统软的主程序,如图12所示。

开始

初始化

调用A/D转换子程序

调用显示子程序

结束

图12

数字式直流电压表主程序框图

3.2

系统子程序设计

3.2.1

初始化程序

所谓初始化,是对将要用到的MCS_51系列单片机内部部或扩展芯片进行初始工作状态设定,初始化子程序的主要工作是设置定时器的工作模式,初值预置,开中断和打开定时器等[9]。

3.2.2

A/D转换子程序

A/D转换子程序用来控制对输入的模块电压信号的采集测量,并将对应的数值存入相应的内存单元,其转换流程图如图13所示。

启动转换

A/D转换结束?

输出转换结果

数值转换

显示

结束

图13

A/D转换流程图

3.2.3

显示子程序

显示子程序采用动态扫描实现四位数码管的数值显示,在采用动态扫描显示方式时,要使得LED显示的比较均匀,又有足够的亮度,需要设置适当的扫描频率,当扫描频率在70HZ左右时,能够产生比较好的显示效果,一般可以采用间隔10ms对LED进行动态扫描一次,每一位LED的显示时间为1ms[10]。

在本设计中,为了简化硬设计,主要采用软定时的方式,即用定时器0溢出中断功能实现11μs定时,通过软延时程序来实现5ms的延时。

4

仿真

4.1

数字电压表设计

电子线路硬件课程设计总结报告 课题:数字电压表设计 班级: 作者: 学号: 指导老师:

摘要 一个测试结果稳定、准确的数字电压表,既能减少了使用者的工作量,又提高了测量的精准度,而且人为误差被大大减小,方便与电路打交道的人快速有效的完成自己的工作。 本项目设计并实现了一个能够对0-200V范围的直流电压进行测量的数字电压表,测量分为4挡:200mV、2V、20V和200V,手动控制档位选择,显示部分小数点自动实现切换。项目基于AT89C51单片机,拓展AD转换、显示部分。不同档位的待测电压通过不同档位的衰减电路后变为0-200mV,再通过一个OPA336一致放大到0-2V送入AD的输入端,然后通过芯片AT89C51内的程序控制AD转换并输出。不同档位的电压信号又不同的程序控制输出到数码管显示。 整个电路连线简单易于实现,而且成本很低,测出的电压精度也足够满足需求。 关键字:数字电压表; AT89C51单片机;易于实现

Abstract A digital voltmeter which is stable and accurate can not only reduce the work of the user, but also free off the error produced by using wrong. It is convenient to people who work with the circuit. This voltmeter is designed to measure a voltage between 0 to 200. It’s divided into four gears as 200 millivolt, 2 volt, 20volt, and 200volt. Gears changing is worked by hang. The project is base on the chip AT89C51 of one-chip computer. An analog to digital converter, a display section, and a voltage attenuation are attached to the chip and they make up the design. The voltage of different gears are changed into 0-200 millivolt. Then they are sent to an OPA336, and it’s output is 0-2 volt. The output is sent to the analog to digital converter.Then the chip control the analog to digital converter’s output to the displaying section. The whole circuit is easy. And although it’s cost is very low, the accuracy of the outcome is fine. key words: digital voltmeter, one-chip computer, AT89C51

基于51单片机的简易数字电压表的设计

课题交流毫伏表设计 系别 专业 年级 姓名 学号 指导教师

目录 第一章引言 (2) 1.1摘要 (2) 1.2 设计目的 (2) 1.3设计任务及要求 (2) 1.4 课程设计过程 (2) 第二章系统方案选择和论证 (3) 2.1基本方案论证 (3) 2.2输出部分中各模块的方案选择 (3) 2.3总体方案设计 (4) 第三章AT89C51的结构 (5) 3.1AT89C51的概述 (5) 3.2 AT89C51部结构 (5) 3.3存储器和特殊功能寄存器的介绍 (5) 3.4时钟电路和复位电路 (7) 第4章元器件的选择 (7) 4..1显示 (7) 4.2 模数(A/D)芯片 (11) 4.3 数模AC/DC736芯片 (13) 4.4 OP07 (13) 第五章电路的设计 (14) 5.1时钟电路 (15) 5.2A/D转换程序 (17) 第6章系统的调试 (18) 6.1 硬件的调试 (18) 6.2软件调试 (19) 参考文献 (20) 附录 (20) 程序清单 (20) 元件清单 (25)

容摘要 本次设计主要解决AC/DC转换、A/D转换、数据处理及显示控制等几个模块。控制系统采用AT89C51单片机,A/D转换采用ADC0809。要求交流毫伏表检测信号的电压围:1mv—2v ,输入信号的频率围:10Hz-2000KHz,并在LCD1602液晶上显示测量电压信号。 关键词AT89C51单片机;电压测量;A/D转换;LCD1602液晶显示;AC/DC 转换;放大;衰减。 1.2 设计目的 本课程的任务是通过“交流毫伏表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 1.3设计任务及要求 1、设计一个交流毫伏表,检测信号的电压围:1mv—2v。 2、输入信号的频率围:10Hz-2000KHz 3、查阅相关资料,了解交流毫伏表的各种现实发法极其特点,并着重掌 握交流毫伏表的设计及显示等。 4、熟悉并掌握个芯片的功能极其管脚分。 5、检测设计电路中所需要的各种电子元器件。 6、对设计的交流毫伏表进行装接与调试,要时设计的电路达标。 7、完成设计交实物图极其设计报告。 1.4课程设计过程 1、各组组成员讨论并进行软硬件系统设计,经指导老师同意进行具体方 案实施。 2、将可行方案硬件电路焊接在万能板上,并检查。 3、软硬件仿真。

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

多功能数字电压表课程设计

1.设计主要内容及要求; 设计一个多功能数字电压表。 要求:1)硬件电路设计,包括原理图和PCB板图。 2)数字电压表软件设计。 3)要求能够测量并显示直流电压、交流电压,测量范围0.002V---2V。 2.对设计论文撰写内容、格式、字数的要求; (1).课程设计论文是体现和总结课程设计成果的载体,一般不应少于3000字。 (2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。课程设计论文的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。 (3).论文要求打印,打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。 (4). 课程设计论文装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。 3.时间进度安排;

中文摘要 随着微型计算机及微电子技术在测试领域中的广泛应用,仪器仪表在测量原理、准确度、灵敏度、可靠性、多种功能及自动化水平等方面都发生了巨大的变化,逐步形成了完全突破传统概念的新一代仪器——智能仪器。智能化是现代仪器仪表的发展趋势,许多嵌入式系统、电子技术和现场总线领域的新技术被应用于智能仪器仪表的设计,尤其是嵌入式系统的许多新的理念极大地促进了智能仪器仪表技术的发展。 今年来,随着大规模集成电路的发展,有单片A/D转换器构成的数字电压表获得了迅速普及和广泛应用,它是目前在电子测量及维修工作中最常用、最得力的一种工具类数字仪表。数字电压表具有很高的性价比,其主要优点是准确度高、分辨力强测试功能完善、测量速率快、显示直观。 测试仪器的智能化已是现代仪器仪表发展的主流方向。因此学习智能仪器的工作原理、掌握新技术和设计方法无疑是十分重要的。 关键词智能,数字,电压表,仪器仪表

交流数字电压表的设计

电气测量技术 课程设计 题目:交流电压表设计 学院:电气信息工程学院 专业班级:电气工程及其自动化1623 姓名:黄铭(201650712326) 完成时间:2017年5月26

目录 引言 (2) 1 测量原理及系统结构 (2) 2 硬件电路设计 (3) 2.1 A/D转换模块 (3) 2.2 单片机系统 (4) 2.2.1 AT89C51性能和功能 (4) 2.3 复位电路和时钟电路 (5) 2.3.1 复位电路设计 (5) 2.3.2 时钟电路设计 (5) 2.4 LED显示系统设计 (6) 2.4.1 LED显示器的选择 (6) 2.4.2 LED显示器与单片机接口设计 (7) 2.5 总体电路设计 (7) 3 软件设计 (9) 3.1 程序设计总方案 (9) 3.2 系统子程序设计 (9) 3.2.1 初始化程序 (9) 3.2.2 A/D转换子程序 (9) 3.2.3 显示子程序 (10) 4 仿真调试及测试结果 (11) 4.1 软件调试 (11)

4.2 显示结果及误差分析 (11) 4.2.1 显示结果 (11) 4.2.2 误差分析 (13) 结论 (14) 参考文献 (15) 引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的

数字电压表的设计实验报告

课程设计 ——基于51数字电压表设计 物理与电子信息学院 电子信息工程 1、课程设计要求 使用单片机AT89C52和ADC0832设计一个数字电压表,能够测量0-5V之间的直流电压值,两位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为 5V;能用两位LED进行轮流显示或单路选择显示,显示精度0.1伏。 2、硬件单元电路设计 AT89S52单片机简介 AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存

储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS -51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。 AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 ADC0832模数转换器简介 ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。 图1 芯片接口说明: 〃 CS_ 片选使能,低电平芯片使能。 〃 CH0 模拟输入通道0,或作为IN+/-使用。

基于51单片机的数字电压表设计

目录 摘要........................................................................ I 1 绪论. (1) 1.1数字电压表介绍 (1) 1.2仿真软件介绍 (1) 1.3 本次设计要求 (2) 2 单片机和AD相关知识 (3) 2.1 51单片机相关知识 (3) 2.2 AD转换器相关知识 (4) 3 数字电压表系统设计 (5) 3.1系统设计框图 (5) 3.2 单片机电路 (5) 3.3 ADC采样电路 (6) 3.4显示电路 (6) 3.5供电电路和参考电压 (7) 3.6 数字电压表系统电路原理图 (7) 4 软件设计 (8) 4.1 系统总流程图 (8) 4.2 程序代码 (8) 5 数字电压表电路仿真 (15) 5.1 仿真总图 (15) 5.2 仿真结果显示 (15) 6 系统优缺点分析 (16) 7 心得体会 (17) 参考文献 (18)

1 绪论 1.1数字电压表介绍 数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。 本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约成本的意识有些帮助。本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。 1.2仿真软件介绍 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: (1)现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 (2)支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、 A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 (3)提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 (4)具有强大的原理图绘制功能。 可以仿真51系列、A VR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的

简易数字电压表的设计

一、设计题目:简易数字电压表的设计 二、设计目的 自动化专业的专业实践课程。本课程的任务是使学生通过“简易数字电压表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 三、设计任务及要求 设计电压表并实现简单测量。具有以下基本功能: ⑴可以测量0~5V的8路输入电压值; ⑵可在四位LED数码管上轮流显示或单路选择显示; ⑶测量最小分辨率为0.019V; ⑷.测量误差约为±0.02V; ⑸带有一定的扩展功能; 目录 第一章摘要 (4) 第二章智能仪表目前的发展状况 (4) 第三章设计目的 (6) 第四章设计要求 (6) 第五章设计方案与比较论证 (6) 5.1 单片机电路设计 (6) 5.2 电源方案 (8) 5.3 显示方案 (9) 5.4 A/D采样方案 (10) 5.5串口通讯方案 (12) 5.7 高压,短路报警 (14) 5.8 键盘 (14) 第六章方案设计 (15) 6.1 硬件设计 (15)

6.2 软件设计 (16) 第七章性能测试 (18) 电压测试 (18) 第八章结果分析 (19) 第九章设计体会 (19) 参考文献 (20) 附录 (20) 元器件清单 (20) 程序清单 (20) 第一章摘要 本报告介绍了基于AT89S52单片机为核心的、以AD0809数模转换芯片采样、以1602液晶屏显示的具有电压测量功能的具有一定精度的数字电压表。在实现基础功能要求之上扩展了串口通讯、时钟功能、高压报警、短路测试、电阻测量、交流电压峰峰值和周期测试等功能,使系统达到了良好的设计效果和要求。 关键词:AT89S52单片机模数转换液晶显示扩展功能 ABSTRACT:The report describes the AT89S52 based on the microcontroller as the core, AD0809 digital-to-analog converter chip sampling, to 1602 LCD display with voltage measurement function with a certain precision of digital voltage meter. In achieving functional requirements based upon the expansion of serial communications, high-pressure alarm, short circuit, electrical resistivity measurement, AC voltage and the peak of cycle testing and other functions, allowing the system to achieve good results and the design requirements. Keywords : AT89S52 SCM analog-to-digital conversion functions LCD expansion 第二章智能仪表目前发展状况 在自动化控制系统中,仪器仪表作为其构成元素,它的技术进展是跟随控制系统技术的发展的。常规的自动化仪器仪表适应常规控制系统的要求,它们以经典控制理论和现代控制理论为基础,以控制对象的数学模型为依据。当今,控制理论已发展到智能控制的新阶段,自动化仪器仪表的智能化就成为必然和必须。本文将就自动化仪器仪表的智能化的状况与进展,以及当今对智能仪器仪表研究、开发热点做概要的分析与表述。作者建议人们关注自动化仪器仪表智能化技术的进展,关注仪器仪表装置

简易数字电压表的设计

一、简易数字电压表的设计 l.功能要求 简易数字电压表可以测量0~5V的8路输入电压值,并在四位LED数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V,测量误差约为土0.02V。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A/D转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 图1-1 数字电压表系统设计方案 3.系统硬件电路的设计 简易数字电压测量电路由A/D转换、数据处理及显示控制等组成,电路原理图如图1-2所示。A/D转换由集成电路0809完成。0809具有8路模拟输人端口,地址线(23~25脚)可决定对哪一路模拟输入作A/D转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us宽高电平脉冲时,就开始A/D 转换,7脚为A/D转换结束标志,当A/D转换结束时,7脚输出高电平,9脚为A/D 转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A/D转换数据读入用,P2端口用作0809的A/D转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H~77H内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将

基于LABVIEW的数字电压表的设计

学号 XX 虚拟仪器 学生姓名XX 专业班级XX

基于LABVIEW的数字电压表的设计 一、设计目的 1.掌握数字电压表的基本原理和方法。 2.基于LabView设计数字电压表并实现。 二、设计原理 电压是电路中常用的电信号,通过电压测量,利用基本公式可以导出其他的参数。因此,电压测量是其他许多电参数和非电参数量的基础。测量电压相当普及的一种测量仪表就是电压表,但常用的是模拟电压表。模拟电压表根据检波方式的不同。分为峰值电压表、均值电压表和平均值电压表,它们都各自做成独立的仪表。这样,使用模拟电压表进行交流电压测量时,必须根据测量要求选择仪表。另外,多数电压表的表头是按正弦交流有效值刻度的,而测量非正弦波时,必须经过换算才能得到正确的测量结果,从而给实际工作带来不便。 采用虚拟电压表,可将表征交流电压特征的峰值、平均值和有效值集中显示在一块面板上,测量时可根据波形在面板上选择仪表,用户仅通过面板指示值就能对测量结果进行分析比较,大大简化了测量步骤。 三、设计思路 LabVIEw 8.5版本的工程技术比以往任何一个版本都丰富.它采用了英文界面,各个控件的功能一目了然。利用它全新的用户界面对象和功能,能开发出专业化、可完全自定义的前面板。LabVIEW 8.2对数学、信号处理和分析也进行了重大的补充和完善,信号处理分析和数学具有更为全面和强大的库,其中包括500多个函数。所以在LabVIEW 8.5版本下能够更方便地实现虚拟电压表的设计。 该电压表主要用于电路分析和模拟电子技术等实验课的教学和测量仪器,能够让使用者了解和掌握电压的测量和电压表对各种波形的不同响应。因此,虚拟电压表应具备电源开关控制、波形选择,以及显示峰值、有效值和平均值三种结果,且输入信号的大小可调节等功能。所以,用软件虚拟了一个信号发生器。该信号发生器可产生正弦波、方波和三角波,还可以输入公式,产生任意波形。根据需要,可调节面板上的控件来改变信号的频率和幅度等可调参数,然后检测电压表的运行情况。因此,在LabVIEW图形语言环境下设计的虚拟电压表主要分为

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

虚拟数字电压表的设计

摘要 LabVIEw 8.5版本的工程技术比以往任何一个版本都丰富.它采用了中文界面,各个控件的功能一目了然。利用它全新的用户界面对象和功能,能开发出专业化、可完全自定义的前面板。LabVIEw 8.5对数学、信号处理和分析也进行了重大的补充和完善,信号处理分析和数学具有更为全面和强大的库,其中包括500多个函数。所以在LabVIEw 8.5版本下能够更方便地实现虚拟电压表的设计。 虚拟电压表是基于计算机和标准总线技术的模块化系统,通常它由控制模块、仪器模块和软件组成,由软件编程来实现仪器的功能。在虚拟仪器中,计算机显示器是惟一的交互界面,物理的开关、按键、旋钮以及数码管等显示器件均由与实物外观相似的图形控件来代替,操作人员只要通过鼠标或键盘操作虚拟仪器面板上的旋钮、开关、按键等设置各种参数,就能根据自己的需要定义仪器的功能。在虚拟电压表的设计中,考虑到仪器主要用于教学和实验,使用对象是学生,因此将引言中提到的三种检波方式的仪器合为一体,既简化了面板操作,又便于直接对比。 该电压表主要用于电路分析和模拟电子技术等实验课的教学和测量仪器,能够使学习者了解和掌握电压的测量和电压表对各种波形的不同响应。因此,虚拟电压表应具备电源开关控制、波形选择,以及显示峰值、有效值和平均值三种结果,且输入信号的大小可调节等功能。虚拟电压表由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。其中,硬件设备与接口包括仪器接口设备和计算机,设备驱动软件是直接控制各种硬件接口的驱动程序,虚拟仪器通过底层设备驱动软件与真实的仪器系统进行通信,并以虚拟仪器面板的形式在计算机屏幕上显示与真实仪器面板操作相对应的各种控件。在此,用软件虚拟了一个信号发生器。该信号发生器可产生正弦波、方波和三角波,还可以输入公式,产生任意波形。根据需要,可调节面板上的控件来改变信号的频率和幅度等可调参数,然后检测电压表的运行情况。因此,在LabVIEW图形语言环境下设计的虚拟电压表主要分为两个部分:第一部分是虚拟电压表前面板的设计;第二部分是虚拟电压表流程图的设汁。

交流数字电压表的设计

目录 摘要 (1) Abstract: (1) 1 引言 (2) 2 设计总体方案 (2) 2.1设计要求 (2) 2.2 设计方案 (2) 3 硬件电路设计 (3) 3.1 A/D转换模块 (3) 3.2 单片机系统 (4) 3.2.1 AT89C51性能和功能 (4) 3.3 复位电路和时钟电路 (5) 3.3.1 复位电路设计 (5) 3.3.2 时钟电路设计 (6) 3.4 LED显示系统设计 (6) 3.4.1 LED显示器的选择 (6) 3.4.2 LED显示器与单片机接口设计 (7) 3.5 总体电路设计 (7) 4 程序设计 (9) 4.1 程序设计总方案 (9) 4.2 系统子程序设计 (9) 4.2.1 初始化程序 (9) 4.2.2 A/D转换子程序 (9) 4.2.3 显示子程序 (10) 5 仿真 (10) 5.1 软件调试 (10) 5.2 显示结果及误差分析 (11) 5.2.1 显示结果 (11) 5.2.2 误差分析 (13) 结论 (14) 参考文献 (14)

附录一程序代码 (16) 附录二仪器设备清单 (18) 致谢...................................................................................................................... 错误!未定义书签。

基于单片机的简易数字电压表的设计 摘要:本文介绍了一种基于单片机的简易数字电压表的设计。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换主要由芯片ADC0808来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。数据处理则由芯片AT89C51来完成,其负责把ADC0808传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0808芯片工作。 该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-5V的1路模拟直流输入电压值,并通过一个四位一体的7段数码管显示出来。 关键词:单片机;数字电压表;A/D转换;AT89C51;ADC0808 Design of Simple Digital Voltmeter Based on Single-chip Microcontroller Abstract:This paper which introduces a kind of simple digital voltmeter is based on single-chip microcontroller design. The circuit of the voltage meter is mainly consisted of three mould pieces: A/D converting mould piece, A/D converting is mainly completed by the ADC0808, it converts the collected analog data into the digital data and transmits the outcome to the manifestation controlling mould piece. Data processing is mainly completed by the AT89C51 chip, it processes the data produced by the ADC0808 chip and generates the right manifestation codes, also transmits the codes to the manifestation controlling mould piece. Also, the AT89C51 chip controls the ADC0808 chip to work. The voltmeter features in simple electrical circuit, lower use of elements, low cost, moreover, its measuring precision and reliability. The voltmeter is capable of measuring voltage inputs from 1 route ranging from 0 to 5 volt, and displaying the measurements though a digital code tube of 7 pieces of LED. Keywords:Single-chip microcontroller; Digital voltmeter; A/D converter; AT89C51; ADC0808

简易数字直流电压表的设计

电子制作课程考核报告 课程名称简易数字直流电压表的设计 学生姓名贾晋学号1313014041 所在院(系)物理与电信工程 专业班级电子信息工程1302 指导教师秦伟 完成地点 PC PROTEUS 2015年 6 月 13 日

简易数字直流电压表的设计 简易数字直流电压表的设计 摘要本文介绍一种基于AT89C51单片机的简易数字电压表的设计。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换芯片为ADC0808,它主要负责把采集到的模拟量转换为数字量再传送到数据处理模块。数据处理则是由芯片AT89C51来完成,主要负责把ADC0808传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;并且,它还控制着ADC0808芯片工作。 该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-200V的模拟直流输入电压值,并通过数码管显示。 关键词单片机;数字电压表;AT89C51;ADC0808

目录 1 引言............................................................................................... 2 总体设计方案............................................................................... 2.1设计要求 ............................................................................... 2.2 设计思路 .............................................................................. 2.3 设计方案 .............................................................................. 3 详细设计....................................................................................... 3.1 A/D转换模块 .................................................................... 3.2 单片机系统 ........................................................................ 3.3 时钟电路 ............................................................................ 3.4 LED显示系统设计 ........................................................... 3.5 总体电路设计 .................................................................... 4 程序设计....................................................................................... 4.1 程序设计总方案 ................................................................ 4.2 系统子程序设计 ................................................................ 5 仿真............................................................................................. 5.1 软件调试 (11) 5.2 显示结果及误差分析 ........................................................ 结论................................................................................................. 参考文献........................................................................................... 附录...................................................................................................

数字电压表的设计毕业设计论文

田唯迪:数字电压表的设计 华东交通大学理工学院 Institute of Technology. East China Jiao tong University 毕业设计 Graduation Design (2011 —2015 年) 题目数字电压表的设计 分院:电气与信息工程分院 专业:工程及其自动化 班级:电力2011-1 学号: 学生姓名:田唯迪 指导教师: 起讫日期:2015-01-01—2015-05-10

华东交通大学理工学院毕业设计 摘要 在电子应用领域,工业自动化仪表已经有了非常广泛的应用。本文设计的数字电压表以AT89C51单片机为主要控制器件,利用ADC0808把模拟信号转换为数字信号并加以显示的电路。它的设计主要包括硬件电路和系统程序两部分设计。硬件电路主要是单片机最小设计模块、A/D转换模块和显示模块的设计,系统程序设计则是通过AT89C51单片机先将系统初始化,通过ADC0808转换芯片把模拟量转换成数字量,最后通过数码管显示数据。设计的数字电压表的测量范围为200mv—10v,对直流电压进行测量。该电路功能强大,有报警系统,可控制测量范围,数码管显示精度高,可扩展性强等优点。 数字电压表的应用在很多领域,有非常好的应用前景。对数字电压表进行研究很有必要性。这对我们研究单片机技术是很有帮助的。 关键词:AT89C51;ADC0808;电压测量;A/D转换 1

田唯迪:数字电压表的设计 Abstract In electronic applications, industrial automation instruments have a very wide range of applications. This design of a digital voltmeter to AT89C51 microcontroller as the main control device, use it ADC0808 analog signals into digital signals and display them circuit. Its design includes hardware and system design program in two parts. The hardware circuit design module is the smallest single-chip design A / D converter module and display module, system programming is through the first AT89C51 SCM system initialization, by ADC0808 converter chip to convert analog to digital, and finally through a digital display data. Measuring range designed digital voltmeter is 200mv-10v, DC voltage measurement. The circuit is powerful, alarm system, control measuring range, digital display and high precision, scalability and other advantages.残骛楼諍锩瀨濟溆塹籟。 Application of digital voltmeter in many areas, there is a very good prospect. Conduct research on the digital voltmeter very necessity. This single-chip technology for our study is helpful.酽锕极額閉镇桧猪訣锥。 Key words: T89C52; ADC0808; V oltage measurement;A/D converter 2

数字电压表电路图

数字电压表电路图 2008年01月11日 23:38 本站原创作者:本站用户评论(0) 关键字: 数字电压表电路图 ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。 1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。 也可以把芯片的缺口朝左放置,左下角也就是第一脚了。 许多厂家会在第一脚旁边打上一个小圆点作为标记。

知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。(1 脚与 40 脚遥遥相对)。 2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。在一开始,可以把它接地,造成“0”信号输入,以方便测试。 3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。 4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。--本文不讨论特殊要求应用。 5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。这样,在三极管的“C”极有放大的交流信号,把这个信号通过 2 只 4u7 电容和 2 支 1N4148 二极管,构成倍压整流电路,可以得到负电压供给 ICL7107 的 26 脚使用。这个电压,最好是在-3.2V 到-4.2V 之间。 6.如果上面的所有连接和电压数值都是正常的,也没有“短路”或者“开路”故障,那么,电路就应该可以正常工作了。利用一个电位器和指针万用表的电阻 X1 档,我们可以分别调整出50mV,100mV,190 mV 三种电压来,把它们依次输入到 ICL7107 的第 31 脚,数码管应该对应分别显示 50.0,100.0,190.0 的数值,允许有 2 -3 个字的误差。如果差别太大,可以微调一下 36 脚的电压。 7.比例读数:把 31 脚与 36 脚短路,就是把基准电压作为信号输入到芯片的信号端,这时候,数码管显示的数值最好是 100.0 ,通常在 99.7 - 100.3 之间,越接近 100.0 越好。这个测试是看看芯片的比例读数转换情况,与基准电压具体是多少 mV 无关,也无法在外部进行调整这个读数。如果差的太多,就需要更换芯片了。

相关主题
文本预览
相关文档 最新文档