当前位置:文档之家› 二氧化碳气体保护焊机工作原理

二氧化碳气体保护焊机工作原理

二氧化碳气体保护焊机工作原理
二氧化碳气体保护焊机工作原理

第十章二氧化碳气体保护焊机工作原理

第一节二氧化碳气体保护焊机的特点与一般要求

一、二氧化碳气体保护焊机的一般结构图

二氧化碳气体保护焊即熔化极惰性气体保护焊,指用金属熔化极作电极,惰性气体(CO2)作焊接方法,简称MIG。

相对于其它弧焊机,MIG焊机添加了送丝结构及相应的送丝控制电路,在焊接过程中实现了半自动化,不但提高了效率,也减少了损耗。焊接过程中使用廉价的CO2气体作保护,使得起弧容易,焊接成本低而效果好。而且,送丝速度、输出电压可调节,可使两者达到良好匹配,提高了焊接质量,适用于各类焊接。

MIG机的送丝方式一般有三种:推丝式、拉丝式、推拉结合式,不同的送丝方式对送丝的软管要求各不相同。对于推丝式送丝软管一般在2.5米左右,而推拉结合式的送丝软管可达15米,为了保正送丝稳定,相应的送丝电机和送丝控制电路都要求严格。

二、MIG焊的特点

1、工作效率高:CO2的电弧穿透力强、熔深池大、焊丝熔化率高、熔敷速度快、,工作

效率比手工弧焊高1~3倍;

2、焊接成本低:CO2气体是工厂的副产品,来源广、价格低。其成本只有埋弧焊和手工

焊的40%~50%左右。

3、能耗低:相同条件下,MIG焊与手弧焊相比,前者消耗的电能约为后者的40%~70%。

4、适用范围广:MIG焊能焊接任何位置,薄板可焊致电1mm,最厚几乎不受限制。而

且焊接薄板时,较氩气焊速度快、变形小。

5、抗锈能力强:焊缝含氩量低,抗裂性好。

6、焊后无需清渣,因是阴弧,便于监视和控制,便于实现自动化。

三、MIG焊机的一般要求

1、MIG焊机的焊接过程

①起始时,焊丝由送丝机送出,接触工件;

②焊丝与工件短路,产生大电流,使得焊丝顶端熔化;

③焊丝与工件间形成电弧;

④焊丝送出,电弧变短;

⑤焊丝再次接触工件。如此周而复始。

2、MIG焊机的一般要求

在焊接过程中,电弧不断地燃弧、短路、重新引弧,燃弧如此周而复始,从而使得弧焊电源经常在负载短路,空截三态间转换,因此,要获得良好的引弧,燃弧和熔滴过渡状态,必须对电源的动特性提出如下要求:

①焊接电压可调,以适应不同焊接需求;

②最大电流限制,即有截流功能,避免因短路、干扰而引起的大电流损坏机器,而电

流正常后,又能正常工作;

③适合的电流上升、下降速度,以保证电源负载状态变化,而不影响电源稳定和焊接

质量;

④满足送丝电机的供电需求;

⑤平稳可调的送丝速度,以满足不同焊接需求,保证焊接质量;

⑥满足其它焊接要求,如手开关控制,焊接电流、电压显示,2T/4T功能,反烧时间

调节,焊丝选择,完善的指示与保护系统等等。

3、MIG焊电源的外特性曲线

由于MIG焊接电源的负载状态不断地在负载、短路、空截三态间转换(其输出电压、电流特性曲线如图10.1),为了得到适宜的输出和良好的焊接效果,采用了具有图11.2的外特性的焊接电源。

图10.1 图10.2

采用恒速送丝配合如图10.2的平台型外特性电源的控制系流,有以下优点:

①弧长变化时引起较大的电流变化,因而电弧自调节作用强,而且短路电流大,引弧容易;

②可对焊接电压和焊接电流单独加以调节。通过改变占空比调节电压,改变送丝速度

来调节电流,两者间相互影响小;

③焊接电压基本不受焊丝伸出长度变化的影响;

④有利于防止焊丝回烧和粘丝。因为电弧回烧时,随着电弧拉长,电弧电流很快减小,

使得电弧在来回烧到导电嘴前已熄灭,焊丝粘丝时,平特性电源有足够大的短路电

流使粘接处爆开,从而可避免粘丝。

第二节MIG焊机控制板电路工作原理

一、他激式辅助电源工作原理

1、3843集成脉宽调制器工作原理:

通常采用脉宽调制器调节脉宽,以达到调节输出电压的目的;反之,通过反馈的方式,可以把对输出电

压的采样信号反馈到

脉宽,调制器中,利

用脉宽调制器的特性

控制开关电源的开

关,从而达到稳定输

出的脉宽。3843集成

脉宽调制器是一种单

端输出电路控制型电

路,其内部结构框图

如图10.3所示:

工作原理:

①供电:电源由7脚输入,在施密特触发器的控制下,电源电压大于16V时,芯片工

作,低于10V时关闭。6V的启动、关闭的差值电压可有效防止电路在阀值电压附近

工作时振荡。输入端设置了一个34V的齐纳稳压管,保证其内部电路绝对在34V以

下工作,防止高压损坏。通常,从高压输入端用电阻分压后供给7脚。

②振荡信号的产生:其振荡器的工作频率由4脚外接的电阻、电容值决定,由8脚供

给振荡的电源。通常,在4脚与地间接电容,4脚与8脚间接电阻,其振荡频率

5=1/T=1/(tc+td)(tc、td分别为电容充放电时间)

③输出控制:输出信号的控制由误差放大器、电流比较器、锁存器完成。分述如下:

误差放大器:其同相输入端接内部+2.5V基准电压,反相输入端接受外控制信号。

输出端通常接补偿R、C回路,R、C回路接到反相输入端,以控制广大器闭环增益,并起到稳定的作用。

电流比较器:用于电流感应和限制,防止过大电流损坏外部电路,通常,在3脚处接一采样信号(可通过电阻接地把外部电路电流转为电压信号),其与误差放大器

的输出电压经两个二极管降压后所得的电压进行比较。

锁存器:加入锁存器可以保证输出端在每一振荡周期内仅出现一个单控制脉冲,防止了噪声干扰和开关管的超功耗。

由图可知,当电流比较器输出高电平时,锁存器复位,关闭输出(与非门输出低电平、三极管截止),至下一个时钟脉冲中又将锁存器位置,输出开启(高电平)。

④脉宽调制:3843脉宽调制器的6脚外接开关器件,当开关器件流过的电流改变(因

负载变化)时,3脚所采样到的电压信号也随之改变,通过电流比较器,就能改变

输出脉冲宽度,从而调节开关管导通时间,即占空比。

2、他激式开关电源工作原理:

图10.4为他激式开关电源原理图:

图10.4

工作原理:

(1)充能:主电源开关闭合后,电源经变压器T的初级线圈N1供电给功率开关管Q1的

漏极。同时,UC3843集成PWM的7脚也获得电源电压经分压后(R1、R2、R3分压),大于16V的电压,芯片工作,6脚输出幅值为12V的脉冲,使得开关管Q1导通。此时,电源给N1充电,电能转化为磁能储存于变压器中。

(2)开关管断开:3843的6脚输出脉冲的频率由内部电路的振荡频率(由C6和R8决定),

经一定时间,第一个高电平结束,转为输出低电平,使开关管截止。

(3)放能:开关管Q1截止,由于电感(线圈N1)的续流作用,N1继续给电容C8和Q1

的漏电容cds充电。此时,在N1上的电压方向为上负下正,而N2上的感应电动势方向为上正下负,二极管D4导通,给负载供电并向C10充电。由于稳压管D5的稳压钳住作用,使得N1、N2上的电压不会太高,而N1上的电压也不会因电感特性(续流)而产生尖锋而损坏电路。

(4)振荡:变压器初级线圈在向负截供电的同时也给电容C8、cds充电。当电容两端的电

压大于N1上的电压时,电容反向向电感供电,能量由电容向电感和电源转移,等到两者的端电压的大小再发生变化时,电感向电容充能,如此反复,形成正弦振荡(阻尼振荡)。而且,每当电容向电感充电时,N1线圈都通过N2向负载供电并各电容C10充电。

(5)稳压输出:在N1向N2供能时,负载从变压器中得到能量,当N2上的感应电动势

反向(上负下正)时,电容C10向负载供电,从而,在负载上得到稳定的电压供给。

(6)开关管导通,再次充能:在3843的输出脉冲控制下,开关管Q1再次导通,回复到

初始状态。如此周而复始,负载得到持续的稳定的能量供给。

(7)稳压:当负载变化时,辅助电源(他激式开关电源)的输出电压、电流都将发生变化。

此时,3843芯片2脚采样到的电压信号(通过N1和N3采样)以及3脚的电平值(输出电流反映到N1上的电流在R12而形成的压降)也随之改变,从而,3843内部的电流比较器输出值也发生改变,由此而改变了6脚的输出脉宽。例如:当负载变大时,电流变小,使得3843内部的电流比较器输出低电平,使锁存器锁存,降低占空比,开关关断时间长,使得振荡次数加大,负载获得的能量变大,保证了负载的需求。(8)过压、过流保护:如果输入电压过高,在开关导通时,在N2上感应到的感应电动势

过高,使得D6(27V)稳压管被击穿,光耦U2动作,触发可控硅VS,可控硅阴阳两极导能,拉低3843的7脚电位,芯片停止工作。如果因漏感作用干扰或不正常输入使得开关管漏源电流过大,此时,在R12上形成的压降也变大,3843内部的电流比较器的同相输入端(3脚)电位变高,当大于1V时,电流比较器输出翻转,变为高电平,使得锁存器锁住,芯片输出低电平,关闭开关管,从而保护了功率开关管。

(9)辅助电路:线圈N3及D2、C2、R5组成一个滤波电路,吸收因电感作用而产生的电

流尖锋(当N1电流方向改变时,由于电感续流和漏感的作用,会产生尖锋)避免开关管造成误动作,D1、C1及R4组成的电路也具有同样的功效。

线圈N4、D7、D8、R15、R16组成的电路具有电网补偿的作用。接上一定的控制电路,可以控制因电网波动而引起辅助电源的输出值。其输出与整机电路的给定值叠加,通过反馈的形式,可以控制输出值,从而避免因输入波动而改变电流的输出值。

在输出端接有7812集成稳压器件,可以轻易得到Q2的直流稳压电,以满足不同负载的需求。

(10)特征波形:当负载变化时,3843的输出脉冲的脉宽、电流比较器的同相输入信号,

开关管漏极波形都随着改变,反应了电路对输出变化的应变能力和调整能力。

当负载变大时,脉冲变窄,开关管的导通时间变短,则线圈N1与电容C8、cds间的振荡次数变多,这样,负载获得能量补充的次数也变多,一周期内获得能量变大。

当负载变小时,脉冲变宽,开关管导能野变长,线圈N1所获得的能量虽然加大,但其供给负载的变小。这样,在负载的输入端,就能得到稳定的电压供给。而且,开关管的控制脉冲的脉宽与输出的波动有良好的线性关系,所以,电路对负载的反应灵敏,线性调整好。

此种辅助电源因输出电流较大、功率在,适用于大功率的机器。

第三节送丝机构

一、送丝控制功能的一般要求

MIG焊机采用自动送丝的焊接方式,其要求:

1、焊丝的送出速度可调,以满足不同的环境、人为要求;

2、送丝速度平稳,以达到良好的焊接效果;

3、尽可能短的送丝停止时间,即急刹车功能;

另外:送丝控制与开关控制是同步的,为了方便控制,在送丝板电路中,包含了手开关控制电路,MIG焊机要求手开关具有:

①灵敏的送丝起动、刹车控制;

②适宜的输出电流延时、封波控制;

③灵敏、可靠、适宜的通断气体控制。

二、送丝机构控制电路工作原理

1、TL494脉宽调制器(PWM)工作原理。

与其它控制电路相似,为了满足良好焊接对送丝的要求,送丝机构控制电路也采用了调节脉宽输出(送丝速度)并输出反馈而稳定输出的方式。MIG焊机的送丝控制电路采用TL494PWM作为主控器件,其内部结构框图如图10.6所示。

工作原理:

①振荡信号产生:TL494中有一振荡器,其振荡信号由阴容器件产生,其振荡频率由外

接的电容的充放电决定,f=1/(tc+td)(tc、td分别为电容充放电时间)。

②脉宽控制:与CW3525类似,通过改变基准电压的方式改变运放输出脉宽。即把振荡

信号(锯齿波)由反相输入端送入PWM比较器(运放),可调(控制)的基准电压由PWM比较器的同相输入端输入。只需改变外电路的给定值,即可调节基准电压,从而调节脉宽。

③死区时间控制:TL494较CW3525更优秀的一点在于增添了一个死区比较器,它可以

控制两路输出脉冲之间的死区时间,以满足不同开关的需求。它与PWM比较器的输出(都为脉冲信号)作为数字与门的两个输入信号,只要有一比较器输出低电平,即中锁住锁存器输出,而死区时间比较器与PWM比较器的输出状态都受到振荡信号和基准电压的控制,这样,改变死区比较器某一输入端的值,即可改变其与另一输入端的输入值之间的关系(大于、等于或小于),从而改变死区时间比较器的输出状态。通常,在死区时间比较器的同相输入端(TL494的4脚)外接电阻,以外电路电流在该电阻上形成的压降作为比较器的同相输入,即以之控制死区时间,这样,改变外接电

阻的值即可改变死区时间。另外,它还可以设计成电源软起动控制及不死保护控制电路等。

④输出稳定控制:调节输出脉宽可通过改变PWM比较器的同相输入端(3脚)的值来实

现,但由于电网波动,负载变化等因素,会导致输出电压、电流变化。于是为稳定输出,TL494通过运放对输出回路进行采样,采样的值与设定的稳定的一个基准电压比较(运放映机的输出),比较后的值叠加在给定值上,从而控制输出脉宽,由于这样的采样控制是一个负反馈过程,能适当改变脉宽,使得输出稳定。另外,双运放比较输出形成还能完成过电流保护等功能。

⑤输出方式控制:输出方式由13脚的电平值决定。当该端为高电平时,两路输出分别由

触发器的Q和G端控制,形成双端输出方式,当13脚为低电平时,触发器失去作用,两路输出同时同PWM比较器后的或门输出控制,同步地工作,两路并联输出。两路并联输出时,输出驱动电流较大。

2、手开关控制电路工作原理

图10.8是MIG焊机手开关控制原理图,它完成手开关通断控制,2T、4T转换,电磁阀的通断控制等功能。

图10.8

①手开关的开通与关断状态

当手开关合上时,UB的反相输入端电位变低(V=12/51+5.1+1+1×(5.1+1+1)≈1.45V)低于4V时,UB输出高电平(12V),使得电压跟随器UA也输出高电平。

当手开关打开时,12V直流电直接加到UB的反相输入端,使UB的输出变为低电平,同时,UB也输出低电平(零电位)。

另外:在手开关处对电源接有两个二极管(D1、D2),是为了防止手开关抖动而产生误导而设置的。由于焊接工人或其它原因,手开关产生抖动时,接触触点后又马上断开,这时,触点上便产生很大的电压,使得二极管导通,而不致于使UB因高电压损坏或因手开关抖动而改变输出状态。

②2T、4T转换控制:

由图中可看出,当2T/4T开关打到2T时,12V电源加到D触发器的复位端(R),使得D触发器复位,不工作,输出零电平。同时,使电压跟随器UD也输出零电平。即手开关合上时,电磁阀控制电路(Q1、R13、C2、Q2等组成)有输入信号,而手开关打开时,无输入信号,即2T功能。

当2T/4T开关打到4T时,触发器正常工作。手开关合上时,UB输出状态由低电平转为高电平,使得D触发器触发,输出高电平,手开关打开,UB的输出状态由高电平(“1”)转变为低电平(“0”),但D触发器是在脉冲的上升沿触发点,此时D触发器输出状态保护高电平。而Q为低电平,D为高电平。当手开关再次按下时,时钟脉冲由低(“0”),变高(“1”),D触发器触发,而D输入端为高电平,由Qn+1=Dn可知,输出仍为高电平。

③电磁阀的开关控制:

电磁阀的开关控制电路由Q1、R13、C2、Q2组成,当手开关控制电路输出高电平信号时,使得Q1导通,给电容C2充电,使得开关管Q2的栅极电位升高而导通,24V直流电压使得电磁阀动作,让气体通过。

当手开关打开后,手开关控制电路无输出(输出低电平),使得Q1截止,但于电容C2的储能作用,Q2仍然导通,电容C2通过R13缓慢放电,当电容C2的端电压降到一定程度时,电磁阀关闭,停止供气。实现气体的延时,保证焊接质量,其延时时间取决于电容C2与电阻R13的值的大小。

④反烧时间控制电路:

其作用是使焊机有一个适当的通电延时,使焊机在手开关断开后,仍保持供电,避免焊丝在送丝机的惯性作用下送出而扎到熔池里或在焊丝端头结成金属球,影响下次焊接。

其原理是调节使电流延时适当的时间,使得在送丝机惯性作用下送出的焊丝完好地熔化到焊缝里。

因为反烧是在手开关的控制之下。当手开关关断时,Q1截止,而Q2导通,电容C2放电,使得RW1的非可变端(稳压管的负端)电位上升,当上升到超过5.1V时,Q3导通,从而使得Q3集电极位变低,通过控制电路,使得控制芯片3525 8脚的电位被拉低,停止输出(封波)。由于电容C2和RW1的关系电位器非可变端的电位缓慢上升,使得手开关关断时,使得芯片3525并非马上封波而停止主电路输出,而是经过一定的时间,该时间由C2及RW的值决定,这样,调节RW的值即可调节电流延时时间,即反烧时间。

二氧化碳气体保护焊作业指导书

二氧化碳气体保护焊作业指导书 1,目的和范围 本指导书规定了结构钢的二氧化碳气体保护半自动焊,混合气体保护半自动焊和药芯焊丝半自动电弧焊的工艺及操作应遵守的规则。 本指导书适用于一般机械及钢结构产品的二氧化碳气体保护半自动焊,混合气体保护半自动焊和药芯焊丝半自动电弧焊。 2,引用相关文件 GB/3375-94焊接术语 GB985-88气焊,手工电弧焊及气体保护焊,焊缝坡口的基本形式与尺寸。 WI0903-02钢结构手工电弧焊。 3,技术要求 3.1焊工 焊工须经二氧化碳气体保护焊理论学习和实践培训,经考核并取得相应的合格证书,方可从事有关焊接工作。 3.2焊接材料 3.2.1焊丝 3.2.1.1焊丝应符合《二氧化碳气体保护焊用钢焊丝》的规定,并有制造厂的质量证明书或合格证。 3.2.1.3应根据母材的化学成分和对焊接接头的机械性能的要求,合理选用焊丝。 3.2.1.3为提高熔敷速度,减少飞溅率,提高抗风能力;可选用药芯焊丝。3.2.1.4常用焊丝牌号为H08MnSi,H08Mn2Si,H08Mn2SiA。其中H08MnSi用于400MPa级结构钢件,H08Mn2Si及H08Mn2SiA用于500Mpa级结构件。H08Mn2SiA含S,P量比H08Mn2Si控制严,可用于要求更高的构件。 常用焊丝的化学成份见表1,熔敷金属力学性能见表2。 表1

表2 3.2.1.5常用焊丝直径规格有0.6,0.8,1.0,1.2,1.6mm等。 3.2.1.6焊丝按表面状态分为镀铜和未镀铜。常用镀铜焊丝,代号为DT。焊丝按交货状态分为捆(盘)状和缠轴,常用缠轴,代号为CZ。 3.2.1.7镀铜焊丝的最大含铜量不得超过0.5,焊丝表面应光洁无油污,无锈蚀以及无肉眼所能见到的镀层脱落。 3.2.1.8缠轴焊丝重量一般每轴为15~20kg。 3.2.1.9焊丝质量保证期,从出厂日标起,一般为半年。 3.2.1.10气保护药芯焊丝分类情况见表3,表4。按保护气体分,二氧化碳保护和自保护。常用二氧化碳保护。常用药芯焊丝类型为EF11-43;EF11-50;EF13-43;EF13-50。 表3

二氧化碳气体保护焊的基本原理

如对您有帮助,请购买打赏,谢谢您! 第一章CO2气体保护焊概述. 第一节CO2气体保护焊的基本原理 一.CO2气体保护焊的发展 CO2气体保护电弧焊是一种高效率、低成本的焊接方法。20世纪30年代,人们已经发明了以氩弧焊作为保护气体的电弧焊,但由于氩气价格昂贵,推广受到了限制,这就逼使人们寻求价廉的保护气体。经过较长时间的科研活动,co2气体保护电弧焊终于在1950年---1952年问世。 目前我国在船舶制造、汽车制造、车辆制造。石油化工等部门已广泛使用CO2气体保护电弧焊。 二、CO2气体保护焊的原理以 焊丝和焊件作为两个电极,产 生电弧,用电弧的热量来熔化 金属,以CO2气体作为保护 气体,保护电弧和熔池,从而 获得良好的焊接接头,这种焊 接方法称为二氧化碳气体保 护焊。 【如图】焊机结构图及 操作要点:二氧化碳保护焊的 焊前准备与焊接工作结束时 应做到一下几点:工作前,穿 戴好劳动保护用品。检查焊接 电源、控制系统的接地线是否 可靠。将设备进行空载试运 转,确认其电路、气路畅通, 设备正常时,方可进行焊接作 业。工作时,在电弧的附近不 准赤身和裸露身体某些部位。 不要在电弧附近吸烟、进食, 以免有害烟尘吸入体内。 第二 节CO2气体保护焊的优点 一、生产率高 CO2气体保护焊的电流 密度(焊丝单位面积通过的电 流,j=I / S)很大,电弧热量集中,焊丝的融敷(fu)(焊丝在一小时内一安电流能融敷入焊缝的质量数)很大,不仅远大于焊条电弧焊。 1页 二.成本低 CO2气体的来源广,有的是酿造厂和化工厂的副产品,价格低廉。CO2的能源也消耗也少(电弧热能利用率高实心焊丝基本没有焊渣或焊剂消耗的能量)。通常CO2气体保护焊的成本仅为焊条电弧焊的4‰~5‰,是目前廉价的焊接方法。 三、焊接变形小 CO2气体保护焊的的热量集中,加热面积小,并且CO2气体从喷嘴焊向焊件,可以带走一些焊件的热量,从而使焊接热影响区减小,焊接变形明显减小,尤其在焊接薄板时更为突出。

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定 二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。 一、焊丝直径,焊丝直径影响焊缝熔深。本文就最常用的焊丝直径1.2mm实心焊丝展开论述。牌号:H08MnSiA。焊接电流在150~300时,焊缝熔深在6~7mm。 二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。焊接电流决定送丝速度。焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。 三、电弧电压,电弧电压不是焊接电压。电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。通常情况下,电弧电压在17~24V之间。电压决定熔宽。 四、焊接速度,焊接速度决定焊缝成形。焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。通常情况下,焊接速度在80mm/min比较合适。 五、气体流量,CO2气体具有冷却特点。因此,气体流量的多少决定保护效果。通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。 六、干伸长度,干伸长度是指从导电嘴到焊件的距离。保证干伸长度不变是保证焊接过程稳定的重要因素。干伸长度决定焊丝的预热效果,直接影响焊接质量。当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。根据焊接要求,干伸长度在8~20mm之间。另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。 七、电源极性,通常采取直流反接(反极性)。焊件接阴极,焊丝接阳极,焊接过程稳定、飞溅小、熔深大。如果直流正接,在相同条件下,焊丝融化速度快(约为反接的1.6倍),熔深浅,堆高大,稀释率小,飞溅大。 八、回路电感,回路电感决定电弧燃烧时间,进而影响母材的熔深。通过调节焊接电流的大小来获得合适的回路电感,应当尽可能的选择大电流。通常情况下,焊接电流150A,电弧电压19V;焊接电流280A,电弧电压22~24V比较合适,能够满足大多数焊接要求。 九、焊枪倾角,当倾角大于25°时,飞溅明显增大,熔宽增加,熔深减小。所以焊枪倾角应当控制在10~25°之间。尽量采取从右向左的方向施焊,焊缝成形好。如果采用推进手法,焊枪倾角可以达到60度,并且可以得到非常平整、光滑的漂亮焊缝。焊接电流是控制送丝速度,电弧电压是控制焊丝融化速度,电流加大焊丝送进加快、电压增大焊丝熔化加快。

CO2气体保护焊焊机

第二节C02气体保护焊焊机 一、C02气体保护焊机分类及组成 1.CO2气体保护焊机分类 半自动和全自动CO2气体保护焊。 2.CO2气体保护焊机的组成 ?萍保护焊设:& 閨 电瀟迟-煜1S 电湎试 4 一流址i■十E--H.mK.A_. 8-送业盘了-也疋调¥ 舱涵區调节毓诩. 4 医樂拄审归T主W-r 世输出 ■M-焊柚诈-焊存心-岳焊件电晅痕M 焦柏虫却挂別战[弓-送丝书L杓电遮觀C (1)焊接电源 对焊接电源的要求 1)具有平的或绶降的外特性曲线: 采用平特性曲线,由于短路电流大,容易引弧,不易粘丝;电弧拉长后,焊接电流迅速减小。不容易烧坏焊丝嘴,且弧长变化时会引起较大的焊接电流变化,电弧的自调作用强,焊接参数稳定,焊接质量好。

2)具有合适的空载电压:C02气体保护焊为38-70V 3)良好的动特性: 焊机适应焊接电弧变化的特性称为焊接电源的动特性。 动特性良好时,容易引弧,焊接过程稳定、飞溅小。 4)合适的调节范围 (2 )控制系统 包括引弧、熄弧、送丝控制、焊接程序控制、焊接参数调节、气体加热和送气控制、焊接坡口的自动跟踪。 (3 )送丝系统 1)送丝机构的要求:速度均匀稳定、调节方便、结构牢固轻巧。2)送丝的方式:推丝式、拉丝式、推拉式三种。 送丝轮:平轮V形槽送丝机构、行星双曲线送丝机构。 (4)焊枪 焊枪的结构: 1)喷嘴用纯铜或陶瓷制成。 焊接前期最好在喷嘴的内外表面上涂一层硅油,便于清除粘附在喷嘴上的飞溅并延长使用寿命。 2)导电嘴。 用纯铜、铭青铜或磷青铜制成。 通常导电嘴的孔径比焊丝直径大0.2mm。 3)分流器

用绝缘陶瓷制作,上有均匀的小孔,从枪体内喷出的保护气体经均流器后,从喷嘴中呈层流状均匀嘴出。 4)导管电缆。 (5 )供气系统 是向焊接区提供流量稳定的保护气体,由气瓶、减压阀、预热骂、流量计、干燥器和管路组成。 二、C02气体保护焊焊机型号及主要技术参数 1.CO2气体保护焊焊机型号

二氧化碳气体保护焊焊接工艺规定

钢结构制作安装工艺规定 HOIST 二氧化碳气体保护焊焊接工艺规定 HSQB-1207-2008 2008年9月发布2008年10月实施 四川华神钢构有限责任公司 Sichuan Hoist Steel Structures Co., Ltd

二氧化碳气体保护焊焊接工艺规定 目录 第一节材料要求 (1) 第二节主要机具 (2) 第三节作业条件 (2) 第四节操作工艺 (4) 第五节质量标准 (14) 第六节成品保护 (14) 第七节应注意的问题 (15)

二氧化碳气体保护焊焊接工艺规定 适用范围:本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 第一节材料要求 7.1.1 钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和 行业标准的规定,并应具有质量证明书或检验报告。如果用其它钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 7.1.2 焊丝焊丝成份应与母材成份相近,主要考虑碳当量含量,它应具有良好的 焊接工艺性能。焊丝含C量一般要求<0.11%。其表面一般有镀铜等防锈措施。目前我国常用的C0 2 气体保护焊焊丝是H08Mn2SiA,其化学成分见GBl300-77(表8-1)。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 7.1.3 C0 2 气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 7.1.4 焊件坡口形式的选择 要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985—88)。 7.1.5 不同板厚的钢板对接接头的两板厚度差(δ-δ1)不超过表7.1.5.1规定时, 则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择;否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ-δ1)。 表7.1.5.1 较薄板厚度(δmm)≥2~5 >5~9 >9~12 >12 允许厚度差(δ-δ1)(mm) 1 2 3 4

CO2气体保护焊焊接参数

二氧化碳焊接工艺--焊接工艺指导书(CO2焊) 一、基本原理 CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。 二、工艺特点 1. CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率比焊条电弧焊高1-3倍 2. CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊的40%-50% 3. 焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时,需要有防风措施。 6. 焊接弧光强,注意弧光辐射。 三、冶金特点 CO2焊焊接过程在冶金方面主要表现在: 1. CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H08Mn2SiA/H10Mn2Si等焊丝。 四、焊接材料 1. 保护气体CO2 用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2,25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。(备注:1Kg的液态CO2可汽化509LCO2气体) 2. CO2气瓶外表漆黑色并写有黄色字样 3. 市售CO2气体含水量较高,焊接时候容易产生气孔等缺陷,在现场减少水分的措施为: 1) 将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2-3次,每次间隔30分钟,放后将气瓶放正。 2) 倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套上输气管。 3) 在气路中设置高压干燥器和低压干燥器,另外在气路中设置气体预热装置,防止CO2气中水分在减压器内结冰而堵塞气路。 2. 焊接材料(焊丝) 1.)焊丝要有足够的脱氧元素 2.)含碳量Wc≤0.11%,可减少飞溅和气孔。

最新二氧化碳气体保护焊立焊的焊接手法.

二氧化碳气体保护焊立焊的焊接手法.

二氧化碳气体保护焊立焊的焊接手法. 电流电压会不会调?会调的话焊接立焊的时候电流要稍小点【相对平焊来说,当然也看个人掌握能力】你要知道一点:什么是电流电压正好,所谓电流电压正好就是,焊丝出来后,电压能把它充分溶解。焊立焊电流电压在正好的基础上,电压要比正好值稍大一点。 1:把立焊位置的卫生打扫干净{重点注意油脂、定位焊药渣、水=} 2:要知道准备焊接的焊角大小,先按照焊角大小烧出个标准焊角。注意高质量焊接必须是从下往上焊接! 3:靠标准焊角一边开始引弧,焊丝左右摆动的时候注意不要超出熔池{焊丝充分溶解所形成的}范围,左右摆动的时候要在两边停顿一下,时间长短看焊角确定,要是焊角要求太大的话建议多重焊接、一般第一遍小点下面好焊接、要是一次太大的话容易厚度不够也难看、容易两边鼓起。在左右摆动的时候一定要控制好节奏慢慢往上焊接,【注意手一定要稳,这是焊接高质量的必要前提】 4:过定位点的方法:有很多种在这里给你主要讲诉2个 一:直接过渡法,注意对个人掌握能力要求很高,在焊接到定位点的时候直接摆动往上烧,注意手要快不要在中间停留,自然过渡过去就好,两边停留时间看个人掌握。【注意因为过渡快,溶解不透定位点,容易炸焊,要穿好防护衣。 二:点焊过渡法,在焊接到定位点的时候,停下以左右摆动2次为一来回,点焊过渡直到过去定位点,继续焊接就好了。 5:在焊接结束的时候,有熔池出现一定要点焊补满{俗称包头、包角}

6:如果是弧度爬坡焊立焊,要求焊角很小的话,可以不摆直接挑上去,技术要求有点高。 7:以上是高质量焊接立焊的个人总结,要求低的话也可以倒流,但我要说句:‘技术低的可能觉得那种方法要求不高,但要我说倒流才能看出一个人的焊接技术。自己理解呵呵 可以的话麻烦多加几分,有不懂的话加我好友,很高兴能帮助你。 二氧化碳气体保护焊 教学目的: 1.能够正确选择半自动二氧化碳气体保护焊焊接工艺参数; 2.能够进行半自动二氧化碳气体保护焊板对接平、立位置的焊接。 教学重点和难点: 1.正确选择焊接工艺参数; 2.掌握操作要领。 教学准备: 1.设备及工具 NBC-350半自动二氧化碳气体保护焊机、0.8mm导电嘴、喷嘴、二氧化碳气体流量计、其他辅助工具; 2.材料厚度3 ~ 10mm Q235钢板、 直径0.8mm ER49-1(H08Mn2SiA)焊丝、二氧化碳气体。 3.防护用品手套、面罩、挡弧板。 教学过程: 一、组织教学 1.检查学生出勤情况,填写考勤记录,检查学生工作服、工作帽是符合安全标准要求;

CO2气体保护焊介绍

CO2气体保护焊 第一章概述 CO2气体保护焊是50年代研究成功的,40多年来,CO2气体保护焊已成为非常重要的焊接方法之一。 我国在60年代开始用于生产,多年来,CO2气体保护焊已广泛应用于造船、汽车、化工、锅炉、工程机械以及集装箱等方面。 第一节CO2气体保护焊的原理及特点 一、原理 CO2气体保护焊是利用从喷嘴中喷出的CO2气体隔绝空气,保护熔池的一种先进的熔化方法。 二、特点 1、CO2气体保护焊的优点: ⑴生产效率高 ①CO2气体保护焊采用的电流密度大。 CO2气体保护焊采用密度通常为100~300A/mm2,焊丝熔化速度快,母材熔深大。 ②气体保护焊焊接过程中产生的熔渣少,多层焊时,层间不必清渣。由于焊丝伸出 10~20,焊接可达性好,所以坡口可适当开小,减少了焊丝的用量。 ③CO2气体保护焊采用整盘焊丝,焊接过程中不必换焊丝,提高了生产效率。如电 焊条的生产效率就低。 ⑵对油锈不敏感因为CO2在焊接过程中,CO2气体分解,氧化性强,对工件上的油、 锈不敏感,只要工件上没有明显的黄锈,不必清理。当焊接气孔多时,我们有时到 气站增加CO2含量。 ⑶焊接变形小CO2气体保护焊电流密度高,电弧集中、CO2气体对工件有冷却作用, 受热面小,焊后变形小。特别适用于薄板的焊接。 ⑷采用明弧CO2气体保护焊电弧可见性好,容易对准焊缝、观察并控制熔池。 ⑸操作方便CO2气体保护焊采用自动送丝,不必如焊条一样用手工送丝,焊接平 稳。 ⑹成本低 2、缺点 ⑴飞溅大CO2气体保护焊焊后清理麻烦,在规范合理的情况下,产生的飞溅不是太 多。因此焊前调节合理的焊接规范是非常重要的。合理的焊接规范的评定: ①飞溅少 ②电弧的声音均匀、悦耳 ⑶送丝均匀、平稳 ⑷焊缝均匀、纹路清晰 ⑵弧光强焊接时要多加防护 ⑶抗风力弱由于气体抗风能力不强,焊接时需采取必要的防风措施 ⑷不灵活由于焊枪和送丝软管较重,在小范围内操作不灵活,特别是水冷焊枪

2019年二氧化碳气体保护焊立焊的焊接手法..doc

二氧化碳气体保护焊立焊的焊接手法. 电流电压会不会调?会调的话焊接立焊的时候电流要稍小点【相对平焊来说,当然也看个人掌握能力】你要知道一点:什么是电流电压正好,所谓电流电压正好就是,焊丝出来后,电压能把它充分溶解。焊立焊电流电压在正好的基础上,电压要比正好值稍大一点。 1:把立焊位置的卫生打扫干净{重点注意油脂、定位焊药渣、水=} 2:要知道准备焊接的焊角大小,先按照焊角大小烧出个标准焊角。注意高质量焊接必须是从下往上焊接! 3:靠标准焊角一边开始引弧,焊丝左右摆动的时候注意不要超出熔池{焊丝充分溶解所形成的}范围,左右摆动的时候要在两边停顿一下,时间长短看焊角确定,要是焊角要求太大的话建议多重焊接、一般第一遍小点下面好焊接、要是一次太大的话容易厚度不够也难看、容易两边鼓起。在左右摆动的时候一定要控制好节奏慢慢往上焊接,【注意手一定要稳,这是焊接高质量的必要前提】 4:过定位点的方法:有很多种在这里给你主要讲诉2个 一:直接过渡法,注意对个人掌握能力要求很高,在焊接到定位点的时候直接摆动往上烧,注意手要快不要在中间停留,自然过渡过去就好,两边停留时间看个人掌握。【注意因为过渡快,溶解不透定位点,容易炸焊,要穿好防护衣。二:点焊过渡法,在焊接到定位点的时候,停下以左右摆动2次为一来回,点焊过渡直到过去定位点,继续焊接就好了。 5:在焊接结束的时候,有熔池出现一定要点焊补满{俗称包头、包角} 6:如果是弧度爬坡焊立焊,要求焊角很小的话,可以不摆直接挑上去,技术要求有点高。 7:以上是高质量焊接立焊的个人总结,要求低的话也可以倒流,但我要说句:‘技术低的可能觉得那种方法要求不高,但要我说倒流才能看出一个人的焊接技术。自己理解呵呵 可以的话麻烦多加几分,有不懂的话加我好友,很高兴能帮助你。 二氧化碳气体保护焊 教学目的: 1.能够正确选择半自动二氧化碳气体保护焊焊接工艺参数; 2.能够进行半自动二氧化碳气体保护焊板对接平、立位置的焊接。 教学重点和难点: 1.正确选择焊接工艺参数;

二氧化碳气体保护焊的焊接方法及工艺)

二氧化碳气体保护焊的焊接方法及工艺 一、基本原理 CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体 作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。 二、工艺特点 1.CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率 比焊条电弧焊高1-3倍 2.CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊 的40%-50% 3.焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时, 需要有防风措施。 6..焊接弧光强,注意弧光辐射。 三、冶金特点 CO2焊焊接过程在冶金方面主要表现在: 1.CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H 08Mn2SiA H10Mn2Si等焊丝。 四、材料 1.保护气体CO2 用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2, 25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。(备注:1Kg的液态CO2可汽化509LCO2气体) CO2气瓶外表漆黑色并写有黄色字样、售CO2气体含水量较高,焊接时候容易产生气孔等缺陷, 在现场减少水分的措施为: 1)将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2 -3次,每次间隔30分钟,放后将气瓶放正。 2)倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套

二氧化碳气体保护焊焊接工艺

二氧化碳气体保护焊焊接工艺 适用围:本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 第一节材料要求 1.1 钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和行业标准的规定,并应具有质量证明书或检验报告。如果用其它钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 1.2 焊丝焊丝成份应与母材成份相近,主要考虑碳当量含量,它应具有良好的焊接工艺性能。焊丝含C量一般要求<0.11%。其表面一般有镀铜等防锈措施。目前我国常用的CO2气体保护焊焊丝是H08Mn2SiA,其化学成分见GB1300-77。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 1.3CO2气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 1.4焊件坡口形式的选择 要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985-88)。 1.5 不同板厚的钢板对接接头的两板厚度差(δ-δ1)不超过表5.1规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择;否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ-δ1)。

二氧化碳气体保护焊机操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 二氧化碳气体保护焊机操作规 程(标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

二氧化碳气体保护焊机操作规程(标准版) 一、操作者必须详细了解焊机性能和结构; 二、接线必须正确可靠,电缆接头必须锁紧,枪为正极不得接反,否则影响焊接过程稳定性; 三、必须经常检查电缆绝缘情况,如发现有损坏情况,须重新加以绝缘,以免造成短路和触电现象; 四、焊丝必须经过汽油清洗擦净,绕制紧凑,焊丝不得发生弯折,以免影响送丝,焊丝压线滚(25#轴承)不宜压得过紧和太松,压丝滚轮压力可借压丝簧调节; 五、操作者在操作前扭动电源开关“S”于“开”位置,使预热器预热5~10分钟左右,再进行焊接; 六、根据焊接工件的厚度,选择合适直径的焊丝和导电路嘴,并选择合适的焊接规范(焊接电压、送枪线速度、电感等);

七、调节合适的气体流量,一般气体流量为6升/分,气体必须经过预热器、干燥器处理后接到焊枪使用,并经常检查气路系统是否漏气; 八、焊机工作时,必须保持良好通风。 云博创意设计 MzYunBo Creative Design Co., Ltd.

二氧化碳气体保护焊焊接参数

分享]二氧化碳气体保护焊的焊接参数分析 二氧化碳气体保护焊的焊接参数分析 二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。 本文是笔者站在巨人的肩膀上结合自身实践心得而成的一家之言,文中以自己观点、经验为主。本文已经发表。这次上传论坛,旨在抛砖引玉。 一、焊丝直径,焊丝直径影响焊缝熔深。本文就最常用的焊丝直径1.2mm实心焊丝展开论述。 牌号:H08MnSiA。焊接电流在150~300时,焊缝熔深在6~7mm。 二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡(射滴/我习惯称为喷射)的焊接电流在250~300A之间(我习惯280A)。焊接电流决定送丝速度。焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增 加。 三、电弧电压,电弧电压不是焊接电压。电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。通常情况下,电弧电压在17~24V之间。电压决定熔宽。 四、焊接速度,焊接速度决定焊缝成形。焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。通常情况 下,焊接速度在80mm/min比较合适。 五、气体流量,CO2气体具有冷却特点。因此,气体流量的多少决定保护效果。通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。 六、干伸长度,干伸长度是指从导电嘴到焊件的距离。保证干伸长度不变是保证焊接过程稳定的重要因素。干伸长度决定焊丝的预热效果,直接影响焊接质量。当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。根据焊接要求,干伸长度在8~20mm之间。另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。 七、电源极性,通常采取直流反接(反极性)。焊件接阴极,焊丝接阳极,焊接过程稳定、飞溅小、熔深大。如果直流正接,在相同条件下,焊丝融化速度快(约为反接的1.6倍), 熔深浅,堆高大,稀释率小,飞溅大。 八、回路电感,回路电感决定电弧燃烧时间,进而影响母材的熔深。通过调节焊接电流的大小来获得合适的回路电感,应当尽可能的选择大电流。通常情况下,焊接电流150A,电弧电压19V;焊接电流280A,电弧电压22~24V比较合适,能够满足大多数焊接要求。九、焊枪倾角,当倾角大于25°时,飞溅明显增大,熔宽增加,熔深减小。所以焊枪倾角

§3-1 二氧化碳气体保护焊的原理及特点

河南经济贸易高级技工学校 授课教案 授课教师刘广宝授课时间课程名称焊工工艺学 课题名称§3-1 二保焊的原理及特点教学方法讲授法 重点难点二保焊与其他焊接方法的区别 教具课本、多媒体作业布置见后 辅导反馈审批签字 【教学目标】 1、了解二保焊的原理 2、理解二保焊的特点 3、掌握二保焊的冶金特点 【教学课时】 【教学过程】 Ⅰ:组织教学:点名 Ⅱ:复习旧课 1、焊条的选择依据是? 2、焊接电流的选择依据是? 3、焊接速度的决定因素? Ⅲ:导入新课 第三章二氧化碳气体保护焊 §3-1 CO2气体保护焊的原理及特点 一、CO2气体保护焊的原理 CO2气体保护焊是利用CO2作为保护气体(有时采用CO2+Ar的混合气体)的气体保护电弧焊,简称CO2焊。二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。在应用方面操作简单,适合自动焊和全方位焊接。在焊接时不能有风,适合室内作业。 在应用方面操作简单,适合自动焊和全方位焊接。焊接时抗风能力差,适合室内作业。

由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断,因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。 因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。 焊接原理示意图 二、CO2气体保护焊的特点 1、优点: ①生产效率高和节省能量。 ②焊接成本低。 ③焊接变形小。 ④对油、锈的敏感度较低。 ⑤焊缝中含氢量少,提高了低合金高强度钢抗冷裂纹的能力。 ⑥电弧可见性好,短路过渡可用于全位置焊接。 2、缺点: ①焊接过程中金属飞溅较多,焊缝外形较为粗糙,特别是当焊接参数匹配不当时飞溅就更严重。

二氧化碳气体保护焊焊接工艺标准

二氧化碳气体保护焊焊接工艺 适用范围:本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 第一节材料要求 1.1 钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和行业标准的规定,并应具有质量证明书或检验报告。如果用其它钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 1.2 焊丝焊丝成份应与母材成份相近,主要考虑碳当量含量,它应具有良好的焊接工艺性能。焊丝含C量一般要求<0.11%。其表面一般有镀铜等防锈措施。目前我国常用的CO2气体保护焊焊丝是H08Mn2SiA,其化学成分见GB1300-77。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 1.3CO2气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 1.4焊件坡口形式的选择 要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985-88)。 1.5 不同板厚的钢板对接接头的两板厚度差(δ-δ1)不超过表5.1规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择;否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ-δ1)。

二氧化碳气体保护焊工艺

冷箱板的制作,安装采用二氧化碳气体保护焊工艺,在施工中对焊接工艺和焊接质量的要求严格,焊接质量的优良与否直接影响到工程的施工进度和工程投产后的安全运行。 1焊前准备 1.1焊接施工员编制焊接工艺卡,并在施工前向有关人员进行技术交底,在工程中实施技术指导和监督。 1.2焊工必须持有《特种设备焊接操作人员考核细则》考试合格的焊工合格证,其考试合格项目应满足焊接需要。 1.3焊工应严格按焊接工艺指导书或焊接工艺卡进行施焊,对自己所焊的焊缝质量负责。 1.4焊工应了解自己所使用的焊接设备性能、操作方法和维护知识,以保证设备正常运转,从而保证焊接质量。 1.5焊接完毕应及时清理焊渣及飞溅物,做好自检工作。 1.6二氧化碳气体保护焊采用直流焊接电源,二氧化碳气体保护焊设备见下表1: 表1 二氧化碳气体保护焊设备性能介绍 1.7焊接材料必须有质量保证书或合格证,并应符合国家标准及规范的要求。焊接材料的选用见表二。 表二焊材选用一览表 1.8施工现场设焊材室,室内应保持干燥,相对湿度不大于60%,焊丝存放应距离地面及墙面300mm。

1.9现场由专人负责焊材的管理、发放、回收等工作,并建立台帐。 1.10焊接用的二氧化碳气体纯度应符合国家有关标准的规定。 1.11碳钢采用火焰切割坡口,应将割口表面的氧化皮及熔渣清理干净,并将不平处打磨平整。 1.12焊缝组对时应将坡口两侧内外壁各20~25mm范围内的油、锈、毛刺等杂物清理干净,并打磨出金属光泽。 1.13焊接前应做好各项防护措施。如:采用蓬布遮挡、搭设活动防护棚等办法来防止风、雨、雪等天气对焊接造成的影响,以确保工程的焊接质量。 2焊接工艺及要求 2.1气体保护焊时风速大于2m/s及相对湿度大于90%;;应采取防护措施时。 2.2 CO2气体保护焊的工艺参数有焊接电流、电弧电压、焊丝直径、焊丝伸出长度、气体流量等。在其采用短路过渡焊接时还包括短路电流峰值和短路电流上升速度。2.3短路过渡焊接时,焊接电流和电弧电压作周期性的变化。电流和电压表上的数值是其有效值,而不是瞬时值,一定的焊丝直径具有一定的电流调节范围。 2.4焊丝伸出长度是指导电嘴端面至工件的距离。由于CO2焊时选用焊丝较细,焊接电流流经此段所产生的电阻热对焊接过程有很大影响。生产经验表明,合适的伸出长度应为焊丝直径的10~20倍,一般在5~15mm范围内。 2.5 小电流焊时,气体流量为5~15L/min;大电流时,气体流量为10~20L/min。 2.6 CO2气体保护焊一般都采用直流反接,飞溅小,电弧稳定,成形好。 3焊接质量保证措施 3.1要严格控制焊接线能量,选择合理的焊接工艺参数,避免焊缝表面产生咬边、焊肉过高、焊缝宽窄不一致等缺陷,从而保证焊接接头的质量。 3.2焊接施工过程包括对口准备、组装、施焊、检验等四个重要工序。本道工序符合要求后方可进行下道工序,否则不允许进行下道工序的施工。 4焊接安全技术措施及文明施工 4.1焊接作业时必须按有关规定穿戴好白色工作服、鞋、帽、手套、眼镜等防护用品。 4.2高空作业要遵守有关规定,系好安全带,脚手架、板应搭设牢固。 4.3焊接场所必须有防火设施,易燃物品距焊接场所至少5米,易爆物品至少距焊接场所10米。

KR系列CO2半自动焊机原理分析

KR系列CO2半自动焊机原理分析 一.特点及主要技术参数 KR系列焊机,主要用于CO2气体保护焊。有如下比较突出的优点: 1.从电源至送丝机,只有一根控制电缆,减轻了电缆的质量,减少了断线的麻烦,方便了移动。 2.采用了模块和无触点开关,减少了电子原件的数量,将控制线路压缩到了一块印刷线路板上,提高了电路的可靠性,方便维修。 3.电源的体积较小,重量较轻,防尘性能较好。 4.有电流电压分别调整/简易一元化机能。 焊机的一般结构和各部分功的作用与OTC大阪CO2焊机基本相同。KR系列焊机的主要技术参数如表3-1所示。 二.工作原理 1.主电路 参看图3-1,其上部分是KR系列焊机的主电路,该电路主要由交流接触器KM,主变压器T1,晶闸管VT1-VT6,平衡电抗器L1及滤波器L2组成。电路的主体是一个双反星形带平衡电抗器的晶闸管整流装置,与大阪X系列CO2焊机主电路基本相同。 2.控制回路 主要由以下几部分组成:1.主晶闸管触发电路。其作用是接收操作电路及电压运算电路的信号后,产生相应得脉冲来触发主晶闸管,控制其导通角来控制其焊接电压的大小。2.电压、电流控制与运算电路。根据焊接的工艺要求,对各种情况下的焊接规范及工作方式选择,给出相应的控制电压,来控制焊接电源输出电压的大小和送丝机的转速(即焊接电流的大小)。3.送丝机控制电路。根据工艺要求,控制送丝电机的运行。4.程序控制电路。又叫操作电路,即对焊接进行全过程的控制。5.其他控制电路。现分述如下: 2.1主晶闸管触发电路 参看图3-2,本电路主要由光耦双向晶体管B4-B6、开关管VR6-VR8、模块D2-D4光耦双向晶闸管、光耦三极管等原件组成。 本电路对应于U、V、W三相交流电源由三个完全相同的电路组成,每路触发2只主回路晶闸管。每相电路又可分为三部分:同步控制部分、脉冲产生部分、脉冲输出部分。下面以U相电路为例对这三部分电路作一说明。 2.1.1同步控制电路: 同步控制电路的输入电压直接取自主变压器T1次级同一铁芯上相位相反的两个绕组,省去了同步变压器,使触发电路简单可靠,保证了触发脉冲与主电路晶闸管相位的同步。其等效图如图3-3所示。

二氧化碳气体保护焊施工方案

二氧化碳气体保护焊施工方案 适用范围:本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 一、材料要求 1钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和行业标准的规定,并应具有质量证明书或检验报告。如果用其他钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 2焊丝。焊丝成分应与母材成分相近,主要考虑碳当量含量,它应具有良好的焊接工艺性能。焊丝含C量一般要求<0.11%.其表面一般有镀铜等防锈措施。目前我国常用的CO气体保护焊焊丝是H08Mn2SiA,其化学成分见GB 1300-77(表8-1)。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 3 CO气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 4焊件坡口形式的选择。 要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985-88)。 5不同板厚的钢板对接接头的两板厚度差(δ一δ1)不超过表5规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择:否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ一δ1). 表5 较薄板厚度δ1(mm)≥2~5 >5~9 >9~12 >12 允许厚度差(δ—δ1)(mm) 1 2 3 4 二、主要机具 1焊接用主要机具有:电动空压机、柴油发电机、CO焊机、焊接滚轮架。 2工厂加工检验设备、仪器、工具有:超声波探伤仪、数字温度仪、数字钳形电流表、温湿度仪、焊缝检验尺、磁粉探伤仪、游标卡尺、钢卷尺。 三、作业条件 1焊接区应保持干燥,不得有油、锈和其他污物。 2当焊接区风速过大而影响焊接质量时,应采用挡风装置。对焊接现场进行有效防护后方可开始焊接。 3施焊前打开气瓶高压阀,将预热器打开,预热10-15分钟,预热后打开低压阀,调到所需批体流量后焊接。 4直径不大于1.2mm时,二氧化碳气体流量一般为6~15L/min为宜。当选用大电流焊时,焊速提高,室外焊及仰焊时,应采用较大气体流量。 5为保证焊接过程的稳定性,细丝导电嘴孔径一般不大于焊丝直径的0.1~0.25mm,粗丝焊导电嘴孔径一般应不大于焊丝

二氧化碳气体保护焊焊接标准

二氧化碳气体保护焊焊接标准 本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 第一节材料要求 7.1.1 钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和行业标准的规定,并应具有质量证明书或检验报告。如果用其它钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 7.1.2 焊丝焊丝成份应与母材成份相近,主要考虑碳当量含量,它应具有良好的焊接工艺性能。焊丝含C量一般要求<0.11%。其表面一般有镀铜等防锈措施。目前我国常用的CO2气体保护焊焊丝是H08Mn2SiA,其化学成分见GB1300-77(表8-1)。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 7.1.3 CO2气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 7.1.4 焊件坡口形式的选择

要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985-88)。 1)。δ-δ1)不超过表7.1.5.1规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择;否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ-δ7.1.5 不同板厚的钢板对接接头的两板厚度差(

二氧化碳气体保护焊立焊的焊接手法.

二氧化碳气体保护焊立焊的焊接 1、把立焊位置的焊道清理干净(重点注意油脂、定位焊药渣、水等)。 2、要知道准备焊接的焊角大小,先按照焊角大小烧出个标准焊角。注意高质量焊接必须是从下往上焊接! 3、靠标准焊角一边开始引弧,焊丝左右摆动的时候注意不要超出熔池{焊丝充分溶解所形成的}范围,左右摆动的时候要在两边停顿一下,时间长短看焊角确定,要是焊角要求太大的话建议多重焊接、一般第一遍小点下面好焊接、要是一次太大的话容易厚度不够也难看、容易两边鼓起。在左右摆动的时候一定要控制好节奏慢慢往上焊接,注意手一定要稳,这是焊接高质量的必要前提。 4、过定位焊点的方法: (1)直接过渡法,注意对个人掌握能力要求很高,在焊接到定位焊点的时候直接摆动往上烧,注意手要快不要在中间停留,自然过渡过去就好,两边停留时间看个人掌握。 (2)点焊过渡法,在焊接到定位焊点的时候,停下以左右摆动2次为一来回,点焊过渡直到过去定位焊点,继续焊接就好了。 5、在焊接结束的时候,有熔池出现一定要点焊补满。 6、如果是弧度爬坡焊立焊,要求焊角很小的话,可以不摆直接挑上去,技术要求有点高。 7、立焊的手法 (1)向上立焊的最佳焊枪角度如图2-69所示。

(2)向上立焊时的熔深较大,容易焊透。虽然熔池的下部有焊缝依托,但熔池底部是个斜面,熔融金属在重力作用下比较容易下淌,因此,很难保证焊缝表面平整。为防止熔融金属下淌,必须采用比平焊稍小的电流,焊枪的摆动频率应稍快,采用锯齿形节距较小的摆动方式进行焊接,使熔池小而薄,熔滴过渡采用短路过渡形式。向上立焊时的熔孔与熔池如图2-70所示。 图2-69 向上立焊的最佳焊枪角度 图2-70 向上立焊时的熔孔与熔池 (3)向上立焊时的摆动方式如图2-71所示。当要求较小的焊缝宽度时,一般采用如图2-71a所示的小幅度摆动,此时热量比较集中,焊缝容易凸起,因此在焊接时,摆动频率和焊接速度要适当加快,严格控制熔池温度和大小,保证熔池与坡口两侧充分熔合。如果需要焊脚尺寸较大时,应采用如图2-71b所示的上凸月牙形摆动方式,在坡

相关主题
文本预览
相关文档 最新文档