当前位置:文档之家› 参数方程中的取值范围与最值问题(详解答案)

参数方程中的取值范围与最值问题(详解答案)

参数方程中的取值范围与最值问题(详解答案)
参数方程中的取值范围与最值问题(详解答案)

经典好题:参数方程中的取值范围与最值问题

1.已知曲线C

的参数方程为sin x y αα

?=?

?=??(α是参数),点P 是曲线C 上的动点.

(1)求曲线C 的普通方程;

(2)已知点Q 是直线:2(0)l y x m m =+>上的动点,若P Q 、之间的距离PQ 最小

m 的值.

解:(1)Q 曲线C

的参数方程为sin x y α

α

?=??=??(α是参数)

可得cos sin y αα

==?

,故()()2

222

sin cos 1y αα+=+= ∴曲线C 的普通方程:2

212

x y +=

(2)Q 点P 是曲线C 上的动点, 由曲线C

的参数方程为sin x y α

α

?=??

=??(α是参数)

,可设点)

,sin P

αα

又Q Q 是直线:2(0)l y x m m =+>上的动点, 要保证P Q 、之间的距离PQ 取最小值,

只需保证点)

,sin P αα到直线:2(0)l y x m m =+>距离最小

设)

,sin P

αα到直线:20l x y m -+=距离为d

根据点到直线距离公式可得:

d

=

=

tan ?=Q 0m >

∴()sin 1α?-=时d

取最小值,

=8m =或2m =-(舍)

∴8m =

点评:考查了参数方程化为直角方程和直线与椭圆动点距离最值问题,解题关键是掌握点到直线距离公式和辅助角公式,考查了分析能力和计算能力,属于中档题.

2.在直角坐标系xOy 中,曲线C 的方程为22

1124

x y +=,以原点O 为极点,x 轴的正

半轴为极轴建立极坐标系,直线l

()cos 40a a πθ?

?

- ??

=>?

. (1)求直线l 的直角坐标方程;

(2)已知P 是曲线C 上的一动点,过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45°,若PA 的最大值为6,求a 的值. 解:(1

cos 4a πθ??

- ??=?

cos cos sin sin 44a ππθθ?

?+= ???

, 即cos sin a ρθρθ+=. ∵cos x ρθ=,sin y ρθ=,

∴直线l 的直角坐标方程为x y a +=,即0x y a +-=.

(2)依题意可知曲线C

的参数方程为2sin x y α

α

?=??

=??(α为参数).

设()

,2sin P αα,则点P 到直线l 的距离为:

d ==

∵0a >, ∴当sin 13πα?

?

+

=- ??

?

时,max d =.

又过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45o ,

∴cos 45d

PA

=o

,即PA =. ∴PA

max 6=

6=.

∵2a >,∴解得2a =.

点评:考查直线的极坐标方程与直角坐标方程的互化,第二问考查了利用椭圆的参数方程求最值,属于中档题.

3.在直角坐标系xOy 中,曲线1C

的参数方程为2cos ,

sin x t y t αα

=+???=??(t 为参数).以坐

标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C

的极坐标方程为

ρθ=-.

(1)求曲线2C 的直角坐标方程;

(2)设曲线1C 与2C 交于,A B

两点,若(2,P ,求||||PA PB +的取值范围. 解:(1)cos ,sin x y ρθρθ==Q ,

由ρθ=-,

∴曲线2C

的直角坐标方程为220x y ++=.

(2)将曲线1C 的参数方程代入曲线2C 的直角坐标方程, 化简得24cos 10t t α++=, 由>0?,得2

1

cos

4

α>

. 设,A B 两点对应的参数分别为12,t t , 则12124cos ,10t t t t α+=-=>,

12||||4|cos |PA PB t t α∴+=+=,

1

cos 12

α<≤,24|cos |4α∴<≤, ||||PA PB ∴+的取值范围为(2,4].

点评:考查了极坐标方程与直角坐标方程的互化,重点考查了直线参数方程中参数的几何意义,属基础题.

4.在平面直角坐标系中,直线l 的参数方程为102x t y t =??=-?

(t 为参数),以坐标原点为

极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2

236

45cos ρθ

=+.

(1)求直线l 的普通方程以及曲线C 的参数方程;

(2)过曲线C 上任意一点M 作与直线l 的夹角为60?的直线,交l 于点N ,求MN 的最小值

解:(1)将直线l 的参数方程消去参数t , 可得直线l 的普通方程为210x y +-=0.

将222p x y =+,cos x ρθ=代入曲线C 的极坐标方程, 可得曲线C 的直角坐标方程为229436x y +=,

即22149

x y +=

故曲线C 的参数方程为2cos 3sin x y ??

=??=?(?为参数)

(2)设()2cos ,3sin M ??,则M 到l 的距离

d =

=,其中tan 4

3

r =.

如图,过点M 作MP l ⊥于点P ,

则d MP =,则在Rt MNP △中,sin60||

d

MN ?==

当()sin 1r ?+=时,d

故MN =

点评:考查参数方程与普通方程的互化、极坐标方程与直角坐标方程的互化、点到直线的距离公式,考查学生分析问题、解决问题的能力,运算求解能力,考查数形结合思想. 5.在直角坐标系xOy 中,曲线C 1的参数方程为cos 2sin x y α

α

=??

=+?(α为参数),以坐标

原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为

224

13sin ρθ

=

+.

(1)写出曲线C 1和C 2的直角坐标方程;

(2)已知P 为曲线C 2上的动点,过点P 作曲线C 1的切线,切点为A ,求|PA |的最大值.

解:(1)由cos 2sin x y αα

=??=+?(α为参数),消去参数α,可得22(2)1x y +-=.

∴曲线C 1的直角坐标方程为2

2

(2)1x y +-=; 由2

2

4

13sin ρθ

=

+,得ρ2+3ρ2sin 2θ=4, 即x 2

+y 2

+3y 2

=4,即2

214

x y +=.

∴曲线C 2的直角坐标方程为2

214

x y +=;

(2)∵P 为曲线C 2上的动点,又曲线C 2的参数方程为2cos sin x y α

α=??=?

∴设P (2cos α,sin α), 则P 与圆C 1的圆心的距离

d ===. 要使|P A |的最大值,则d 最大,当sin α23

=-时,d

∴|P A |

3

=

=

. 点评:考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与圆位置关系的应用,考查计算能力,是中档题.

6.在中面直角坐标系xOy 中,已知1C

:6x t

y =-???=??

t 为参数),2C :2cos 22sin x y θθ=??

=+?(其中θ为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).

(1)求1C 和2C 的极坐标方程;

(2)设以O 为端点、倾斜角为α的射线l 与1C 和2C 分别交于A ,B 两点,求OA OB

最小值.

解:(1

)在6x t

y =-???=??中,消去参数t

,得)6y x =-

0y +-=.

由cos x ρθ=,sin y ρθ=

,得

)

sin ρθθ+=,

所以1C

的极坐标方程为πsin 3ρθ?

?

+

= ??

?

(未化成这种形式可不扣分) 在2cos 22sin x y θθ

=??

=+?中,消去参数θ,得()2224x y +-=,即22

40x y y +-=.

由cos x ρθ=,sin y ρθ=,得2

4sin 0ρρθ-=,即4sin ρθ=.

(2)射线l 的极坐标方程为θα=

,则OA =

4sin OB α=.

所以

OA

OB

=

=

12sin 26α=

+- ?

??. 故

OA OB

当且仅当πsin 216α?

?-= ?

?

?即π3α=时取得. 点评:考查把参数方程化成极坐标方程和利用极径的几何意义求最值,中档题. 7.以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为

2cos sin 60ρθρθ+-=,曲线C 的参数方程为:2cos 3sin x y α

α

=??=?(α为参数)

(1)求直线l 的直角坐标方程和曲线C 的普通方程;

(2)直线l 与x 轴、y 轴分别交于A ,B 两点,设点P 为C 上的一点,求PAB △的面积的最小值.

解:(1)直线l 的直角坐标方程为260x y +-=;

因为2

2

cos sin 1αα+=,所以曲线C 的普通方程为22149

x y +=;

(2)对直线l ,令0y =可得3x =,则(3,0)A ;令0x =可得6y =,则(0,6)B ,

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围一?已知函数单调性,求参数的取值范围类型1 ?参数放在函数表达式上 例1. 设函数f(x) 2x33(a 1)x2 6ax 8其中a R ? ⑴若f (x)在x 3处得极值,求常数a的值. ⑵若f(x)在(,0)上为增函数,求a的取值范围 二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上 2 例3.已知f (x) x3 ax2 bx c在x —与x 1时都取得极值 3 (1 )求a、b的值及函数f (x)的单调区间. (2)若对x [ 1,2],不等式f (x) c—恒成立,求c的取值范围. 2 3. 已知函数f (x) x3— 2x 5,若对任意x [ 1,21都有f (x) m则实数m的取值范围是2 类型2.参数放在区间上 例4 .已知三次函数f(x) ax3 5x2 cx d图象上点(1,8)处的切线经过点(3,0),并且f(x)在x=3处有极值. (1 )求f (x)的解析式.(2)当x (0, m)时,f (x) >0恒成立,求实数m的取值范围. 分析:(1) f (x) x3 5x2 3x 9 ' 2 (2).f (x) 3x 10x 3 (3x 1)(x 3) 由f (x) 0 得x1 i,x2 3 当x (0,1)时f'(x) 0, f(x)单调递增,所以f (x) f (0) 9 3 3 当x (】,3)时f '(x) 0, f (x)单调递减,所以f (x) f(3) 0 3 所以当m 3时f(x) 0在(0,m)内不恒成立,当且仅当m (0,3]时f (x) 0在(0,m)内恒成立 所以m的取值范围为(0,3] 基础训练: 4. 若不等式x4 4x3 _________________________________________ 2 a对任意实数x都成立,则实数a的取值范围是________________________________________________________ .

参数方程类型题详解

参数方程题型大全 参27.在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系为( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2 π (ρ∈R) 对称 D .重合 28.极坐标方程 4ρsin 2 2θ =5 表示的曲线是( )。 A .圆 B .椭圆 C .双曲线的一支 D .抛物线 29.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点 的位置关系是( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于θ=2 π所在直线对称 D .重合 30.椭圆?? ?Φ +-=Φ +=sin 51cos 33y x 的两个焦点坐标是( )。 A .(-3, 5),(-3, -3) B .(3, 3),(3, -5) C .(1, 1),(-7, 1) D .(7, -1),(-1, -1) 六、1.若直线的参数方程为12()23x t t y t =+??=-? 为参数,则直线的斜率为( ) A . 2 3 B .23- C . 32 D .3 2 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1( ,2 B .31 (,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A . 2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2 cos 0ρθρ-=为直角坐标方程为( )

(完整版)利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上 例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23. 的取值范围 求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(. ,3)()1(-∞= 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例3.已知时都取得极值与在13 2)(23=-=+++=x x c bx ax x x f (1)求a、b的值及函数)(x f 的单调区间. (2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32 3 的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= 类型2.参数放在区间上 例4.已知三次函数d cx x ax x f ++-=2 35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值. (1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围. 分析:(1)935)(23++-=x x x x f ] 3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3 1(9)0()()(,0)()3 1,0(3,310)() 3)(13(3103)().2(''21‘2'的取值范围为所以内恒成立 在时当且仅当内不恒成立在时所以当所以单调递减时当所以单调递增时当得由m m x f m ,m x f m f x f x f x f x f x f ,x f x f x x x x f x x x x x f >∈>>=><∈=>>∈===--=+-= 基础训练: .___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-

求参数取值范围一般方法

求参数取值范围一般方法 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-?>恒成立,求a 的取值范围。 1.若不等式x 2+ax+1≥0,对于一切x ∈[0, 2 1]都成立,则a 的最小值是__ 2.设124()lg ,3 x x a f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。 3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例1、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 例2:若不等式02)1()1(2 >+-+-x m x m 的解集是R ,求m 的范围。 例3.关于x 的不等式0622<+++m m mx x 在[]20,上恒成立,求实数m 的取值范围. 变式:若函数m m mx x y 622+++=在[]20,上有最小值16,求实数m 的值. 1.已知752+->x x x a a 0(>a 且)1≠a ,求x 的取值范围. 2.求函数)(log 2x x y a -=的单调区间.

导数中的求参数取值范围问题

帮你归纳总结(五):导数中的求参数取值范围问题 一、常见基本题型: (1)已知函数单调性,求参数的取值范围,如已知函数()f x 增区间,则在此区间上 导函数()0f x '≥,如已知函数()f x 减区间,则在此区间上导函数()0f x '≤。 (2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。 例1.已知a ∈R ,函数2 ()()e x f x x ax -=-+.(x ∈R ,e 为自然对数的底数) (1)若函数()(1,1)f x -在内单调递减,求a 的取值范围; (2)函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明 理由. 解: (1)2 -()()e x f x x ax =-+Q -2 -()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ??-++??. ()()f x 要使在-1,1上单调递减, 则()0f x '≤ 对(1,1)x ∈- 都成立, 2 (2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2 ()(2)g x x a x a =-++,则(1)0, (1)0. g g -≤?? ≤? 1(2)01(2)0 a a a a +++≤?∴?-++≤?, 3 2a ∴≤-. (2)①若函数()f x 在R 上单调递减,则()0f x '≤ 对x ∈R 都成立 即2-(2)e 0x x a x a ??-++≤?? 对x ∈R 都成立. 2e 0,(2)0x x a x a ->∴-++≤Q 对x ∈R 都成立 令2 ()(2)g x x a x a =-++, Q 图象开口向上 ∴不可能对x ∈R 都成立 ②若函数()f x 在R 上单调递减,则()0f x '≥ 对x ∈R 都成立, 即2-(2)e 0x x a x a ??-++≥?? 对x ∈R 都成立, e 0,x ->Q 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ?=+-=+>Q 故函数()f x 不可能在R 上单调递增. 综上可知,函数()f x 不可能是R 上的单调函数 例2:已知函数()()ln 3f x a x ax a R =--∈, 若函数()y f x =的图像在点(2,(2))f 处的切

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

线性规划题型三线性规划中的求参数取值或取值范围问题

线性规划题型三线性规划中的求参数取值或取 值范围问题 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

线性规划题型三 线性规划中的求参数取值或取值范围问题 一.已知含参数约束条件,求约束条件中参数的取值范围。 例1、已知|2x -y +m|<3表示的平面区域包含 点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3) 例2.已知:不等式9)2(2<+-m y x 表示的平面区域包含点(0,0)和点(-1,1)则m 的取值范围是() A(-3,6)B.(0,6)C(0,3)D(-3,3) 二.已知含参约束条件及目标函数的最优解,求约束条件中的参数取值问题 2.12,则实数k 的值为. 二.值或范围.

例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? 使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 变式、已知x 、y 满足以下约束条件5503x y x y x +≥??-+≥??≤?使z=x+ay(a>0)则a 的值( ) A 、-3 B 、3 C 、-1 D 、1 若使z=x+ay(a<0)若使z=x+ay 取得最小值的最优解有无数个,则例2.已知:x 、y 满足约束条件?? ? ??≤-≤+-≥+-0 1033032y y x y x (-3,0)处取得最大值,求实数a 的取值范围.直线ax+by+c=0(a>0) b>0直线的斜率小于零,直线由左至右呈上升趋势 b<0直线的斜率大于零,直线由左至右呈下降趋势 若直线ax+by+c=0(a>0)则在ax+by+c=0(a>0)使ax 0+by 0+c>0,左侧的点P(x 0,y 0),使ax 0+by 0+c<0 若直线ax+by+c=0(a<0)则在ax+by+c=0(a>0)使ax 0+by 0+c<0,左侧的点P(x 0,y 0),使ax 0+by 0+c>0

导数求参数取值范围

一、已知单调性求参数取值范围 1.已知3 2 ()39f x x x x =--在区间(,21)a a -上单调递减,求则a 的取值范围 小结:若函数()f x (不含参数)在区间是(,)a b (含参数)上单调递增(递减), 则可解出函数()f x 的单调区间是(,)c d ,则(,)(,)a b c d ? 2.已知3 21()53 f x x x ax = ++-, (1)若()f x 的单调递减区间是(3,1)-, 求a 的取值范围 (2)若()f x 在区间[1,)+∞上单调递增,求a 的取值范围 小结:一个重要结论:设函数()f x 在(,)a b 内可导.若函数()f x 在(,)a b 内单调递增(减),则有' ' ()0(()0)f x f x ≥≤. 方法1:运用分离参数法,如参数可分离,则分离参数→构造函数()g x (可将有意义的端点改为闭)→求()g x 的最值→得参数的范围。 3.函数c bx ax x x f +++=2 3 )(,过曲线)(x f y =上的点))1(,1(f P 的切线方程为 .13+=x y . (1)若)(x f y =在2=x 时有极值,求)(x f 的表达式; (2)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围. 4.(2015重庆)设函数()()23x x ax f x a R e +=∈ (I )若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点 ()()1,1f 处的切线方程; (II )若()f x 在[)3,+∞上为减函数,求a 的取值范围。 5.(2014江西)已知函数. (1) 当时,求的极值; (2) 若 在区间 上单调递增,求b 的取值范围. 方法2:如参数不方便分离,而' ()f x 是二次函数,用根的分布: ①若' ()0f x =的两根容易求,则求根,考虑根的位置

参数方程中的最值

最值问题 1、 【2014全国1,文23】已知曲线错误!未找到引用源。,直线错误!未找到引用源。(错误!未找到引用源。为参数) (1)写出曲线错误!未找到引用源。的参数方程,直线错误!未找到引用源。的普通方程; (2)过曲线错误!未找到引用源。上任意一点错误!未找到引用源。作与错误!未找到引用源。夹角为30°的直线,交错误!未找到引用源。于点错误!未找到引用源。,求错误!未找到引用源。的最大值与最小值. 2、在直接坐标系xOy 中,直线l 的方程为x-y+4=0,曲线C 的参数方程为 x y sin ααα?=??=??(为参数). (I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正 半轴为极轴)中,点P 的极坐标为(4,2π ),判断点P 与直线l 的位置关系; (II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 3、在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=??=+?为参数),M 为1C 上的 动点,P 点满足2OP OM =u u u r u u u u r ,点P 的轨迹为曲线2C . (I )求2C 的方程; (II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线 3πθ= 与1C 的异于极点的交点为A ,与 2C 的异于极点的交点为B ,求|AB|.

4、【2015新课标2文23】(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系错误!未找到引用源。中,曲线错误!未找到引用源。 (t 为参数,且错误!未找到 引用源。 ),其中错误!未找到引用源。,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线错误!未找到引用源。 (I )求错误!未找到引用源。与错误!未找到引用源。 交点的直角坐标; (II )若错误!未找到引用源。与 错误!未找到引用源。相交于点A ,错误!未找到引用源。与错误!未找到引用源。 相交于点B ,求错误!未找到引用源。 最大值. 5、已知曲线1C 的参数方程为45cos ,55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴 为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<). 6、在极坐标系中,曲线错误!未找到引用源。和错误!未找到引用源。的方程分别为错误!未找到引用源。和错误!未找到引用源。,以极点为平面直角坐标系的原点,极轴为错误!未找到引用源。轴正半轴,建立平面直角坐标系,则曲线错误!未找到引用源。和错误!未找到引用源。交点的直角坐标为_________. 7、在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =??=+? (t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;

导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题 含参数导数问题的分类讨论问题 1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★已知函数ax x a x x f 2)2(2 131)(23++-=(a>0),求函数的单调区间 )2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a x a x x f ln )2(2)(+-- =(a>0)求函数的单调区间 2 2 2) )(2(2)2()(x a x x x a x a x x f --=++-=' ★★★例3已知函数()()22 21 1 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()() 2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 ! 解:(Ⅰ)当1a =时,曲线()y f x =在点()() 2,2f 处的切线方程为032256=-+y x 。 (Ⅱ)由于0a ≠,所以()() 1 2)1(222+-+='x x a x f ,由 ()'0f x =,得121 ,x x a a =-=。这两个实根都在定 ()()()()()() 2 2 ' 2222 122122111a x a x a x x ax a a f x x x ? ?--+ ?+--+??==++义域R 内,但不知它们之间 的大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。 (1)当0a >时,则12x x <。易得()f x 在区间1,a ? ? -∞- ??? ,(),a +∞内为减函数, 在区间1,a a ?? - ??? 为增函数。故函数()f x 在11x a =-处取得极小值 21f a a ?? -=- ??? ; 函数()f x 在2x a =处取得极大值()1f a =。 (1) 当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1 (+∞-a 内为增函数,在区间 )1,(a a -为减函数。故函数()f x 在11 x a =-处取得极小值 21f a a ?? -=- ??? ;函数 ()f x 在 2x a =处取得极大值()1f a =。

极坐标与参数方程题型三:最值问题

极坐标与参数方程题型二:最值问题 13.在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1) 求曲线的普通方程与曲线的直角坐标方程; (2) 设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标. 14、已知曲线C :x 24+y 29=1,直线l :? ????x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程、直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 15、以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点()y x P ,在该圆上,求y x +的最大值和最小值.

16、已知曲线C 的极坐标方程θρsin 2=,直线l 的参数方程)(22223为参数t t y t x ??? ????=+=, 以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系; (1)求曲线l C 与直线的直角坐标方程. (2)若M 、N 分别为曲线l C 与直线上的两个动点,求||MN 的最小值. 17、已知直线l 的参数方程为1212 x t y ?=????=+??(t 为参数),曲线C 的参数方程为 2cos sin x y θθ =+??=?(θ为参数)。(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4, )3π,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值与最大值。 18、以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为???=+=α αsin cos 1t y t x (t 为参数,πα<<0),曲线C 的极坐标方程为θθρcos 4sin 2=. (Ⅰ)求曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求AB 的最小值.

导数中参数的取值范围问题

题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值; 第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征()()(x g x f >恒成立0)()()(>-=?x g x f x h 恒成立) ; 单参数放到不等式上 设函数1 ()(1)ln(1) f x x x = ++(1x ≠,且0x ≠) (1)求函数的单调区间; (2)求()f x 的取值范围; (3)已知11 (1)2 m x x +>+对任意(1,0)x ∈-恒成立,求实数m 的取值范围。 2.已知函数ln ()1a x b f x x x = ++在点(1,(1))f 处的切线方程为230x y +-= (1)求,a b 的值; (2)如果当0x >,且1x ≠时,ln ()1x k f x x x =+-,求k 的取值范围.

3.已知函数4 4 ()ln (0)f x a x b c x x x =+->在 0x >出取得极值3c -- ,其中 ,,a b c 为常数. (1)试确定,a b 的值; (2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2 ()2f x c ≥-恒成立,求c 的取值范围。 4.已知函数2 ()21f x ax x = ++,()a g x x = ,其中0,0a x >≠ (1)对任意的[1,2]x ∈,都有()()f x g x >恒成立,求实数a 的取值范围; (2)对任意的1 2 [1,2],[2,4]x x ∈∈,2 1 )()(f g x x >恒成立,求实数a 的取值范围 5.已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >.若对任意的[]12,1x x e ∈,(e 为 自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围

利用导数求参数取值范围的几种类型(1)

利用导数求参数取值范围的几种类型 学习目标:(1)学会利用导数的方法求参数的取值范围 (2)通过学习培养善于思考,善于总结的思维习惯 学习重点:学会利用函数的单调性求参数的取值范围;学会利用不等式求参数的取值范围 学习难点:在求参数的取值范围中构造关于x 的函数 学习过程: 类型1. 与函数单调性有关的类型 例1. 已知0a >,函数3()f x x ax =-在[)1,x ∈+∞是一个单调函数。 (1) 试问函数()f x 在[)1,+∞上是否为单调减函数?请说明理由; (2) 若函数()y f x =在[)1,+∞上是单调增函数,试求a 的取值范围。 解:(1)'2()3f x x a =-,若函数()f x 在区间[)1,+∞上单调递减,则'2()30f x x a =-≤在[)1,x ∈+∞上恒成立,即23x a ≤对[)1,x ∈+∞恒成立,这样的a 值不存在。所以函数()f x 在区间[)1,+∞上不是单调减函数。 (2)函数()y f x =在区间[)1,+∞上是单调增函数,则'2()3f x x a =-0≥,即23a x ≤在[)1,x ∈+∞上恒成立,在此区间上233y x =≥,从而得03a <≤ 规律小结:函数在区间(a ,b)上递增'()0f x ?≥,递减'()f x ?0≤在此基础上再 研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参数的值要是使'()f x 恒等于0,则参数的这个值应舍去,否则保留。 类型2. 与不等式有关的类型 例2. 设函数1()(01)ln f x x x x x =>≠且 (1) 求函数()f x 的单调区间; (2) 已知12a x x >对任意(0,1)x ∈成立,求实数a 的取值范围 解:(1)'22ln 1()x f x +=-,'1()0,f x x ==若则,列表如下:

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

极坐标与参数方程取值范围问题

极坐标与参数方程取值范围问题一.解答题(共12小题) 1.已知曲线C 1的极坐标方程为ρ2cos2θ=8,曲线C 2 的极坐标方程为,曲线C 1 、 C 2 相交于A、B两点.(p∈R) (Ⅰ)求A、B两点的极坐标; (Ⅱ)曲线C 1 与直线(t为参数)分别相交于M,N两点,求线段MN的长度.2.【坐标系与参数方程】设直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=. (1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l与曲线C交于A、B两点,求|AB|. 3.(选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是(φ为参数,a >0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系. (Ⅰ)求曲线C普通方程; (Ⅱ)若点在曲线C上,求的值. 4.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐 标系,圆锥曲线C的极坐标方程为,定点,F 1,F 2 是圆锥曲线C的左、右焦点.直 线经过点F 1且平行于直线AF 2 . (Ⅰ)求圆锥曲线C和直线的直角坐标方程; (Ⅱ)若直线与圆锥曲线C交于M,N两点,求|F 1M|?|F 1 N|. 5.在平面直角坐标系xoy中,曲线C 1 的参数方程为(a>b>0,?为参数),在 以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C 2 是圆心在极轴上,且经 过极点的圆.已知曲线C 1上的点对应的参数?=,射线θ=与曲线C 2 交于点. (Ⅰ)求曲线C 1,C 2 的方程; (Ⅱ)若点A(ρ 1,θ),在曲线C 1 上,求的值. 6.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P

含参数二次函数分类讨论的办法总结

二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性 的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数y=a (x m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到 分类时不重不漏,可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区 间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、 远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称 轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a ①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a ②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a ③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ① ② ③ ④ t t +s 2s

利用导数求参数的取值范围方法归纳(可编辑修改word版)

1 ' 利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型 1.参数放在函数表达式上 例1. 设函数 f (x ) = 2x 3 - 3(a + 1)x 2 + 6ax + 8其中a ∈ R . (1) 若f (x )在x = 3处得极值, 求常数a 的值. (2) 若f (x )在(-∞,0)上为增函数, 求a 的取值范围 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例 3.已知 f (x ) = x 3 + ax 2 + bx + c 在x = - 2 与x = 1时都取得极值 3 (1) 求a、b的值及函数 f (x ) 的单调区间. (2) 若对 x ∈[-1,2],不等式f (x ) < c 2 恒成立,求c的取值范围. 3. 已知函数f (x ) = x 3 - x 2 - 2x + 5, 若对任意x ∈[-1,2]都有f (x ) > m 则实数m 的取值范围是 类型 2.参数放在区间上 例4.已知三次函数 f (x ) = ax 3 - 5x 2 + cx + d 图象上点(1,8)处的切线经过点(3,0),并且 f (x ) 在 x=3 处有极值. (1)求 f (x ) 的解析式.(2)当 x ∈ (0, m ) 时, 分析:(1) f (x ) = x 3 - 5x 2 + 3x + 9 (2). f ' (x ) = 3x 2 - 10x + 3 = (3x - 1)(x - 3) f (x ) >0 恒成立,求实数 m 的取值范围. 由f ‘ (x ) = 0得x = 1 , x 3 2 = 3当x ∈ (0, )时f (x ) > 0, f (x )单调递增, 所以f (x ) > 3 f (0) = 9 当x ∈ (1 ,3)时f ' (x ) < 0, f (x )单调递减, 所以f (x ) > 3 f (3) = 0 所以当m > 3时f (x ) > 0在(0, m )内不恒成立, 当且仅当m ∈ (0,3]时f (x ) > 0在(0, m )内恒成立 所以m 的取值范围为(0,3] 基础训练: 4. 若不等式x 4 - 4x 3 ≥ 2 - a 对任意实数x 都成立, 则实数a 的取值范围是 . 1 2

椭圆的参数方程(含答案)

椭圆的参数方程 教学目标: 1.了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2.通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3.通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在x 轴上的椭圆的标准方程:22221(0)x y a b a b +=>> 焦点在y 轴上的椭圆的标准方程:22 221(0)y x a b a b +=>> 二、椭圆参数方程的推导 1. 焦点在x 轴上的椭圆的参数方程 因为22()()1x y a b +=,又22 cos sin 1??+= 设cos ,sin x y a b ??==,即a cos y bsin x ??=??=? ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 2.参数?的几何意义 问题、如下图,以原点O 为圆心,分别以a ,b (a >b >0)为半径 作两个圆。设A 为大圆上的任意一点,连接OA,与小圆交于点B 。 过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当 半径OA 绕点O 旋转时点M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(x, y)。 那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点A,B 均在角? 的终边上,由三角函数的定义有 ||cos cos x OA a ??==, ||sin cos y OB b ??==。 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是 a cos y bsin x ??=??=? 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 () ?为参数

浅谈参数取值范围问题在函数习题中的求解思路

浅谈参数取值范围问题在函数习题中的求解思路 浅谈参数取值范围问题在函数习题中的求解思路 许多学生对函参数的不等式如何确定参数取值范围茫然不知所措。而且这类问题思维要求高,解法也较灵活,故学生难以掌握。但若我们能认真观察分析一下这类问题的特征,其实这类题目的规律性是较强的。下面就结合例子给出解决此类问题的几种方法: 一、分离参数法 所谓分离参数法也就是将参数与未知量分离于表达式的两边,然后根据未知量的取值范围情况决定参数的范围。这种方法可避免分类讨论的麻烦,使问题得到简单明快的解决。当参数与变量能分离且函数的最值易求出。利用这种方法可以顺利解决许多含参数不等式中的取值问题,还可以用来证明一些不等式。 例1 如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数求实数a的值范围。 解:抛物线f(x)=x2+2(a-1)x+2的对称轴直线x=1-a,因此它的单调减区间为(-∞,1-a],依题设,(-∞,4](-∞,1-a]∴1-a≥4即a≤-3。 二、主参换位法 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。 例2 若对于任意a∈(-1,1],函数f(x)=x2(a-4)x+4-2a的值恒大于0,求x的取值范围。 分析:此题若把它看成x的二次函数,由于a, x都要变,则函数的最小值很难求出,思路受阻。若视a为主元,则给解题带来转机。 解:设g(a)=(x-2)a+x2-4x+4,把它看成关于a的直线,由题意知,直线恒在横轴下方。所以g(1)>0,g(-1)≥0 解得:x<1或x=2 或 x≥3 例3 对于(0,3)上的一切实数x,不等式(x-2)m<2x-1恒成立,求实数m的取值范围。 分析:一般的思路是求x的表达式,利用条件求m的取值范围。但求x的表达式时,两边必须除以有关m的式子,涉及对m讨论,显得麻烦。 解:若设f(x)=(x-2)m-(2x-1)=(m-2)x+(1-2m),把它看成是关于x的直线,由题意知直线恒在x的轴的下方。所以 f(0)≤0 f(3)≤0 解得≤m≤5 三、构造函数法 当参数难以分离而不等式是有关某个变量的一次或二次函数时,可以通过构建函数来解决。我们知道,函数概念是高中数学的一个很重要的概念,其思想和方法已渗透到数学的各个分支。在某些数学问题中,通过数式类比,构造适当的函数模型,然后利用函数的有关性质结论解题,往往收到意想不到的效果。 例4 若对一切|p|≤2 ,不等式x2+px+1>2x+p恒成立,求实数x的取值范围。 解:原不等式变形为p(x-1)+x2-2x+1>0,现在考虑p的一次函数:f(p)=p(x -1)+x2-2x+1(|p|≤2) ∴f(p)>0在 p∈[-2,2]上恒成立

相关主题
文本预览
相关文档 最新文档