当前位置:文档之家› 30万吨以上天然气原料合成氨装置能效对标最佳实践报告(1)

30万吨以上天然气原料合成氨装置能效对标最佳实践报告(1)

30万吨以上天然气原料合成氨装置能效对标最佳实践报告(1)
30万吨以上天然气原料合成氨装置能效对标最佳实践报告(1)

30万吨以上天然气原料合成氨装置能效对标最佳实践报告

2014/12/1 11:01

30万吨以上天然气原料合成氨装置能效对标

最佳实践报告

中国海油中海化学

一、合成氨装置基本情况

1、装置概况

表1装置概况表

图1.1合成氨装置工艺简图

2?重点耗能设备概况

表2转化炉概况表

表3大型压缩机组概况表

4 105J/JT 82342 kg/h 5.819 84.75% 蒸汽透平注:驱动方式包括电动机、透平。

表4大型泵概况表

二、合成氨装置运行情况

1. 装置运行情况

表5装置运行情况表

注:(1)能耗实物构成说明能源及耗能工质类型及消耗量

(2)原料气制备部分根据仅填写对应原料类型的造气工艺参数。

2. 重点耗能设备运行情况

表6转化炉运行情况表

表7大型压缩机组运行情况表

表8大型泵运行情况表

三、提升装置能效水平采取的技术及管理措施

1.节能新技术应用及节能技术改造情况中海石油化学股份有限公司海南基地富岛二期(以下简称富岛二期)年产45 万吨合成氨装置采用美国KBR 公司的深冷净化技术(简称KBR 工艺)设计而成,具有节能、运行稳定、操作简单以及快速开车等特点。

KBR 工艺采用下列步骤,原料天然气压缩、加氢脱硫、烃类蒸汽转化(外热一段炉蒸汽转化、内热二段炉转化)、两段一氧化碳变化(高低变)、二氧化碳脱除、甲烷化、深冷净化、氨合成、氨冷冻。该工艺是在原凯洛格工艺和布朗工艺组合的基础上,经过进一步改进而成。

KBR 工艺的节能措施

KBR 工艺主要采用了如下节能措施,较高的转化压力、低水碳比、燃气轮机驱动工艺空气压缩机、二段炉加过量空气、低热MDEA 脱碳工艺、深冷净化装置、三段中间换热式卧式合成塔、双壁液氨储罐、高温高压的过热蒸汽管网、较低的一段炉烟气排放温度。希望是本无所谓有,无所谓无的。这正如地上的路;其实地上本没有路,走的人多了,也便成了路。

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

国内外合成氨原料气精制工艺技术发展

国内外合成氨原料气精制工艺技术发展 南京国昌化工科技有限公司 1.引言 在合成氨工业中,经过脱碳工艺处理后的合成氨原料气中仍含有0.5~3% CO和0.5%~1%CO2,必须进一步处理将其降低至10ppm左右,以保护氨合成催剂,这一原料气精制工艺过程俗称“精炼”,目前合成氨厂脱除微量CO、CO2的方法大体分为热法和冷法两类。冷法工艺即液氮洗涤法,近年来国内外新建的大型氨厂大多采用此法;而热法工艺门类较多,包括传统的醋酸铜氨液洗涤法(铜洗法)、低压甲烷化法、甲醇甲烷化法和分子筛变压吸附法等。总体上讲冷法工艺技术先进、净化度很高,但投资巨大;而热法工艺技术相对简单成熟、投资低,但在净化度方面不及冷法。热法中的铜洗工艺更因其能耗高、净化度低、污染大等诸多缺点而逐渐被其他先进的工艺方法所替代。 2. 国外合成氨原料气精制工艺发展 2.1 铜洗法 醋酸铜氨液洗涤法(简称铜洗)是最古老的方法。早在1913年就开始应用,迄今有近一百年的历史,操作压力为15Mpa。铜洗法以其工艺成熟、操作弹性大,长期在中小型合成氨厂占据主导地位。随着技术的进步,铜洗法精制原料气与其它方法相比,缺点越来越突出。主要表现在运行、维修、操作费用高,物料消耗大(消耗铜、醋酸、液氨、蒸汽)、根据国内氨厂实际情况测算,吨氨需要增加成本在50~80元,而且精制度低,一般净化后的CO+CO ≥25ppm,然而其最致命 2 的缺陷还在于环境污染严重。由于铜洗再生气经水洗涤产生铜洗稀氨水,其浓度视所采用的洗涤技术不同而不同,一般在1~3%左右。中型氮肥厂每小时约产生 ,所以采用一般的提浓方法都由于10吨废水,这股废水除含有氨外,还含有CO 2 容易生成碳铵引起管道堵塞而无法处理,为此要么采用铜洗再生氨直接放空,要么就是铜洗稀氨水排放。这不但浪费了宝贵的资源,也引起了大气或水环境的严重污染。此外生产过程中经常出现严重的铜液泄漏,这些弊端与现代化高效、洁

全国30万千瓦级火电机组能效水平对标

全国30万千瓦级火电机组能效水平对标结果(2009年) 按《火电企业能效水平对标活动工作方案》和《全国火电行业30万千瓦级机组能效水平对标技术方案(试行)》,经电厂申报、发电集团公司审核和对标工作办公室综合分析,现对2009年全国火电30万千瓦级机组能效指标对标结果予以公布。 一、对标机组范围和总体情况 2009年能效对标工作以2008年度机组运行指标为依据,由全国火电机组技术协作会组织完成。机组范围包括全国常规燃煤火电300MW级机组,容量范围为250-380MW。 参加300MW火电机组对标的机组共有334台,125家发电企业。 在对标机组中,国产机组278台,进口机组56台;纯凝机组299台,供热机组65台;空冷机组13台,湿冷机组321台。 对标机组累计发电量57393.705亿千瓦时,平均供电煤耗完成335.62克/千瓦时;平均生产厂用电率为5.99%;平均等效可用系数为92.03%;平均非计划停运次数为0.81次/台?年;平均非计划停运小时为34.84小时/台?年;平均等效强迫停运率0.44%;平均利用小时5467.77小时。 二、全国火电30万千瓦级机组能效指标标杆 以下各类(项)标杆值均为实际值。 (一)供电煤耗

(二)生产厂用电率 (三)油耗 (四)水耗

三、全国火电300MW级机组能效水平对标供电煤耗标杆先进机组 按《全国火电行业30万千瓦级机组能效水平对标技术方案(试行)》,在确定能效指标标杆后,按不同的分类边界条件和修正系数,对供电煤耗进行修正计算,确定供电煤耗标杆先进机组。供电煤耗标杆先进机组及其完成值、修正值如下:(一)国产纯凝机组

第讲合成氨原料气的制备方法

第讲合成氨原料气的制备 方法 This manuscript was revised on November 28, 2020

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 原料气的净化 CO变换 合成气的压缩 氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: 碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作为产品。所以,流程的特点是气体净化与氨加工结合起来。 三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的 原料。除焦炭成分用C表示外,其他原料均可用C n H m 来表示。它们呢在高温下与蒸汽作 用生成以H 2 和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: 以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨原料气的生产

合成氨原料气的生产 一.煤气化 (1)气化原理 煤在煤气发生炉中由于受热分解放出低分子量的碳氢化合物,而煤本身逐渐焦化,此时可将煤近似看作碳。 ①反应速率 以空气为气化剂 C+O2→CO2 △H=-393.770kJ/mol C+1/2O2→CO △H=-110.595kJ/mol C+CO2→2CO △H=172.284kJ/mol CO+1/2O2→CO2 △H=-283.183kJ/mol 在同时存在多个反应的平衡系统,系统的独立反应数应等于系统中的物质数减去构成这些物质的元素数。 以水蒸气为气化剂 C+H2O→CO+H2 △H=131.39kJ/mol C+2H2O→CO2+2H2△H=90.20kJ/mol CO+H2O→CO2+H2△H=-41.19kJ/mol C+2H2→CH4△H=-74.90kJ/mol ②反应速率 气化剂和碳在煤气发生炉中的反应属于气固相非催化剂反应。随着反应的进行,碳的粒度逐渐减小,不断生成气体产物。反过程一般由气化剂的外扩散、吸附、与碳的化学反应及产物的吸附,外扩散等组成。反应步骤分为: A. C+O2→CO2 的反应速率研究表明,当温度在775O C以下时,其反应速率大致表示为: R=ky o2 式中 r-碳与氧生成二氧化碳的反应速率 k-反应速率常数 y o2- 氧气的速率 B.C+CO2→2CO的反应速率此反应的反应速率比碳的燃烧反应慢得多, 的一级反应。 在2000O C以下属于化学反应控制,反应速率大致是CO 2

C.CO+H2O→CO2+H2的反应速率碳与水蒸气之间的反应,在400-1000O C 的温度范围内,速度仍较慢,因此为动力学控制,在此范围内,提高温度是提高反应速率的有效措施。 二.制取半水煤气的工业方法 由以上可知,空气与水蒸气同时进行气化反应时,如不提供外部热源,则气+CO)的含量大大低于合成氨原料气的要求。为解决气体成分与热量化产物中(H 2 平衡这一矛循,可采用下列方法: (1)外热法如利用原子能反应堆余热或其他廉价高温热源,用熔融盐、熔融铁等介质为热载体直接加热反应系统,或预热气化剂,以提供气化过程所需的热能。这种方法目前尚处于研究阶段。 50%左右)和水蒸气作为气化剂同 (2)富氧空气气化法用富氧空气(含O 2 时进行气化反应。由于富氧空气中含氮量较少,故在保证系统自热运行的同时,半水煤气的组成也可满足合成氨原料气的要求。此法的关键是要有较廉价的富氧空气来源。 (3)蓄热法空气和水蒸气分别送入燃料层,也称间歇气化法。其过程大致为:先送入空气以提高燃料层温度,生成的气体(吹风气)大部分放空;再送入水蒸气进行气化反应,此时燃料层温度逐渐下降。所得水煤气配入部分吹风气即成半水煤气。如此间歇地送空气和送蒸汽重复进行,是目前用得比较普遍的补充热量的方法,也是我国多数中、小型合成氨厂的重要气化方法。 三.间歇式生产半水煤气 工业上间歇式气化过程,是在固定层煤气发生炉中进行的,如图3-3。块状燃料由顶部间歇加入,气化剂通过燃料层进行气化反应,灰渣落入灰箱后排出炉外。

能效水平对标活动总结报告(可编辑)

能效水平对标活动总结报告(可编辑) 文档可编辑可打印也可以直接使用欢迎您的下载能效水平对标活动总结报告xxxxxx根据安徽省经信委《关于重点耗能企业能效水平对标活动的通知》(皖经信节能函号)和合肥市经信委(合经资源〔〕号)文件要求我公司被列入重点耗能企业能效对标试点企业。 公司领导高度重视成立了以总经理任组长的“对标管理”领导小组计财部负责对标管理活动日常工作。 根据我公司实际情况确定此次对标管理工作目标为:年主要工序能耗指标达到行业平均水平。 年月份公司全面启动能效对标工作。 在公司“对标管理”领导小组的领导下制订了能效对标方案认真统计分析公司及同行业能源利用水平以先进性、独立性为原则设定能效对标目标初步建立了能效对标指标体系、评价体系和管理控制体系。 自能效对标工作开展以来各项工作开展顺利炼焦、炼钢、高线工序能耗大幅度下降节能效果显著大部分能效对标指标均达到标杆值的要求。 年吨钢综合能耗公斤标煤同比下降公斤标煤万元产值能耗吨标准煤万元同比下降吨标准煤万元。 达到了能效对标工作目标。 现将能效对标工作情况汇报如下:一、企业基本情况xxxxxx位于合肥市东郊占地亩东临国道紧临南淝河北有淮南铁路交通便利。

公司目前具有万吨钢的实际生产能力拥有从烧结、焦化、炼铁、炼钢、轧钢等系列配套冶炼生产工序。 主要生产设备有孔焦炉座座立方米高炉m烧结机组一套座吨转炉小方坯连铸机台高速线材和连轧小型棒材生产线各条合金带钢压延生产线一条高炉煤气及转炉煤气余热发电设施一套以及立方米小时制氧机组等配套公辅设施。 公司具有年产铁万吨、钢万吨、钢材万吨的综合生产能力。 在发展的同时公司始终把节能减排环境保护清洁生产放在首位注重发展与节能同步积极推广应用节能新技术新设备依托技术创新持续推进科技进步引进先进工艺技术和装备不断提升工艺及其装备水平广泛深入地开展节能降耗工作认真落实各项节能措施在节能工艺和技术上采用热送热装技术高炉富氧喷煤蓄热式燃烧技术变频器、高效节能水泵和照明等节能技术工艺开展节能宣传和培训工作有力的促进了节能减排工作的顺利进行在节能理念的指导下公司的二次能源得到了充分利用对降低企业生产成本提高经济效益都起到了积极作用保证了我公司节能目标的实现和企业可持续发展。 xxxxxx现有员工职工总数人其中各类科技人员人企业总资产亿元固定资产原值亿元固定资产净值亿元资产负债率。 银行信用等级AAA级。 主要产品以线材和棒材为主产品畅销合肥及周边市场生产销售率及货款回笼率均保持。 年产生铁万吨钢万吨钢材万吨销售收入亿元利税亿元税后利润亿

能效水平对标活动总结报告

能效水平对标活动总结报告xxxxxx能效水平对标活动总结报告 根据安徽省经信委《关于重点耗能企业能效水平对标活动的通知》和合肥市经信委文件要求,我公司被列入重点耗能企业能效对标试点企业。公司领导高度重视,成立了以总经理任组长的“对标管理”领导小组,计财部负责对标管理活动日常工作。根据我公司实际情况,确定此次对标管理工作目标为:2011年主要工序能耗指标达到行业平均水平。 2011年2月份,公司全面启动能效对标工作。在公司“对标管理”领导小组的领导下,制订了能效对标方案,认真统计分析公司及同行业能源利用水平,以先进性、独立性为原则,设定能效对标目标,初步建立了能效对标指标体系、评价体系和管理控制体系。自能效对标工作开展以来,各项工作开展顺利,炼焦、炼钢、高线工序能耗大幅度下降,节能效果显著,大部分能效对标

指标均达到标杆值的要求。2011年,吨钢综合能耗公斤标煤,同比下降公斤标煤万元产值能耗吨标准煤/万元,同比下降吨标准煤/万元。达到了能效对标工作目标。现将能效对标工作情况汇报如下: 一、企业基本情况 xxxxxx位于合肥市东郊,占地3419亩,东临3国道,紧临南淝河,北有淮南铁路,交通便利。公司目前具有200万吨钢的实际生产能力,拥有从烧结、焦化、炼铁、炼钢、轧钢等系列配套冶炼生产工序。主要生产设备有45孔焦炉1座,4座450立方米高炉,190m3烧结机组一套,3座45吨转炉,小方坯连铸机3台,高速线材和连轧小型棒材生产线各1条,合金带钢压延生产线一条,高炉煤气及转炉煤气余热发电设施一套,以及14000立方米/小时制氧机组等配套公辅设施。公司具有年产铁170万吨、钢200万吨、钢材190万吨的综合生产能力。在发展的同时公司始终把节能减排,环境保护,清洁生产放在首位,

以天然气为原料合成氨工艺

. . 目录 1 引言 (1) 1.1 氨的性质 (1) 1.2 氨的用途 (2) 1.3 合成氨的发展历史 (2) 1.3.1 氨气的发现 (2) 1.3.2 合成氨的发现及其发展 (2) 1.3.3 国外合成氨工业发展 (3) 1.3.4 国合成氨工业发展 (3) 1.3.5 国合成氨工业的发展趋势 (4) 1.4 合成氨工段设计主要参数计算的主要容 (5) 2 工艺计算 (6) 2.1 生产流程简述 (6) 2.2 原始条件 (6) 2.3 物料衡算 (8) 2.3.1 合成塔物料衡算 (8) 2.3.2 氨分离器气液平衡计算 (9) 2.3.3 冷交换器气、液平衡计算 (11) 2.3.4 液氨贮槽气、液平衡计算 (11) 2.3.5 液氨贮槽物料计算 (13) 2.3.6 合成系统物料计算 (14) 2.3.7 进出合成塔物料计算 (16) 2.3.8 进出水冷器物料计算 (16) 2.3.9 进出氨分离器物料计算 (17) 2.3.10 冷交换器物料计算 (17) 2.3.11 氨冷器物料计算: (18) 2.3.12 冷交换器物料衡算 (20) 2.3.13 液氨贮槽物料计算 (21) . . .

. . . . . 2.3.14 物料计算结果汇总 (21) 2.4 热量核算 (22) 2.4.1 交换器热量核算 (22) 2.4.2 氨冷器热量核算 (25) 2.4.3 循环机热量核算 (27) 2.4.4 合成塔热量核算 (29) 2.4.5 废热锅炉热量核算 (31) 2.4.6 热交换器热量核算 (33) 2.4.7 水冷器热量核算 (34) 2.4.8 氨分离器热量核算 (35) 3 氨合成过程中的绿色化学化工 (36) 3.1 绿色化学化工的基本概念 (36) 3.2 合成氨工段的原子经济性 (36) 3.3 合成氨工段的热能综合利用 (36) 3.4 合成氨工段的“三废”处理 (37) 4 设备选型 (38) 4.1 合成塔催化剂层设计 (38) 4.2 换热器: (43) 4.3 废热锅炉设备工艺计算 (44) 4.3.1 计算条件 (44) 4.3.2 官给热系数α计算 (44) 4.3.3 管给热系数αi 计算 (47) 4.3.4 总传热系数K 计算 (47) 4.3.5 平均传热温差Δt m 计算 (48) 4.3.6 传热面积 (48) 4.4 水冷器设备工艺计算: (48) 4.4.1 计算条件 (48) 4.4.2 管给热系数的计算 (49) 4.4.3 管外给热系数 (50) 4.4.4 传热温差 (50)

管理制度-全国火电燃煤机组能效水平对标管理办法 精品

附件: 全国火电燃煤机组能效水平对标管理办法 第一章总则 第一条为贯彻落实《国务院关于印发“十二五”节能减排综合性工作方案的通知》(国发[20XX]26号)、《国家发展改革委关于印发重点耗能企业能效水平对标活动实施方案的通知》(发改环资[20XX]2429号)文件精神,促进火电企业能效水平对标活动的开展,提高火电企业能源利用效率,特制定本办法。 第二条中国电力企业联合会(以下简称中电联)负责建立全国火电燃煤大机组能效水平对标工作组织机构,制定对标的工作程序,确定对标的范围、数据指标以及各类指标的技术边界条件,建立能效水平对标数据库,指导对标活动的有效开展。 第三条能效水平对标工作,针对中央及地方发电(集团)公司、独立发电企业及行业自备电厂,遵照自愿参加的原则。 第二章组织机构 第四条中电联负责组织建立全国电力行业火电燃煤机组企业能效水平对标工作领导小组(以下简称领导小组)。领导小组组长由中电联负责节能工

作的理事长担任,副组长由各集团(投资)公司分管节能工作的领导担任,委员由各有关单位负责节能工作的部门领导担任。 第五条领导小组下设能效水平对标工作办公室(以下简称办公室)。办公室配备专职人员,履行行业相关职能,负责企业能效水平对标日常组织与协调工作。办公室设在中国电力企业联合会科技开发服务中心。 第六条办公室负责组建能效水平对标专家组(以下简称专家组)。专家组作为能效水平对标活动的技术支持,各单位应对入选专家的工作提供便利条件。 第七条中央及地方发电(集团)公司、独立发电企业及其它行业自备电厂负责组织本企业内火电机组能效水平对标活动,建立能效对标活动组织机构,明确企业各自的职责,保证能效水平对标活动顺利开展。 第三章工作程序 第八条各集团(投资)公司、独立发电企业及其它行业自备电厂负责建立能效数据报送制度,并根据本办法要求督促所属发电企业将能效数据及节能降耗工作总结按时报送到办公室。数据报送时间要求:次年1月20日前报送上一年度数据、每年7月20日前报送上半年数据。报送的数据要求准确、完整、及时。 第九条办公室负责组织制定能效水平标杆机组评选办法,确定机组能效

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

煤为原料的合成氨工艺流程简图精编版

煤为原料的合成氨工艺 流程简图 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

以煤为原料的合成氨工 艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2(水煤气法) CO+H 2O=CO 2+H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2==COONH 2NH 4(放热),COONH 2NH 4==CO(NH 2)2+H 2O (吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2)2==C 3N 3(NH 2)3(三聚氰胺)+3CO 2+6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO ,其体积分数一般为12%到40%。合成氨需要的两种组分是H 2和N 2,因此需要除去合成气中的CO 。变换反是: CO+H 2O →H 2+CO 2=mol 0298H Δ 由于CO 变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO 含量。第一步是高温变换,使大部分CO 转变为CO 2和H 2;第二步是低温变换,将CO 含量降至%左右。因此,CO 变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转

火电燃煤机组能效水平对标管理规定完整版

火电燃煤机组能效水平 对标管理规定 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

附件: 全国火电燃煤机组能效水平对标管理办法 第一章总则 第一条为贯彻落实《国务院关于印发“十二五”节能减排综合性工作方案的通知》(国发[2011]26号)、《国家发展改革委关于印发重点耗能企业能效水平对标活动实施方案的通知》(发改环资[2007]2429号)文件精神,促进火电企业能效水平对标活动的开展,提高火电企业能源利用效率,特制定本办法。 第二条中国电力企业联合会(以下简称中电联)负责建立全国火电燃煤大机组能效水平对标工作组织机构,制定对标的工作程序,确定对标的范围、数据指标以及各类指标的技术边界条件,建立能效水平对标数据库,指导对标活动的有效开展。 第三条能效水平对标工作,针对中央及地方发电(集团)公司、独立发电企业及行业自备电厂,遵照自愿参加的原则。 第二章组织机构 第四条中电联负责组织建立全国电力行业火电燃煤机组企业能效水平对标工作领导小组(以下简称领导小组)。领导小组组长由中电联负责节能工作的理事长担任,副组长由各集团(投资)公司分管节能工作的领导担任,委员由各有关单位负责节能工作的部门领导担任。 第五条领导小组下设能效水平对标工作办公室(以下简称办公室)。办公室配备专职人员,履行行业相关职能,负责企业能效水平对

标日常组织与协调工作。办公室设在中国电力企业联合会科技开发服务中心。 第六条办公室负责组建能效水平对标专家组(以下简称专家组)。专家组作为能效水平对标活动的技术支持,各单位应对入选专家的工作提供便利条件。 第七条中央及地方发电(集团)公司、独立发电企业及其它行业自备电厂负责组织本企业内火电机组能效水平对标活动,建立能效对标活动组织机构,明确企业各自的职责,保证能效水平对标活动顺利开展。 第三章工作程序 第八条各集团(投资)公司、独立发电企业及其它行业自备电厂负责建立能效数据报送制度,并根据本办法要求督促所属发电企业将能效数据及节能降耗工作总结按时报送到办公室。数据报送时间要求:次年1月20日前报送上一年度数据、每年7月20日前报送上半年数据。报送的数据要求准确、完整、及时。 第九条办公室负责组织制定能效水平标杆机组评选办法,确定机组能效水平指标的影响因素及其修正方法,确定能效指标体系。 第十条办公室根据各等级机组能效指标情况,评选出达标机组,对评选出的达标机组,组织专家进行评审,确定的达标机组提交工作领导小组确认。

煤为原料的合成氨工艺流程简图

以煤为原料的合成氨工艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2 (水煤气法) CO+H 2 O=CO 2 +H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2 ==COONH 2 NH 4 (放热),COONH 2 NH 4 ==CO(NH 2 ) 2 +H 2 O(吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2) 2 ==C 3 N 3 (NH 2 ) 3 (三聚氰胺)+3CO 2 +6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12% 到40%。合成氨需要的两种组分是H 2和N 2 ,因此需要除去合成气中的CO。变换 反是: CO+H 2O→H 2 +CO 2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制 变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO 2和H 2 ;第 二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

全国火电机组对标名词术语解释.doc

全国火电机组对标名词术语解释 1.运行小时 运行小时(SH )——设备处于运行状态的小时数。 2.备用小时 备用小时(RH )——设备处于备用状态的小时数。 3.可用小时 可用小时(AH )——设备处于可用状态的小时数。 可用小时等于运行小时与备用小时之和,用公式表示为 AH =SH +RH 4.降出力等效停运小时 降低出力小时(UNDH )——机组处于降低出力状态下的可用小时数。 降出力等效停运小时(EUNDH )——机组降低出力小时数折合成按铭牌容量计算的小时数。 5.统计期间小时:设备处于在使用状态的日历小时数。 6.停用小时:根据国家有关政策,长期封存的停用机组和经主管电力公司批准,上级备案,进行长时间重大技术改造的机组,如烧油(气)改烧煤、凝汽式改供热式、非静电除尘器改电除尘器、增设脱硫、脱氮装置,填写停用事件(记为IACT );停用时间不计入统计期间小时。若结合机组大修进行的设备重大技术改造,其停用小时为机组停运总时间扣除机组计划大修标准工期。 7.可用系数(AF) 100%PH AH 100%=统计期间小时可用小时AF ??= 8.等效可用系数(EAF) %100PH EUNDH -AH %100EAF ??-==统计期间小时降低出力等效停运小时可用小时 9.运行暴露率 %100?可用小时运行小时运行暴露率=

10.非计划停运 非计划停运(UO )——设备处于不可用(U )而又不是计划停运(PO )的状态。 对于机组,根据停运的紧迫程度分为以下5类: 第1类非计划停运(UO 1)——需立即停运或被迫不能按规定立即投入运行的状态(如启动失败)。 第2类非计划停运(UO 2)机组虽不需立即停运,但需在6h 以内停运的状态。 第3类非计划停运(UO 3)机组可延迟至6h 以后,但需在72h 以内停运的状态。 第4类非计划停运(UO 4)机组可延迟至72h 以后,但需在下次计划停运前停运的状态。 第5类非计划停运(UO 5)计划停运的机组因故超过计划停运期限的延长停运状态。 上述第1—3类非计划停运状态称为强迫停运(FO )。 11.非计划停运小时 非计划停运小时(UOH )——设备处于非计划停运状态的小时数。 a) 非计划停运小时按状态定义可分为下列5类: 第1类非计划停运小时(UOH 1)——机组处于第1类非计划停运状态的小时数; 第2类非计划停运小时(UOH 2)——机组处于第2类非计划停运状态的小时数; 第3类非计划停运小时(UOH 3)——机组处于第3类非计划停运状态的小时数; 第4类非计划停运小时(UOH 4)——机组处于第4类非计划停运状态的小时数; 第5类非计划停运小时(UOH 5)——机组处于第5类非计划停运状态的小时数。 b) 非计划停运小时(UOH )——机组在统计期内发生的所有各类非计划停运小时之和,即UOH=UOH 1+UOH 2+UOH 3+UOH 4+UOH 5 12.强迫停运小时 强迫停运小时(FOH )——机组处于第1—3类非计划停运状态的小时数之和。 FOH =UOH 1+UOH 2+UOH 3 13.强迫停运率(FOR) %100SH FOH FOH %100强迫停运小时??=+=时强迫停运小时+运行小FOR 14.等效强迫停运率(EFOR) %100321321EFOR ?+++等效停运小时之和类非计划降低出力备用、、第强迫停运小时运行小时停运小时之和类非计划降低出力等效、、第强迫停运小时 =

合成氨原料气醇烃化净化精制新工艺技术

合成氨原料气醇烃化净化精制新工艺 作者/来源:定中,卢健(安淳高新技术, 410015)日期: 2006-01-10 点击率:877 1 醇烃化工艺开发简况 合成氨原料气醇烃化净化精制工艺是双甲工艺的升级技术。双甲工艺是安淳高新技术开发成功的原创型技术,该技术于1990年提出,1991年进行工业化,1992年9月第一套工业化装置在市氮肥厂投产成功,在国际上最早提出,最先进行工业化生产。1993年4 月获国家发明专利,相继又申请了可调节氨醇比的醇烃化专利技术,美、英等权威化学文摘均作了报道。1994年元月通过化工部科技鉴定,1994年6月国家科委将该项目列入《国家重大科技成果推广计划》项目。第一套装置至今已正常运行15年,目前这个示厂的净化精制能力上升到了总氨80kt/a,副产10kt/a甲醇,工艺投用以来,取得了很好的经济和社会效益。目前,推广的工艺最大合成氨能力达400kt/a,在全国中、小合成氨厂推广达35家之多。桥口氮肥厂的双甲工艺被评为国家优秀创新工程,双甲工艺评为1995年度原化学工业部十二大重大科技成果之一,2000年被授予省科技进步一等奖,给予重点推广。2003年醇烃化工艺获得国家科技进步二等奖。 此工艺开发和发展可分为三个阶段,历时近十五年的开发创新和竭力推广,有着超乎寻常的辛劳,可谓“十年磨一剑”。

技术发展的第一阶段——确认了国产甲烷化催化剂在高压条 件下的运行条件。技术发展之初,当有双甲净化工艺这个创意时,国的很多厂家已经有了联醇工段,一般为联醇后再串铜洗进行净化精制,由于联醇出口CO和CO2的指标与传统的甲烷化进口气体成分指标不 一样,且压力等级也不一样,要将铜洗去掉用甲烷化来替代,必须首先解决进甲烷化炉的进口气体的气体成份问题——一定要使醇后气 中CO+CO2总量不超过0.7%,且越低越有利于提高气体的利用率和降 低气体的消耗。 另外要使甲烷化催化剂能在甲醇之后的压力级运行必须有一 套可行的工艺条件及设备等来保证。而当时,国际、国传统镍基甲烷化催化剂的使用压力均在0.3MPa,而当时甲醇催化剂活性压力为 13MPa,按工艺布置,甲烷化只能放置在甲醇后,因此,必须要找出 甲烷化催化剂在高压下的工况条件。我公司通过改变工艺条件、流程及设备结构,进行了大量的实验,模索出了一整套甲烷化催化剂在高压条件下的运行条件,于1991年在氮肥厂的40kt/a装置上投产,达到了预期的效果。 技术发展的第二阶段——确定了可调氨醇比的思维模式及工 艺条件。当流程打通后,气体的成分控制、新鲜气的消耗、副产甲醇的量及工艺长久稳定运行的条件等均需要摸索,要求有切实可行的工艺方法及操作工艺指标。特别是当甲醇市场波动时,氨和副产甲醇的产量配合要自如,且经济性能要好、工艺指标也要先进。为此我们摸索出了一种可调氨醇比的工艺条件和设备配置方法,达到了醇氨比可

相关主题
文本预览
相关文档 最新文档