当前位置:文档之家› 【专业知识】机电设备知识:矢量控制是怎样改善电机的输出转矩能力的

【专业知识】机电设备知识:矢量控制是怎样改善电机的输出转矩能力的

【专业知识】机电设备知识:矢量控制是怎样改善电机的输出转矩能力的
【专业知识】机电设备知识:矢量控制是怎样改善电机的输出转矩能力的

本文极具参考价值,如若有用请打赏支持我们!不胜感激!

【专业知识】机电设备知识:矢量控制是怎样改善电机的输出转矩能力的

大于大于大于

此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩。

$改善电机低速输出转矩不足的技术使用矢量控制,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。

对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做转矩提升。

转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。

矢量控制把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。

矢量控制可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。

力矩电机控制器工作原理

力矩电机控制器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相 380V±10%;频率: 50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ;

变频器基础知识

变频器基础知识 变频器是把工频电源(50Hz 或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CP U 以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、G T O(门极可关断晶闸管)、B JT(双极型功率晶体管)、M OSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、S I TH(静电感应晶闸管)、M GT(MOS 控制晶体管)、M CT(MOS 控制晶闸管)、I GBT(绝缘栅双极型晶体管)、H VIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM 模式优化问题吸引着人们的浓厚兴趣, 并得出诸多优化模式,其中以鞍形波PWM 模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的V VVF 变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM 控制变频器、PWM 控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f 控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 V VVF :改变电压、改变频率 CVCF :恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz 或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n =60 f(1-s)/p (1) 式中 n ———异步电动机的转速; f ———异步电动机的频率; s ———电动机转差率; p ———电动机极对数。 由式(1)可知,转速n 与频率f 成正比,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V ,输出功率为0.75~400kW ,工作频率为0~400Hz ,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U /f=C 的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统 开关电源设计学习园地 https://www.doczj.com/doc/7d1047994.html,

转矩控制矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析 1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效值: E1=4.44f1N1Φm式中:E1--定子 每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm- 每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时, 可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区 的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频 率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率 变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保 持不变,属于恒功率调速区。 3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以 转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电 机的扭矩。 矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种,前者精度高后者精度低。矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。常用的方法有基于检测定子电流信号的辨识方法,有同时使用电流检测信号和电压检测信号的辨识方法,还有根据电流检测信号和逆变器的开关控制信号重构电压信号的方法。

直接转矩控制基本原理和仿真研究报告

直接转矩控制的基本原理和仿真研究 摘要:直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技 术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技 术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的 控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接 转矩控制的理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技 术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论。在深入 剖析原理的基础上将直接转矩算法模块化,在Simulink环境下建立了异步电机直接转矩近似圆形 磁链控制系统仿真模型。仿真结果表明,直接转矩控制技术动态响应能力快,控制方法直接,但是 低速性能较差,低速状态下存在转矩脉动过大,定子电流畸变严重等缺点。 关键字:直接转矩控制,异步电机,simulink The Basic Principle and Simulation Study of Direct Torque Control Kong Fei,Ye Zhen,Shao Zhuyu technology is a high-speed technology in the field of AC drive following the technique of vector control and it has rapid development in recent years.This control strategy attracts wide attention and research for its novel idea, simple structure and good performance. Differ from the vector control technologies, DTC technology uses the stator flux orientation and directly makes the flux and electromagnetic torque as the control volume, therefore the control of the electromagnetic torque is simple and fast, the system dynamic response capability is improved. Due to the inherent advantages of DTC technology, its theoretical research and technological development is receiving increasing attention, also the pace of progress faster and faster.In this article, we make direct torque control techniques applied to asynchronous motors. From a mathematical model of induction motor starting, introduced the basic theory of DTC technology. Based on depth analysis of the basis and principles, we module the DTC algorithm. In the Simulink environment, the asynchronous motor direct torque control system of quasi-circular flux simulation model is established. Simulation results show that the DTC technologies has fast dynamic response capability and directly control method, but the low-speed performance is poor, such as torque ripple is too large in low speed state and the stator current distortion is serious. Key words:direct torque control (DTC>,asynchronous motor,simulink 1前言 直接转矩控制技术作为一种新颖的电机控制策略,基本思想就是直接将电磁转矩作为被控制量,与矢量控制相比,无需进行复杂的坐标变换,对电机的控制更加快捷迅速,控制系统的动态响应能力得到进一步提高。为了将直接转矩控制方法应用于异步电机中,我们在分析三相异步电机的数学模型基础上,详细阐述直接转矩控制的基本原理,并将各个部分模块化,在MATLAB/Smulink环境下建立了直接转矩控制仿真模型进行了仿真研究。 2直接转矩控制的基本原理和仿真模型 2.1 直接转矩控制的基本原理和仿真图 2.1.1直接转矩控制的基本原理

交流电机直接转矩控制基本原理和改进方案详解

交流电机直接转矩控制基本原理和改进方案详解 1 前言 随着现代电力电子、微电子技术和控制理论的发展,交流调速性能日益完善,足以和直流调速媲美,广泛应用于工农业生产、交通、国防和日常生活。高性能的交流调速系统中主要有矢量控制和直接转矩控制两种。直接转矩控制是由德国的Depenbrock教授于1985年提出的。近年来,结合智能控制理论与直接转矩控制理论,提出诸多基于模糊控制和人工工神经网络的直接转矩控制系统,进一步提高其控制性能。目前它已成为各种交流调速方法中研究最多、应用前景最广的交流调速方法之一。 2 直接转矩控制基本原理 直接转矩控制原理是利用测得的电流和电压矢量辨识定子磁链和转矩,并与磁链和转矩给定值相比较,将其差值输入两个滞环比较器,然后根据滞环比较器的输出和磁链位置从开关表中选择合适的电压矢量,进而控制转矩。其原理框图如图1所示。 交流电机的转矩表达式如下: 式中:δ为定、转子磁链夹角,np为极对数。 转子磁链和定子磁链之间存在一个滞后惯性环节,当定子磁链改变时,认为转子磁链不变。因此,从式(1)知道,如果保持定子磁链的幅值恒定,通过选择电压矢量,使定子磁链走走停停,改变定子磁链的平均旋转速度,从而改变定、转子磁链夹角,就能够实现对转矩的控制。从这里看,直接转矩控制的关键在于如何保持定子磁链恒定和改变磁链夹角。直接转矩控制自提出以来,各国学者对其进行不断改进,完善性能。这些方案虽然方法不同、原理各异,但都是期望选取适当电压矢量来保证磁链的圆形轨迹,从而减小脉动。 3 直接转矩控制改进方案 3.1 改进磁链辨识方法 直接测量定子磁链很麻烦而且成本很高,通常采用一些容易得到的变量(如U、I)来进行估

力矩电机控制器工作原1

力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相380V±10%;频率: 50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ; c、三相电源的不平衡度不大于2%; d、波形畸变不超过5%。 工作原理与电路特性: 控制器主要电路采用三相全波Y联接,可任意选择所需要的负载形式,即为三角形或星形(星形负载中线不必联接);与其他类型电路相比这样的电路优点是输出谐波分量低,使电机内部损耗小于任何一种其他类型的电路,则电路效率高,并对邻近通讯电路干扰小,是控制器各种形式主电路中最为理想的一种。 控制器采用进口的双向晶闸管,改变流过电机交流电流的导通角,从而使电机的工作电压从70V~365V连续可调,以适应不同的工作情况;控制电路中采用宽脉冲及光电耦合管来触发主晶闸管,采用自动跟踪控制方法,用三相网路相位同步控制,保证三相输出自动平衡,并通过输出反馈控制,能有效地防止电机在运行过程调压失控;其次对电机起动、关机均采取了控制措施。因此产品性能优良,具有抗干扰能力强,起动性能好,平稳,无电流冲击,运行稳定,可靠等优点。 本控制器除具有同类型控制器特点之外,还有以下独具的特点。 1. 控制器有二种工作模式选择:即调压工作模式、反馈控制模式。 调压工作模式:工作电压从70V~365V连续可调。 反馈控制模式:可进行恒张力反馈或速度反馈控制,视反馈信号性质的不同。

位置 速度 转矩3种控制方式介绍

1从原理上理解3种控制方式 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。之所以有这三中控制方式,是因为伺服一般为三个环控制。所谓三环就是3个闭环负反馈PID调节系统。由伺服系统的三个控制回路来实现。 第1环是电流环,它是最内环。此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。 第2环是速度环,它是次外环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。 第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。 2从使用上理解3种控制方式 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定 电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部 模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正 转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力 负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小, 也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有 严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要

YLJ系列力矩电机简介

YLJ系列力矩电机简介 YLJ、YDLJ系列力矩三相异步电动机是一种具有软机械特性和宽调速的范围的 特种电机。当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 应用范围 一、卷绕: 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松驰。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。图一、为卷绕工序示意图、典型力矩电机转矩-转速特性与卷绕张力的匹配曲线。在力矩电机1/3~2/3N0转速范围内(卷径比1:2)二条曲线相交的阴影部份,卷绕特性最为理想,这时P=F·V=常数即T·n=常数(P:功率、F:张力、V线速度、T:力矩、n:电机转速)。对于卷径比1:3、1:4或更大时,在一定程度上也能达到控制张力的要求,只是精度稍差,对卷径比大且张力控制精度要求较高的场合,可选用双速或三速力矩电机来达到。 通常每台设备生产的品种和规格较多,在材料和规格变化时,所要求的张力和转速也不同,这时可利用调压装置调节电机端电压,即可达到增减电机输出力矩的目的。图二、为不同电压力矩电机特性曲线族,此时输出力矩与电压的关系为 TαU2。 力矩电机卷绕时具有优点: 1.从空盘到满盘过程中张力保持稳定。 2.张力调节方便,一次调节后能正确重复。 3.结构可靠,维护方便,控制,操作简便, 成本低。 二、开卷(制动恒功率特性) 开卷亦称松卷、放卷、放线等,见图三。在工业生产中,有时需要把卷绕在滚筒上的产品输送到下一个工序。在输送过程中,要求施于产品一个与传动方向相反的张力,同时要求随着筒径的变化,而保持产品传动的线速度和反张力恒定,这就要求电机具有制动恒功率特性。利用力矩电机在制动状态的机械特性,见图四,把已成卷的产品松开后再加工,可防止产品在开卷过程中因时松时紧而影响质量。其原理同于卷绕时一样分析。 三、无级调速 力矩电机的机械特性很软,当负载增加时,电机的转速降低,输出力矩增加,而输出力矩是正比于电压的平方。如果负载固定,则电机的转速将随电压变化而变化,如图五所示。因此在负载恒定的装置上,只要通过调压装置改变电机的输入

最新电力电子技术在轨道交通牵引系统中的发展知识分享

电力电子技术在轨道交通牵引系统中的 发展

电力电子技术在轨道交通牵引系统中的发展 第一组 电力牵引传动与电力电子器件存在相互促进和相互依存的密切关系,电力传动是按照直一直传动、交一直传动再到交一直一交传动的过程发展的,而为了满足这一发展历程,离不开电力电子器件和现代计算机控制技术的高速发展。现代电力电子器件的发展迅猛,开发周期愈来愈短,如快速晶闸管、GTO晶闸管、GIBT、IPM等,每种新器件的诞生都迫使我们加快了对新器件的基础应用研究,从而促进了牵引传动方式的进步。 1轨道车辆牵引领域电力电子器件的发展 1.1 电力电子器件的发展 自1957 年晶闸管问世,标志着电力电子技术的诞生,从此电子技术向两个分支发展。一支是以晶体管集成电路为核心形成对信息处理的微电子技术,其发展特点是集成度愈来愈高,集成规模越来越大,功能越来越全。另一支是以晶闸管为核心形成对电力处理的电力电子技术,其发展特点是晶闸管的派生器件越来越多,功率越来越大,性能越来越好。 传统的电力电子器件已发展到相当成熟的阶段,但在实际中却存在两个制约其继续发展的致命因素。一是控制功能上的欠缺,因为通过门极只能控制其开通而不能控制其关断,属于半控型器件。二是此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了其应用范围。因此,半控制器件的发展已处于停滞状态。 到了70 年代末,可关断晶闸管(GTO)器件日趋成熟,标志着电力电子器件已经从半控型器件发展到全控制型器件。进入80 年代以后,伴随着GTO器件的发展及成熟,MOS 器件的开发则繁花似锦。绝缘栅双极晶体管(IGBT)独占鳌头。至此电力电子器件又从电流控制型器件发展到电压控制型器件。90 年代,电力电子器件又在向智能化、模块化方向发展,力求将电力器件与驱动电路、保护电路、检测电路等集成在一个芯片或模块内,使装置更趋小型化、智能化,其典型器件是IPM。而IGCT 器件既具有IGBT 器件的开关特性,同时又具有GTO 器件的导通特性,且制造成本较低(与GTO和IGBT相比),可以获得和GTO晶闸管一样的产量,即其集IGBT与GTO二者优势于一身,预计今后会在更多的

转矩控制矢量控制和VF控制解析

转矩控制矢量控制和V F 控制解析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

转矩控制、矢量控制和VF控制解析 1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 控制就是变频器输出频率与输出电压比值为恒定值或正比。例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气 隙磁通感应的电动势的有效值,V;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式 中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的 基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频率从基频向上可以 调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。 3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一 个以转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电机的扭矩。矢量控制时的速度控制(ASR)通过操作转矩指令,使得速 度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。带PG的V/f控 制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG的反馈或速 度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法

伺服电机位置速度转矩控制的区别

伺服电机位置、速度、转矩控制的区别? “位置”、”速度”、”转矩”是伺服系统由外到内的三个闭环控制方式。 位置控制方式有伺服完成所有的三个闭环的控制,计算机只需要发送脉冲串给伺服单元即可,计算机一侧不需要完成 PID控制算法;使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制,计算机需要发送模拟量给伺服单元,计算机一侧需要完成PID 位置控制算法,然后通过D/A输出。 一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。另外,有人认为位置控制方式容易受到干扰。 扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,上位机的算法也简单,只需要发送给伺服单元一个目标扭矩值,是一个模拟量。多用在单一的扭矩控制场合,比如在印刷机系统中,一个电机用速度或位置控制方式,用来确定印刷位置,另一个电机用作扭矩控制方式,用来形成恒定的张力。这三种工作方式实际上由三个控制回路来实现的。 位置控制方式由位置环实现,即将输出位置与指令位置比较生成控制量,使输出位置与输入位置保持一致。 位置控制模式是上位机给到电机的设定位置和电机本身的编码器位置反馈信号,或者设备本身的直接位置测量、反馈进行比较形成位置环,以保证伺服电机运动到设定的位置。位置环的输出给到速度环作为速度环的设定。 速度方式时,由速度环实现,速度回路则将输出速度与指令速度比较,生成控制量,位置环断开。使输出速度与输入速度信号保持一致。 速度模式下就是电机速度设定和电机上所带编码器的速度反馈形成闭环控制。以伺服电机实际速度和和设定速度一致。速度环的控制输出就是转矩模式的下的电流环的力矩给定。 转矩方式时,由电流环实现,速度环与位置环均断开,它的用途是使输出的电流与输入的电流保持一致。 转矩控制模式,就是让伺服电机按给定的转矩进行旋转就是保持电机电流环的输出恒定。如果外部负载转矩大于或等于电机设定的输出转矩则电机的输出转矩会保持在设定转矩不变,电机会跟随负载来运动。如果外部负载转矩小于电机设定的输出转矩则电机会一直加速直到超出电机或驱动的最大允许转速后报警停在。 电流环为最内环,速度环为次外环,位置环为外环。所以说,转矩控制模式是利用了伺服电机控制最基层的电流控制环,速度控制环是建立在电流环之上的,位置控制环又是建立在速度环之上的还有底层的电流环。 早期的伺服驱动一般没有位置环。由定位模块和数控装置实现位置环。

直流力矩电动机

1.3 直流力矩电动机 1.3.1 概述 在某些自动控制系统中,被控对象的运动速度相对来说是比较低的。例如某一种防空雷达天线的最高旋转速度为90°/s,这相当于转速15 r/min。一般直流伺服电动机的额定转速为1500 r/min或3000 r/min,甚至6000 r/min,这时就需要用齿轮减速后再去拖动天线旋转。但是齿轮之间的间隙对提高自动控制系统的性能指标很有害,它会引起系统在小范围内的振荡和降低系统的刚度。因此,我们希望有一种低转速、大转矩的电动机来直接带动被控对象。 直流力矩电动机就是为满足类似上述这种低转速、大转矩负载的需要而设计制造的电动机。它能够在长期堵转或低速运行时产生足够大的转矩,而且不需经过齿轮减速而直接带动负载。它具有反应速度快、转矩和转速波动小、能在很低转速下稳定运行、机械特性和调节特性线性度好等优点。特别适用于位置伺服系统和低速伺服系统中作执行元件,也适用于需要转矩调节、转矩反馈和一定张力的场合(例如在纸带的传动中)。 1.3.2 结构特点 直流力矩电动机的工作原理和普通的直流伺服电动机相同,只是在结构和外形尺寸的比例上有所不同。一般直流伺服电动机为了减少其转动惯量,大部分做成细长圆柱形。而直流力矩电动机为了能在相同的体积和电枢电压下产生比较大的转矩和低的转速,一般做成圆盘状,电枢长度和直径之比一般为0.2 左右;从结构合理性来考虑,一般做成永磁多极的。为了减少转矩和转速的波动,选取较多的槽数、换向片数和串联导体数。 总体结构型式有分装式和内装式两种,分装式结构包括定子、转子和刷架三大部件,机壳和转轴由用户根据安装方式自行选配;内装式则与一般电机相同,机壳和轴已由制造厂装配好。 图1 - 28 直流力矩电动机的结构示意图 1.3.3 为什么直流力矩电动机转矩大、转速低 如上所述,力矩电动机之所以做成圆盘状,是为了能在相同的体积和控制电压下产

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

矢量控制与直接转矩控制之我见

矢量控制与直接转矩控制之我见 My Opinion on Vector Control and Direct Torque Control 艾默生网络能源有限公司变频器开发部 刘宏鑫 MDI R&D Department of Emerson Network Power Co.,LTD Liu Hong Xin 摘要:本文阐述采用矢量控制与直接转矩控制技术的变频器性能的优劣,提出了两种技术的发展方向。 关键词:矢量控制 直接转矩控制 变频器 Abstract: The merits and demerits of inverter using VC and DTC are discussed in detail. The trend of VC and DTC is presented in this paper. Keywords:Vector Control Direct Torque Control Inverter 一、矢量控制与直接转矩控制技术发展 自从70年代初期西德Blaschke等人首先提出矢量控制(Vector Control,简称VC)理论,到80年代中期德国人M.depenbrock等人首先提出直接转矩控制理论(Direct Torque Control,简称DTC)以来,全世界各地的高校、科研机构、各大变频器公司投入巨大资金和精力来研究,高性能交流变频调速技术如雨后春笋般的涌现出来。由于矢量控制与直接转矩控制技术均是基于异步电机的动态模型,而且均采用外环为速度环,内环为转矩和磁链控制,从而实现转速和磁链的近似解耦,获得了较好的动态性能[1]。 矢量控制的研究重点在于矢量控制环路的结构、无速度传感器速度辨识和电机参数的离线和在线辨识。DTC的重点在于无速度传感器速度辨识、磁链和转矩自控制、脉冲优化选择器等方面。两者的目的在于提高系统转矩控制动态响应、稳态速度精度(速度辨识的精度、转矩脉动大小、冷态热态情况下的自适应能力)、系统的鲁棒性。由于两者算法对于数字化要求非常高、对运算的速度要求也非常高,因此受CPU速度的限制,真正高性能全数字化的无PG变频器在90年代中后期才陆续出现的。表1是1999年8家公司商用化无速度传感器的性能比较[2]。 近几年来,变频器的控制水平又有很大提高,如日立SJ300具有电压检测电路,可以达到1∶500以上的调速范围,而且零速可以达到150%的转矩,富士VG7由于具有电压检测电路,开环辨识精度较高,号称达到开环伺服水平。由于欧洲变频器研发工作着重于V/F 控制或者闭环矢量控制模式,欧洲开环矢量控制变频器的技术水平与日本的差距较多。由于欧洲的制造业非常发达,推动了伺服控制技术的发展,相比日本有一定的优势。 二、通用变频器控制技术的现状

直接转矩控制

太原科技大学 题目:直接转矩控制 专业:电气工程 班级:研1403 姓名:安顺林 学号:S2*******

直接转矩控制 摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。 关键字直接转矩控制,异步电动机 一直接转矩控制系统介绍 1.1 异步电动机调速系统的发展状况 在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。 1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。 矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。 直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

力矩电机控制系统设计

力矩电机控制系统 一、设计目的及任务 力矩电机分直流力矩电机和交流力矩电机,其工作原理和普通直流和交流电 机的工作原理是一样的。但是不同的是直流力矩电机的电枢绕组的电阻比普通直流电机的电枢绕组的电阻大,同样交流力矩电机转子的电阻比普通交流电机的转子电阻大。对于力矩电机我们注重它的技术参数主要是额定堵转电压,额定堵转电流和额定堵转电流下的堵转时间。 力矩电机的特点是具有软的机械特性,可以堵转。当负载转矩增大时能自动 降低转速,同时加大输出转矩。当负载转矩为一定值时改变电机端电压便可调速,但转速的调整率不好。因而在电机轴上加一测速装置,配上控制器,利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压,使电机稳定。 设计任务就是要设计一个控制系统来控制力矩电机,使其产生满足要求的力矩。 1、能产生所要求的力矩,可用于一些地面模拟设备上,用来模拟设备运行时的干扰力矩; 2、可用于控制系统设计课程实验设备或是控制算法的验证。 二、设计要求 本系统为力矩电机的控制系统,设计要求如下: 1、可以产生三种固定的力矩波形; 2、可以根据要求任意设定力矩波形,这样可以大大增加系统的灵活性; 3、可以实现单片机和PC的相互传输; 4、控制精度高,响应快; 5、力求简单,实用。 三、设计方案 系统的装置由光电码盘,稀土永磁直流力矩电机和飞轮组成。 在控制器的设计上,为了做到简单、实用,选择了常用的PID控制;为了提高系统的控制精度,从软件上对系统进行误差补偿。 1、系统工作原理 通过控制向力矩电机施加的电流,向飞轮施加力矩,使飞轮加速后减速旋转,反作用力矩通过模拟器机械装置的底座同时施加到连接的转台上,达到向状态施加力矩的作用,全部过程再闭环控制下进行。系统总体框图如图1所示: 图1.系统总体框图 2、控制系统描述 电机转动的角度经光电码盘检测转化为脉冲输出,对脉冲信号进行计算就得 到角度转动的累计值,控制计算机将指令与光电码盘输出的角度信号相比较,得

直接转矩控制原理

直接转矩控制原理 直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。 传统直接转矩控制方法偏差分类: 磁链: 1,需要增大 2,需要减小 转矩: 1,需要增大 2,不变 3,需要减小 可见共有6中要求控制状态。在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。仿真系统中这个功能由滞环比较单元与查表单元结合产生。 一、引言 电动机调速是各行各业中电动机应用系统的必需环节。直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。 交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。 1.交流传动的发展简述 首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接 转矩控制(DTC)调速系统。由于VVVF系统只是维持电动机内的磁链恒定,

并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。 1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。 2.矢量控制(FOC)和直接转矩控制(DTC)的简略对比 (1)控制原理:FOC是在转子磁通坐标系中,通过分别控制q轴和d轴定子电流分量,实现转速和磁链的解耦控制。其实质是通过坐标变换重建的电动机数学模型等效为直流电动机,从而象直流电动机那样进行快速的转矩和磁通控制。DTC是在定子坐标系下通过检测电动机定子电压和电流,采用空间矢量理论计算电动机的转矩和磁链,并根据与给定值比较所得差值,实现转矩和磁链的直接控制。 (2)控制性能:FOC的调速范围较宽(1:20~200),调速精度较高,低速特性连续,响应速度较快,但受参数变化影响较大,且计算复杂,控制相对繁琐。DTC的调速范围较窄(1:15~100),调速精度也较高,响应速度快,低速特性有脉动现象,但其不仅计算简便,而且控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,动静态性能均佳,有广阔的应用前景。 图1异步电动机的空间矢量等效电路 直接转矩控制的基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电动机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。 二、数学模型 1.异步电动机转矩的数学模型

相关主题
文本预览
相关文档 最新文档