当前位置:文档之家› 5.5m焦炉设计参数

5.5m焦炉设计参数

5.5m焦炉设计参数
5.5m焦炉设计参数

5.5m焦炉结构及主要设计参数

一、焦炉炉型

D5555 型炉体结构为双联火道、带废气循环、单热、下喷、捣固型焦炉。一座焦炉为65个炭化室,66个燃烧室,67个蓄热室。

二、设计参数

1.周转时间:25小时

2.炭化室干煤装炉量:40.26吨/孔

3.年产量:全焦130万吨、10万吨甲醇

4.日装干煤量约: 5376吨,产焦量约: 3924吨,日产煤气量约: 172万Nm3

5.日需回炉煤气量约:94.6万Nm3

6.煤场储煤量约:14万吨

7.焦场储焦量约:19200吨

8.焦炉的主要尺寸

炭化室有效容积:44.57m3

全长:16090mm

有效长:15290mm

全高: 5550mm

有效高:5300mm

平均宽:550mm 机侧:540mm 焦侧:560mm

锥度:20mm

煤饼长度(底/顶): 15330/15130mm

煤饼宽度:500mm

相邻炭化室中心距:1350mm

燃烧室立火道间距:480mm

燃烧室立火道数:32个

机侧立火道数:16个

焦侧立火道数:16个

废气循环孔尺寸:195×390/406

炭化室炉墙厚:95mm

加热水平:805mm

斜道区全高:800mm

蓄热室全高:3200mm

小烟道全高:658mm

蓄热室宽度: 440mm

蓄热室主墙厚:270mm

蓄热室单墙厚:200mm

燃烧室立火道煤气灯头砖高:196mm(第1、32立火道为147mm) 灯头砖出口直径:40mm

炉顶区厚:1189—1239mm

焦炉全高:10739—10789mm

焦炉烟囱高:125m

根部直径:18m

顶部直径:12m

熄焦塔高:50m

煤层气参数井小井眼钻井技术

煤层气参数井小井眼钻井技术 3 莫日和1 覃成锦2 高德利2 (1.中联煤层气有限责任公司,北京 100011; 2.中国石油大学石油工程教育部重点实验室, 北京昌平区 102249) 摘 要:为了降低煤层气钻井成本,中联煤层气有限责任公司试用了小井眼钻井技术钻参数井。本文介绍此技术的关键组成部分,其中包括:钻井地面设备的配置,各开钻具组合的构成,钻进参数的选择,钻井液体系的选择,钻井液体系的性能维护,钻井液固相控制的措施,防斜、取芯和测井的技术。此技术在贵州保田青山项目6口井的施工中得到成功的应用,其所需费用不及常规油气钻井技术的一半。综上所诉,煤层气井小井眼钻井技术是切实可行。关键词:小井眼 煤层气 钻井 参数井 Slim H ole Drilling T echnology for Parameter Well of C oalbed Methane M o Rihe 1,T an Chengjin 2,G ao Deli 2 (1.China United C oalbed Methane C orporation ,Ltd.Beijing 100011;2.C MOE K ey Lab of Petroleum Engineering in China University of Petroleum ,Beijing 102249) Abstract :In order to reduce the cost in drilling ,China United C oalbed Methane C orporation adopts slim hole drilling technology to drill parameter wells.In this paper ,key parts of this technology are introduced ,which includes selections of surface equipment ,drill string ,drilling parameter and drilling fluid ,maintenance of drilling fluid ,control measures of s olid content ,deviation prevention ,coring technology ,and logging technol 2ogy.These techniques are success fully applied in the Qingshan project in Baotian ,G uizhuo Province ,which only cost less than half of what may cost in conventional oil and gas well drilling.According to the above dis 2cussion ,a conclusion can be reached that slim hole drilling is feasible for the drilling of parameter well.K eyw ords :Slim hole ;coalbed methane ;drilling ;parameter well 煤层气就是煤层中的甲烷气,主要以吸附状态存在于煤层中,其产生机理是降压、解析、扩散和渗透等过程。煤层气井垂深一般为300~1500m ,单井产量偏低,为1000~10000m 3/d (通常为3000~5000m 3/d ),而且作为储层的煤层与常规石油天 然气储层相比具有特殊的物理力学性质。目前,国内煤层气田勘探环境的特征是:勘探区地处丘陵或山地,交通不便,山高坡陡,便道路远湿滑,简易公路坡陡弯急,煤田地质条件比较复杂,煤储层机械强度低,易造成井下情况复杂和井下事故,煤储 3获中国石油集团应用基础研究项目“煤层气钻井技术研究与应用”(06A20202)资助 作者简介 莫日和,男,汉族,1969生,广东高州人,油气井工程专业,硕士,现任中联煤层气有限责任公司工程师,从事钻探工程技术及管理工作。 第5卷第3期 中国煤层气 V ol 15N o 132008年7月 CHI NA C OA LBE D METH ANE July 12008

电潜泵_气举组合排水采气工艺设计方法研究

科技论坛 电潜泵-气举组合排水采气工艺设计方法研究 陈维 1 刘竟成 2 (1、西南石油大学,四川南充6370002、重庆科技学院,重庆404100) 1概述 电潜泵作为一种经济有效的人工举升方法,近年来用于产水气藏的强排取得了一些成功的经验。但常规的电潜泵排水采气工艺,其生产方式为油管排水、套管产气,对于大水量高气水比气井,其自身气的能量未能得到充分利用。电潜泵-气举组合排水采气工艺提出,在电潜泵上部油管柱安装气举阀,将气体引入电泵上部油管柱,减小液柱压力,节约电泵投资及运行成本。 组合排水采气工艺由于采用两套子系统同时工作,具有单一举升系统所不具备的独特优势,主 要表现在以下几个方面:其子系统的启动压力、 运行功率明显较单一举升系统低,可根据现场情况选用最经济的组合,使井下设备的选择范围更广;当某一子系统失效时,另一子系统可以较小的产量维持生产直至整个系统恢复;由于组合灵活,可通过调整子系统的运行功率,使系统在最佳状态下工作,防止系统过载[1-3]。 2组合举升原理 电潜泵-气举组合排水采气系统是通过电潜 泵子系统和气举子系统两级组合实现的。 其管柱结构如图1所示, 主要包括电潜泵子系统、气举子系统两部分。气体由油套环空经工作阀进入电潜泵上部油管。根据气井地层气水比与采气经济性评价结果决定采用外部注入气气举或采用伴生气气举。电潜泵需保持一定的沉没深度,以保证电潜泵安全运行。注气工作阀位于动液面上部,确保液体不过阀, 保证气举阀长效安全工作。 地层水经电潜泵加压进入油管;地层气和注入气经油套环空至工作阀注入油管,与油管内的地层水混合形成气水两相管流,将地层水举升至地面。 组合举升中,电潜泵作为一级举升系统,气举 作为二级举升系统。 由于气举降低了电潜泵上部油管流体压力梯度,因而降低了设计中电潜泵出口压力,相当于减小了电潜泵的泵挂深度。采用组合举升系统设计后,设计电潜泵出口压力降低值,对应的表示了组合举升系统中,气举举升子系统所减小 的水力压头。由于当量深度的减小, 电潜泵可采用较小的功率设计,节约电潜泵下入级数。气举作为二级举升系统,由于地层气经气举阀注入油管,可充分利用地层气体的能量,减少整个排水采气系统的运行能耗。 2.1井下管柱 典型的组合举升系统井下结构如图1所示。a.为双管柱结构,气举子系统的注气通道由独立插入油管完成,与电潜泵主系统互不影响,油气层生产的天然气在井下分离后,进入油套环空,减 少气体对电潜泵举升效率的影响。 但双油管的下入要求套管尺寸较大,且插入的注气油管往往尺寸较小,使注气量受到限制。 b.采用封隔器将气举子系统和电潜泵主系统 分开,封隔器上部的油套环空作为注入气通道。油气层产出的天然气必须全部经电潜泵进入油管,过多的天然气将影响电潜泵的工作,甚至出现“气锁”,可通过增加泵挂深度,减少游离态的气体进泵或增加气体处理装置,使气体能与液体混合均匀一并通过电潜泵,而对电潜泵的举升效率影响小。 c.相对于a 、b 两种管柱结构,直接采用油气层的产出液体将电潜泵和气举分开,要求油气层具有较高的地层压力和较大的产液指数,井下管柱最简单。 2.2节点系统分析 组合举升系统井下管柱结构不同于常规单一举升系统,它是由电潜泵子系统与气举子系统组合而成。为避免气体对电潜泵的影响,造成电泵失效,电潜泵子系统位于气举子系统下部。组合举 升系统中,电潜泵将整个井筒分为上下两个部分。设计过程中,总排液系统上部可视为一纯气举排液举升虚拟井;下部可视为电潜泵排液举升虚拟井。对整个系统进行节点分析时,可将系统解节点可选在电泵出口。流入压力为: (1) 流出压力为: (2) 3设计方法 电潜泵-气举组合排水采气工艺是以产层-井筒-电潜泵子系统-气举子系统所组成的生产系统为对象,在生产中各子系统相互协调的前提下,采用系统节点分析法,优选不同的子系统工作参数,最终确定合理的组合举升系统设计方案。组合举升系统设计比常规电潜泵系统排液举升设计、常规气举系统排液举升设计要复杂。它的难点和核心是不仅要使电潜泵子系统与气举子系统互不干扰,而且还要相互协调[4,5]。针对组合举升系统的三种 井下结构(图1 ),其设计方法也不同。对于采用双管柱(图1a )和加封隔器(图1b )的井下管柱结构,由于注气通道和地层产气流出通道相对独立,不用考虑地层产出液会流经气举阀,从而造成气举阀的损坏,因而其设计方法相对简单,其设计步骤如下: a.在已知设计产液量Qi 的条件下,根据产层流入动态确定井底流压p w f 。 b.从井底向上计算井筒压力分布至泵挂深度处,计泵入口压力。 c.在已知设计井口压力条件下,以电泵出口为起点,假设一电泵出口压力,取该压力为连续气举设计井底流压,电泵出口流体物性参数为连续气举设计流体物性参数,对电泵出口至井口段做连续气 举优化设计。 d.根据已知设计产液量Qi 、泵入口及泵出口压力、 井身结构,确定电潜泵机组及电缆参数。e.假设一系列不同的电泵出口压力,从c 开始,进行连续气举优化设计。 f .按照产量或系统效率等指标对可行的组合举升方案进行排序,挑选出适合的方案实施。 对于单管柱不加封隔器的井下结构,油套环空不仅作为注气通道,同时也是地层产气通道。地层流体经井下气液分离器后,地层液体经电泵-油管-井口排出;地层气经油套环空-气举阀-油管-井口排出。油套环空中,气举阀以下的流体在地层产气的作用下形成气液两相上升流,为防止大量的地层产液流过气举阀进而造成气举阀损坏,必须对气液两相流能达到的最大液面高度做准确预测。 4结论及认识 4.1电潜泵-气举组合可用于大水量、高气水比深井排水采气。该工艺能有效利用气井自身气能量,节约设备投资及排水采气系统运行成本。 4.2电潜泵-气举组合可有效解决单一举升工艺系统负荷过大造成的举升系统失效问题,可利用较小的系统能耗实现深井大排液量深抽。 4.3电潜泵和气举举升均为大排量、连续举升工艺,能实现子系统间无干扰耦合,避免系统间干扰造成的系统效率降低。 4.4电潜泵-气举组合可根据现场情况,增加或减小单一子系统功率,实现排水采气系统的经济技术最优化。 e.组合举升工艺能降低系统启动压力。f .可缩短生产延期,当其中一个系统出现故障或失效时,可以较小产量延续生产直至系统恢复。 参考文献 [1]李颖川.采油工程[M].北京:石油工摘 要:给出三种电潜泵-气举组合排水采气工艺的井下管柱结构,并根据不同的井下管柱结构各自的特点,提出了两种不同的组合排水采气 工艺设计方法与步骤。组合举升工艺将气井自身气通过气举阀引入到油管中,利用地层气的能量减小上部油管柱流体密度,降低了举升管柱压力,可实现采用较少的泵级数、 较小的泵功率即能达到将地层水泵出地面的目的,从而降低了整个排水采气系统的系统投资及运行成本。关键词:深井;排水采气;连续气举;电潜泵;组合举升(下转22页)

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

煤层气01钻井工程设计

. 恩洪煤田煤层气勘探EH-01井 钻井工程设计 1 设计依据 主要依据: 1)中联煤层气有限责任公司《云南省恩洪煤田煤层气勘探总体部署方案》; 2)《恩洪煤田清水沟井田地勘报告》; 3)本勘探区与相邻勘探区以往钻探施工经验; 4)现有煤层气钻探施工设备、人员、技术状况实际。 2 基本数据 ●钻井名称:EH-01 ●钻井性质:煤层气参数井兼生产试验井 ●设计井位:曲靖市东山镇咱得村北,清水沟井田北部15勘探线上1501号钻孔以东125m处。 ●设计坐标:X 2802050 Y 18412825 Z 2005 ●设计井深:660m

b号煤层。 C、C、l●目的煤层:P组C212916b号煤层以下50米,下二叠系、峨眉山玄武岩组。●完钻层位:C21●完井方式:套管完井。 3 钻井目的 1)获取系统可靠的目标煤层的储层参数,主要包括煤层厚度、埋深、煤岩及煤质特征、割理和裂隙发育程度、含气量、含气饱和度、. . 等温吸附曲线、渗透率、储层压力、原地应力、煤层顶底板岩石的力学性质等参数; 2)评价该区煤层气地质条件、储层特征、资源分布与开发条件。3)根据分析、测试资料决定是否对参数井进行扩孔改造,变成生产试验井,对目标煤层进行压裂排采试验,以获取煤层气井生产数据;4)根据排采试验成果,评价该区煤层气勘探开发潜力和开发试验的可行性。 4 技术要求 4.1 钻井液性能使用要求 储层压力一般随埋藏深度的增加而增大。根据区域地质、煤田地质资料,预测该区煤储层压力梯度在10—12kPa/m之间。据此可对钻井液及各项工程参数进行调整,维持近平衡钻进。 根据该区构造复杂、断层多,煤层层数多、厚度大、倾角大的特点,如何有效的保持井壁的稳定性又能尽量减少钻井液对煤储层的伤害,从而确保EH—01井能真正达到钻井目的。对该井钻井液性能使用要

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

煤层气井总体设计

目录 地质部分 (1) 一、基本数据 (1) 二、枣圆煤层气开发试验区布井方案 及该井在井网中的位置钻探目的 (1) 三、设计依据 (2) 四、设计地层剖面及目的煤层深度、厚度预测 (3) 五、地质录井项目及要求 (3) 六、地球物理测井 (3) 七、地层测试 (4) 八、样品采集与分析测试 (4) 工程部分 (6) 一、井身结构及套管程序 (6) 二、井身质量、固井质量......等项要求.. (6) 三、各阶段施工要求 (6) 四、施工进度预测 (8) 资料要求 (9) 一、需要提交的资料 (9) 二、资料提交时间 (10)

地质部分 一、基本数据 井名: 井别:参数井+试验井 地理位置: 构造位置: 井位坐标: X:Y:H:米 设计井深:米 目的煤层:二叠系山西组3#煤层和石炭系太原组15#煤层。 完钻层位:奥陶系峰峰组。 完钻原则:钻穿石炭系太原组15#煤层以下60米完钻。 完井方法:套管完井。 二、开发试验区布井方案及该井在井网中的位置和目的任务 该井的主要钻探目的和任务是: (1)获取可靠的目标煤层(3#、15#)煤层气评价参数,主要包括煤层厚度、埋深、煤岩煤质、割理和裂隙发育程度、等温吸附特征、含气量、含气饱和度、地层压力、原地应力、煤及顶底板岩石力学性质等。 (2)根据获得的较可靠的煤储层实测参数,与TL-003井进行初步对比研究,指导井网其它各井下步施工方案。

(3)井网其它各井钻井工程全部结束后,统一对主力煤层—3#煤层进行射孔压裂和排水采气试验。 三、设计依据 (1)“沁水盆地南部枣圆煤层气开发试验部署方案”(1999) (2) “枣圆煤层气开发试验井网各井总体设计原则”(讨论纪要) (3)“沁水盆地XXX井完井地质总结报告”(1998.2) (4) 沁水盆地XXX、XXX等井总体设计 四、设计地层剖面及预测目的煤层厚度和深度 根据井网上已完井的XXX井(相距该井约800m)完井地质总结报告,结合其他煤田勘探钻孔资料,并参考樊庄区块3#煤层、15#煤层厚度等值线和底板标高等值线图,预测出该井钻遇地层深度和厚度见表1。 预计该井3#煤层顶界深度为470m,厚度约6.0m; 15#煤层顶界深度为580m,厚度约1.4m。 该井设计地层分层数据表表1

最新煤层气01钻井工程设计

恩洪煤田煤层气勘探EH-01井 钻井工程设计 1 设计依据 主要依据: 1)中联煤层气有限责任公司《云南省恩洪煤田煤层气勘探总体部署方案》; 2)《恩洪煤田清水沟井田地勘报告》; 3)本勘探区与相邻勘探区以往钻探施工经验; 4)现有煤层气钻探施工设备、人员、技术状况实际。 2 基本数据 ●钻井名称:EH-01 ●钻井性质:煤层气参数井兼生产试验井 ●设计井位:曲靖市东山镇咱得村北,清水沟井田北部15勘探线上1501号钻孔以东125m处。 ●设计坐标:X 2802050 Y 18412825 Z 2005 ●设计井深:660m ●目的煤层:P2l组C9、C16、C21b号煤层。 ●完钻层位:C21b号煤层以下50米,下二叠系、峨眉山玄武岩组。 ●完井方式:套管完井。 3 钻井目的 1)获取系统可靠的目标煤层的储层参数,主要包括煤层厚度、埋深、煤岩及煤质特征、割理和裂隙发育程度、含气量、含气饱和度、

等温吸附曲线、渗透率、储层压力、原地应力、煤层顶底板岩石的力学性质等参数; 2)评价该区煤层气地质条件、储层特征、资源分布与开发条件。 3)根据分析、测试资料决定是否对参数井进行扩孔改造,变成生产试验井,对目标煤层进行压裂排采试验,以获取煤层气井生产数据; 4)根据排采试验成果,评价该区煤层气勘探开发潜力和开发试验的可行性。 4 技术要求 4.1 钻井液性能使用要求 储层压力一般随埋藏深度的增加而增大。根据区域地质、煤田地质资料,预测该区煤储层压力梯度在10—12kPa/m之间。据此可对钻井液及各项工程参数进行调整,维持近平衡钻进。 根据该区构造复杂、断层多,煤层层数多、厚度大、倾角大的特点,如何有效的保持井壁的稳定性又能尽量减少钻井液对煤储层的伤害,从而确保EH—01井能真正达到钻井目的。对该井钻井液性能使用要求如下: 1)开孔至第一目标层以上10米,采用泥浆钻井,以便起到良好的护壁作用; 2)从第一目标层开始,要求采用清水钻进,以达到: ●最大限度地减少钻井液对煤层的污染; ●保证试井工作的顺利进行,以获取准确的储层参数。 4.2 钻井质量要求 根据该井钻井目的和任务,要求井身质量: 最大全角变化率不得大于10/30m,全井井斜不得超过30,井底最大位移不得超过10 m,井径扩大率小于20%。 4.3 钻井取芯要求

柱塞气举工艺技术研究

柱塞气举采油工艺技术研究 中国石化中原油田分公司新科力技术公司 二00二年六月

前言 柱塞气举实质上是间歇气举采油的一种特殊形式,由于在举升气体和被举升液载之间提供了一种固体的密封界面,减少了气体的窜流和液体的回落,从而能有效提高气体能量的举升效率,使井的产量大大提高。 柱塞气体的举升能量来源于气体的膨胀能(地层气或注入气),它可以充分利用地层的能量,所以尤其适用于高气液比的采油井。在常规间歇气举效率不高、效果不明显的井,采用柱塞气举可以提高生产效率,避免气体的无效消耗。 柱塞气举在正常生产时,由于柱塞在油管内往复运动,所以可以起到清、防蜡除垢的作用,可以节约生产时间和生产费用。 柱塞气举井下工具的安装都非常简便,只需利用钢丝绳就可以完成安装和打捞工作,避免了修井作业,这样既可以减少作业对油层的污染,同时可以节约生产时间。

美国总部:5900 Ranchester Dr,Houston,TX,77036 Tel(Fax): (001)2814984603 北京代表处:北京市海淀区海淀路50号1435室 邮 编:100083 电 话:(010)62560343 西部代表处:陕西·西安市未央区迎宾大道113号雅荷花园A26-32 邮 编:710021 电话(传真):(029)86510578 2 1、工具设备的研制 1.1 工作过程 柱塞气举装置的正常工作,由时间控制器定时控制气动切断阀的开关来完成,当气动切断阀关闭是,柱塞上的凡尔已被防喷管内的撞击杆顶开,这时,柱塞靠自身重量下落,柱塞撞击缓冲弹簧后凡尔关闭。当柱塞上方积聚到设计要求的液量时,气动切断阀打开,高压气体经过气举凡尔进入油管,从而把柱塞举升到井口,完成一周期再开始下一循环。 1.2 工具设备的结构和技术参数 1、柱塞 为弹簧加载的扩张叶片式柱塞,弹簧加载片直径接近于油管内径,扩张开为Ф61,收拢为Ф56,中间有一靠外部顶杆完成开或关的阀,柱塞密封受弹簧叶片及油管内径相对公差大小的影响。 技术参数: 材 质: 合金钢 ,作防腐处理 长 度: 445mm 叶片扩张最大外径:Ф61mm 叶片收拢最小外径:Ф56mm 打捞颈: Ф35mm 质 量: 6Kg 工作过程: 上行状态:柱塞座在缓冲弹簧上后,阀杆与缓冲弹簧碰撞上移。堵塞孔2,使孔1与孔2不连通。而柱塞叶片在弹簧作用下处于扩张状态,故与油管间隙较小,在举升过程滑脱损失小。 下行状态:柱塞上行,把液体举出井筒后,阀杆与井口防喷盒碰撞下

气溶胶产品介绍

安装、使用前请阅读使用说明书 DKL?落地式S型气溶胶自动灭火装置 使 用 说 明 书 执行标准编号:GA499.1-2004

目录 1 概述 1 2 结构与工作原理 2 3 技术参数 2 4 开箱检验 2 5 安装、调试 3 6 使用、操作注意事项 6 7 运输、贮存 6 8 售后服务 6 9 联系方式 6

1 概述 DKL S型落地式自动灭火装置(以下简称S型灭火装置)是国内首创,具有世界先进水平的新型环保消防产品。它是在国际蒙特利尔协定和我国环境保护意识增强的背景下诞生的造福人类的高科技绿色消防产品,是哈龙灭火装置的理想替代产品。 1.1 产品特点:灭火速度快,全方位灭火,不受火源位置影响;通过气体灭火控制器控制从而实现自动灭火,无须人员值守;运行储存于常压状态;无须敷设管网,简便易行,安装维修简单;无毒害,无腐蚀;不损耗大气臭氧层。 1.2 主要用途及适用范围(包括不适用范围及场所) 1.2.1 S型灭火装置主要应用于通讯、邮电、冶金、电力、金融等行业的消防灭火。 1.2.2 S型灭火装置适用于在相对封闭条件下扑救下列火灾 1.2.2.1 通讯机房、电子计算机房、变(配)电间、发电机房、电缆井、电缆沟、等场所的电气火灾。 1.2.2.2 生产、使用或贮存柴油(-35号柴油除外)、重油、变压器油、润滑油、动物油、植物油等各种丙类可燃液体场所的火灾。 1.2.2.3 生产、使用或贮存可燃固体物质场所的固体物质表面火灾。 1.2.3 S型灭火装置不能用于扑救下列物质的火灾 1.2.3.1 无空气仍能迅速氧化的化学物质和能自行分解的化学物质。 1.2.3.2 活泼金属、金属氢化物、强氧化剂和自燃的物质。 1.2.3.3 可燃固体物质的深位火。 1.2.4 S型灭火装置不适用于下列场所 1.2.4.1 爆炸危险区域。 1.2.4.2 商业、交通、饮食服务、文体娱乐等公共场所。 1.2.4.3 人员密集场所。 1.3 S型灭火装置型号、外形尺寸及重量 1.4 工作环境要求 温度范围:-20~+55℃相对湿度:≤95%RH 1.5 对防护区的要求:防护区应相对封闭。

气溶胶发生器解读

气溶胶发生器 一、简介 目前,数字粉尘仪已广泛应用于室内空气质量检测、工作场所空气质量检测、矿井粉尘浓度检测及户外空气质量检测。不同厂家对其生产的粉尘仪命名不尽相同,如数字粉尘仪、智能型数字粉尘仪、微电脑粉尘仪、呼吸性粉尘仪、防爆型粉尘仪等等。总体来说,这些仪器可统称为粉尘仪,为检测环境空气中粉尘颗粒质量浓度的仪器。粉尘仪根据测量原理可分为光散射式粉尘仪及压电天平式粉尘仪两种。光散射式粉尘仪根据粉尘颗粒对激光的散射通量来测定粉尘质量浓度,这类仪器构造相对简单、响应快、维护方便,为目前数字粉尘仪的主流产品,占市场总量的90%以上。但光散射式粉尘仪各厂家所用光源、探测器及光室不尽相同,仪器出厂前所用标定方法不尽相同,导致仪器的响应曲线及准确度千差万别,测得同一环境下的质量浓度差别较大,给用户使用带来不便,数据可比性较差。压电天平式粉尘仪目前生产厂家较少,因为其维护量较大,目前市场占有率不高。针对以上现状,各地质量技术监督部门非常有必要建立起数字粉尘仪的标定方法规范,用以检定不同厂家及不同用户的粉尘仪,以使粉尘检测的工作得以规范化管理。 数字粉尘仪有全尘及可吸入性粉尘之分。全尘是指测定空气中总的悬浮颗粒物,可吸入性粉尘是指空气中可吸入的那一部分粉尘,按照美国环保局及中国环保局的定义,可吸入性粉尘指空气动力学直径小于10微米以下的粉尘。所以一般的吸入性粉尘仪应该具备PM10入口切割头,该切割头对空气动力学直径为10微米的颗粒应该有50%的去除效率。切割粒径的偏差是影响粉尘仪准确度的一个关键因素。标定切割头的方法需用单分散标准PSL粒子。光散射仪器散射信号受颗粒的折射率的影响较大,同样质量的颗粒,如果成分不同,折射率就不同,由光散射型仪器测得的质量就不同。所以,针对不同的光散射仪器,有必要在统一的、稳定的散射介质下进行质量浓度的标定,目前应用较多的方法是利用ISO标准粉尘来标定。

煤层气规范

煤层气资源/储量规范 (DZ/T0216-2002) 目次 前言 69 1 范围 70 2 规范性引用文件 70 3 总则 70 4 定义 70 4.1 煤层气 70 4.2 煤层气资源 70 4.3 煤层气勘查 71 4.4 煤层气开发 71 5 煤层气资源/储量的分类与分级 71 5.1 分类分级原则 71 5.2 分类 72 5.3 分级 72 5.4 煤层气资源/储量分类、分级体系 72 6 煤层气资源/储量计算 72 6.1 储量起算条件和计算单元 72 6.2 储量计算方法 75 7 煤层气资源/储量计算参数的选用和取值 77 7.1 体积法参数确定 77 7.2 数值模拟法和产量递减法参数的确定 79 7.3 储量计算参数取值 79 8 煤层气储量评价 79 8.1 地质综合评价 79

8.2 经济评价 81 8.3 储量报告 81 附录A(规范性附录)煤层气储量计算参数名称、符号、单位及取值有效位数的规定 82 附录B(规范性附录)煤层气探明地质储量计算关于储层的基本井(孔)控要求 84 附录C(资料性附录)煤层气探明储量报告的编写要求 85 C.1 报告正文 85 C.2 报告附图表 85 C.3 报告附件 85 国土资源部2002-12-17发布 2003-03-01实施 -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- 煤层气资源/储量规范 (DZ/T0216-2002) -------------------------------------------------------------------------------- 前言 煤层气是重要的洁净新能源,制定一个适合我国国情并与国际(油气)准则相衔接的煤层气储量计算、评价和管理规范,可以促进煤层气资源的合理利用。由于目前没有通用的储量分类标准和计算方法,为规范我国煤层气资源/储量分类和计算,并促进国际交流,根据GBn/T270-88《天然气储量规范》、GB/T17766-1999《固体矿产资源/储量分类》,并参考了美国石油工程师学会 (SPE)和世界石油大会(WPC)、联合国经济和社会委员会以及美国证券交易管理委员会(SEC)等颁布的有关储量分类标准,制定本标准。 本标准自实施之日起,凡报批的煤层气储量报告,均应符合本标准的规定。 本标准的附录A、附录B是规范性附录。 本标准的附录C是资料性附录。 本标准由中华人民共和国国土资源部提出。 本标准由全国地质矿产标准化技术委员会归口。 本标准起草单位:中联煤层气有限责任公司。

煤矿设计说明书

第四章钻井工程与完井工程设计 根据煤层气井钻井工艺技术和本区HE-01、HE-002、鹤参03井等的工程实践,在本次的钻井工艺设计中,采用垂直井井型、常规钻井、套管完井技术。 / 第一节参数井+生产试验井钻井工程设计\ 一、目的与任务 获取目标煤层的储层参数,主要包括煤层埋深、厚度、煤岩及煤质特征、割理及裂隙发育程度、含气量、气体组成、等温吸附常数、渗透率、储层压力、地应力、煤层顶底板力学性质等参数。 进行单井生产试验,以获得单井产能。 二、钻井设计方案 1、钻井地质设计 根据《鹤岗矿区瓦斯(煤层气)抽采及民用改扩建工程可行性研究报告》中的井位部署方案,初期先在峻德深部、兴安深部、益新深部和鸟山等4个区,布置7 口参数+生产试验井,其中峻德、兴安、益新每个区2 口井,鸟山区1 口井,进行煤层气参数井兼生产试验井施工,待取得经验与成效后,再在每个参数井周围按 照合适井距布置 \ 4口煤层气生产井,进行煤层气小井网排采生产试验,根据获取的煤层气各种参数及产能数据,对鹤岗矿区煤层气的商业性开发作出经济

技术评价。 同时,根据可研报告中对各个区的目的煤层的数量要求,本次设计的目的煤层为:峻德区一层,17煤层;兴安区三层,17、21、22 煤层;益新区三层,11、15、18煤层;鸟山区两层,11、18煤层。 各井的井口坐标和设计深度见表4-1。 2、钻井工程设计 1)井身结构及套管程序 鹤岗试验区煤层气井设计为直井井型。井身结构如表4-2。 一开井径? 311.15mm进入基岩20米,下入? 244.5mm表层套 管并固井。 二开井径? 215.9mm至完井深度,裸眼测井,下? 139.7mm技 术套管。并固井、射孔、压裂、排采。 最底层目的煤层以下留40m 口袋。 峻德矿目的煤层为一层、兴安、新一矿目的煤层为三层、鸟山矿 目的煤层为两层。井身结构图如图4-1。 本井井身结构和套管程序如表4-2。

气溶胶方案

S 型艾尔索自动灭火设计方案 一、AS600 S 型艾尔索自动灭火装置设计依据: 1.《中华人民共和国公共安全行业标准》(GA499.1-2004); 2.《热气溶胶自动灭火系统设计、施工及验收规》(DB61/368-2005); 3.《火灾自动报警系统设计规范》(GB50116-98); 4.《气体灭火系统设计规范》(GB50370-2005)。 二、设计计算: (一)防护区净容积计算 (表示为:V — m 3); 1.一层101配电房: V=405.10 m 3(71.07㎡*层高5.7m ); 2.一层102档案室: V=1764.36 m 3(490.1㎡*层高3.6m ); 3.二层213互联网机房: V=188.43m 3(62.81㎡*层高3m )。 (二)AS600 S 型艾尔索自动灭火装置设计用量计算方式: 依据GB50370-2005《气体灭火系统设计规范》3.5.9中计算公式: W=C 2〃K V 〃V 式中:W — 灭火剂设计用量(㎏); C 2 —设计灭火密度(㎏/m 3); 在此取值0.14kg/ m 3”(在常见气体灭火系统应用场所,C 2 取值为 0.14 kg/ m 3),对档案室的设计密度根据DB32/399-2000及以往同样保护 环境的设计密度最低取值为0.178 kg/ m 3; V — 防护区净容积(m 3); K V — 容积修正系数。V <500m 3,K V =1.0; 500m 3≤V <1000m 3,K V =1.1;V ≥1000m 3,K V =1.2。 在此取值配电房和二层互联网机房K V 取值为1.0, 一层档案室K V 取值 为1.2。 因此: 1.一层101配电房:W=0.14 kg/m 3*1.0*405.10m 3=56.72 kg ; 2.一层102档案室: W=0.178 kg/m 3*1.2*1764.36m 3=376.86 kg ; 3.二层213互联网机房:W=0.14 kg/m 3*1.0*188.43m 3=26.38 kg 。 (三)AS600 S 型艾尔索自动灭火装置的防护区型号配置、数量:

MWD在煤层气定向井施工中的应用

MWD 在煤层气定向井施工中的应用 郝登峰 (河南省煤田地质局,河南 450053) 摘 要:采用MWD 无线随钻测斜仪施工煤层气定向井,对井眼轨迹的控制以及钻井效率的提高效果十分明显,在做好施工设计的同时要加强钻井参数和实际操作的配合。关键词:MWD 煤层气 定向井 MWD Applications in CBM Construction of Directional Well Hao Dengfeng (Henan Bureau of Coal Geological Exploration,Henan 450053) Abstract:Adopted wireless NWD to directional coalbed methane drilling well,it is obvious to control the well trajectory and improve drilling efficienc y.The co-ordination between drilling parameters and practical opera tion should be enhanced. Keywords:MWD;CB M;directional well MWD 无线随钻测斜仪是通过钻井液的压力脉冲传递井下仪器测取的参数,取消了有线随钻仪的起下电缆作业,大大缩短了测斜时间。主要用于定向井定向造斜、扭方位中随钻监控井眼轨迹,直井段和稳斜段转盘钻井的井眼轨迹控制,大斜度井、水平井井眼轨迹控制。普通煤层气定向井一般采用电子单、多点进行定向,为了加快工程进度,缩短建井周期,缩短钻井液对煤层的浸泡时间,同时有效控制井眼轨迹,就要优选施工措施,采用MWD 无线随钻测斜仪进行定向。现以山西某区块的定向井为例,对该仪器在煤层气井施工中的应用进行分析和研究。 1 地质概况 所施工的煤层气定向井,位于山西省吉县,其构造位置处于鄂尔多斯盆地东南缘晋西挠褶带与渭 北隆起交汇处延川南区块。地层自上而下为:第四系(Q),三叠系中统纸坊组(T 2z),三叠系下统和尚沟组(T 1h)及刘家沟组(T 1l),二叠系上统孙家沟组(P 2s)及上石盒子组(P 2sh),石炭系上统太原组(C 3t),石炭系中统本溪组(C 2b)。 2 主要设备机具 (1)钻机:TSJ-2000 (2)柴油机:12V135/380HP 、6135/150HP 各1台(3)泥浆泵:TWB1200、兰石1000各1台(4)测斜仪器:MWD 系统(技术参数见表1)。主要是通过井下探管测量井下数据,转换成电压脉冲码给功率驱动器,功率驱动器驱动旋转阀脉冲器产生泥浆压力脉冲,泥浆压力脉冲通过压力传感器转换成0~20m A 电流传到数据采集仪,数据采集仪降噪、解码,还原成井斜、方位、工具面等具体数据。 作者简介 郝登峰,男,工程师,毕业于焦作工学院,水文地质与工程地质专业。现从事煤层气钻井施工与技术管理工作。 第7卷第5期 中国煤层气 Vol 7No 52010年10月 CHINA COALBED METHANE October 2010

气溶胶论文:气溶胶光学厚度Angstrom参数浓度分布拟合半干旱区SACOL

【关键词】气溶胶光学厚度 Angstrom参数浓度分布拟合半 干旱区 SACOL 【英文关键词】Aerosol Optical Depth Angstrom parameter mass concentration number concentration number size distributions fitting semi-arid region 气溶胶论文:西北半干旱区气溶胶光学和物理特性的观测研 究 【中文摘要】大气气溶胶在大气中的行为、转化及其对气候、环 境和人体健康的影响,不仅取决于其在环境大气中的浓度,还与其粒 径大小、粒谱分布、光学特性、化学组成和在大气中的寿命等因素有 关。因此,探究气溶胶颗粒物的光学和物理特性,有助于深入研究气溶 胶颗粒物的气候效应和环境行为。利用兰州大学半干旱气候与环境观 测站(SACOL)在2010年1月-2011年2月多种仪器观测的综合数据, 分析了气溶胶光学参数、不同粒径段气溶胶数浓度和数谱分布随时间 变化的特点,以及气象条件对这些参数的影响,讨论了AOD与PM1o质 量浓度的相关性。同时,探讨了用APS资料拟合PM1o质量浓度的方法, 主要结论如下:SACOL站气溶胶光学厚度、浑浊度系数以及波长指数 的年均值依次为0.410、0.231、0.840,前两个光学参数的季节均值

按春、冬、夏、秋顺序依次减少,波长指数的季节均值则按春、冬、夏、秋依次增大。SACOL站大气中气溶胶总数浓度主要取决于PM2.5数浓度,特别以粒径小于1.0μm的积聚模态居多,其中冬季粒径小于1μm的气溶胶粒子数浓度又远高于其它季节。PM2.5、PMcoarse、PM10-20三者数浓度的季节均值都是在冬季最大,夏季最小。春季沙尘天气的频繁发生和冬季燃煤取暖使春冬季节成为SACOL站气溶胶污染的主要季节。SACOL站常年盛行东南和西北风,从这两个方向输送来的气溶胶粒子、数浓度出现高值的次数最多。冬季,SACOL站西北方向人类活动产生的污染物明显多于东南方向。SACOL站相对湿度的变化对AOD大小的影响不明显,AOD与PM1o质量浓度的相关程度不高。2010年春季,SACOL站沙尘天气频繁发生。沙尘天气和降水天气过程中气溶胶特性变化显著。沙尘天气中,AOD增大,浑浊度系数与AOD变化趋势保持一致,呈正相关关系,波长指数与它们呈较弱的负相关。在一次沙尘天气过程中,PM2.5、PMcoarse和PM10-20的数浓度变幅剧烈,三者出现最大值的时间各不相同:沙尘暴发生前,PM2.5数浓度急剧增大,气溶胶总数浓度主要取决于粒径小于0.523μm的颗粒物数浓度;沙尘暴出现时,PMcoarse数浓度急剧增加,PMtotal质量浓度主要取决于PMcoarse数浓度。在春季一次降水过程中,降水对PM2.5、PMcoarse以及PM10-20的湿沉降非常明显,总体沉降效率达到96.4%。用APS数据拟合PM1o质量浓度的方法中,一元线性回归和多元线性回归在春季沙尘天气和冬季污染天气条件下的相关系数都

煤层气孔工程施工设计方案与安全技术措施方案

1 目的任务与要求 1.1 目的任务 ******煤层气参数孔的施工,目的是为该区的煤层气生产潜能评价和开发试验提供可靠的参数依据,评价该区煤层气开发利用价值。任务有:(1)测定区内煤层气含量; (2)求得煤层渗透率、储层压力、破裂压力及原地应力测试等储层参数; (3)采取全部地质研究所需的煤层煤芯、顶底板及夹矸岩芯,分析化验测定煤层各项物理性质及煤岩煤质特征,同时进行如等温吸附试验、煤的反射率、孔隙度和扩散系数等测试。 1.2 基本参数及技术要求 1.2.1 钻孔参数 1.2.2 技术要求 1、井身结构设计原则:有利于保护煤储层;保护钻井工程满足地质设计要求;满足平衡或近平衡钻进工艺技术要求;避免漏、涌、塌、卡等复杂情况,缩短钻井周期,实现安全快速低成本。 2、钻井液设计技术要求:钻井液是煤层接触的第一种通常也是造成煤层伤害最严重的一种外来流体,所以煤层气孔钻井液设计必须要考虑3个主要因素,尽可能减少对煤层的伤害,保护煤层、井眼、稳定井壁、平衡地层压力、润滑冷却钻头。 ①尽可能降低固相含量:为降低成本,非煤系地层可采用普通优质低固相

钻井液,煤层段特别是目标煤层段应采用清水或无固相低密度钻井液,密度控制在1.05g/cm3、粘度30s以下。 ②尽可能降低失水量:为了防止因钻井液滤液侵入伤害,必须用一些降失水处理剂,将失水量控制在8ml以下。 ③适当的PH值:为防止煤层伤害宜将PH值控制在8~9之间。 ④钻遇煤层采用低钻压、低钻速、低排量、地射流参数组合钻进,减少煤层段井径扩大率,防止垮塌卡钻。 ⑤管好用好固控设备,加强钻井液净化工作,严格控制固相含量,确保煤层段不受钻井液固相污染。 ⑥优选施工措施,优选钻头及钻井参数,以加快工程进度,缩短钻井液对煤层的侵泡时间。 3、煤层取样化验要求:该孔设计柱状图显示七2煤遇断层缺失,如果实际施工过程中揭露七2煤,则要求与二1煤一样达到可采厚度时进行现场取样解吸、实验室化验及煤层气参数测试工作。其它达到可采厚度的煤层,只进行现场取样解吸、实验室化验并参与验收,不做煤层气参数测试工作。所有达到可采厚

相关主题
文本预览
相关文档 最新文档