4-4 初等矩阵与初等变换
- 格式:ppt
- 大小:3.92 MB
- 文档页数:20
§2.2 矩阵的初等变换与初等矩阵1.矩阵的初等变换定义2.1 下列三种变换称为矩阵的初等列变换: (1)交换矩阵的第,i j 列,用i j c c ↔记之; (2)用非零数k 乘矩阵的第i 列,用i kc 记之;(3)把矩阵的第i 列的k 倍加到第j 列,用j i c kc +记之。
矩阵的初等行变换与列变换,统称为矩阵的初等变换。
如果矩阵A 经过有限次初等(行,列)变换,化为矩阵B ,就称矩阵A 与B (行,列)等价,记作~A B 。
矩阵的等价具有以下性质: (1)反身性 ~A A ;(2)对称性 如果~A B ,则~B A ;(3)传递性 如果~A B ,~B C ,则~A C 。
利用初等行变换,将方程组的增广矩阵化为行最简形,从而得出方程组的解。
可见,讨论矩阵的某种结构简单、而形式特定的等价矩阵,在理论和实际应用上都是必要而有价值的。
对矩阵的行最简形再施行初等列变换,可得到一种结构最为简单的形式。
以§A 为例,矩阵A 的行最简形为11610039210103910001300000⎛⎫⎪⎪⎪-⎪ ⎪- ⎪⎪⎝⎭,再经初等列变换344151425253116211,,,,,39393c c c c c c c c c c c c ↔---++化为10000010000010000000⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭F 。
称矩阵F 为矩阵A 的等价标准形。
定理 2.1 矩阵()ij m n a ⨯=A 经过有限次初等变换可化为如下的等价标准形:()()()()rr n r m r r m r n r ⨯--⨯-⨯-⎛⎫=⎪⎝⎭I O F O O ,其中下方及右边的零行,零列可能空缺。
由行列式的性质可知,行列式不为零的方阵,其等价矩阵的行列式也不为零。
由此可得以下结论:可逆矩阵的等价矩阵也为可逆矩阵;可逆矩阵的行最简形就是等价标准形,且一定是单位矩阵。
2.初等矩阵定义2.2 由单位矩阵经一次初等变换而得的矩阵称为初等矩阵。
初等行变换和初等矩阵的关系初等行变换是矩阵运算中的一种重要操作,而初等矩阵是初等行变换的矩阵表示形式。
初等行变换和初等矩阵之间存在着密切的关系,它们是线性代数中不可或缺的概念。
初等行变换是指对矩阵的行进行一系列的操作,包括交换两行、某一行乘以一个非零常数、某一行乘以一个非零常数后加到另一行上。
这些操作可以改变矩阵的形式,但不会改变它的行空间和列空间。
初等行变换的目的是简化矩阵的计算和处理,使得矩阵的求解更加方便。
而初等矩阵是由单位矩阵经过一次初等行变换得到的矩阵。
初等矩阵的定义是一个主对角线上全为1,其余元素全为0的方阵。
初等矩阵是一种特殊的矩阵,它具有很多重要的性质和应用。
初等行变换和初等矩阵之间的关系体现在以下几个方面:1. 初等矩阵可以表示初等行变换:对于给定的矩阵A,经过一次初等行变换可以得到一个新矩阵B,那么存在一个与初等行变换对应的初等矩阵P,使得B=PA。
这意味着对矩阵进行初等行变换等价于左乘一个初等矩阵。
2. 初等矩阵的乘积仍然是初等矩阵:对于两个初等矩阵P和Q,它们的乘积PQ仍然是一个初等矩阵。
这是因为初等矩阵具有特殊的形式,满足乘法的封闭性。
3. 初等矩阵是可逆的:初等矩阵是方阵,且行列式不为零,因此是可逆的。
对于每一个初等矩阵P,存在一个逆矩阵P^-1,使得PP^-1=P^-1P=I,其中I是单位矩阵。
4. 初等矩阵的逆仍然是一个初等矩阵:对于一个初等矩阵P,它的逆矩阵P^-1仍然是一个初等矩阵。
这是因为初等矩阵的定义决定了它的逆矩阵的形式。
初等行变换和初等矩阵在线性代数中有着重要的应用。
它们可以用于求解线性方程组、求解矩阵的秩、求矩阵的逆等问题。
通过初等行变换和初等矩阵,可以将一个复杂的矩阵化简为一个更简单的形式,从而简化了问题的求解过程。
初等行变换和初等矩阵是线性代数中的重要概念,它们之间存在着紧密的联系。
初等行变换通过对矩阵的行进行一系列操作,而初等矩阵则是初等行变换的矩阵表示形式。
2.3初等变换与初等矩阵授课题目 2.3初等变换与初等矩阵授课时数:4课时教学目标:掌握初等变换的定义,初等矩阵与初等变换的关系,矩阵的等价标准形,阶梯形矩阵,和行简化阶梯形矩阵教学重点:用初等变换求矩阵的等价标准形、阶梯形矩阵,和行简化阶梯形矩阵教学难点:求矩阵的等价标准形、阶梯形矩阵,、行简化阶梯形矩阵教学过程:用初等变换化简矩阵A为B,通过B的性质来探讨A的性质,这是研究矩阵的重要手段。
为了把变换过程用运算的式子表示出来,我们要引入初等矩阵,研究初等矩阵与初等变换的关系。
一.初等变换与初等矩阵1.初等变换(1)定义定义1矩阵的初等行(列)变换是指下列三种变换:1)换法变换:交换矩阵某两行(列)的位置;2)倍法变换:用一个非零数乘矩阵的某一行(列);3)消法变换:把矩阵的某一行(列)的k倍加到另一行(列)上去,k为任意数。
矩阵的初等行变换和初等列变换统称为初等变换。
(2)记法分别用[i,j],[i(k)],[i • j(k)]表示三种行(列)变换,写在箭头上面表示行变换,写在箭头下面表示列变换。
或者行变换用R.. R j,kR j,R j ■ kR j,列变换用C- C j,kC i,C i kC j例110-12if T10-12100 2A =2312033-203 3 -2-121丿J-121丿-1 3 1丿2.初等矩阵(1 )初等矩阵的定义定义2由单位矩阵I 经过一次初等变换得到的矩阵称为初等矩阵 每个初等变换都有一个与之相应的初等矩阵(110 1 :11 : 1 0 1i 行二 Di(k )i 行= T j (k) j 行1 k+ .a1j 列(1i 行 = T j (k) j 行 bR j 、D j (k)、T ij (k)分别叫做换法阵、倍法阵、消法阵。
* T j (k)是从行的角度来定义,进行列消法变换时,要转化为行来表示。
二. 初等变换与初等矩阵的关系1、 问题能否用矩阵的乘积的等式把初等变换的过程表示出来? 如果能够,这对研究矩阵的关系是有很大帮助的。
初等矩阵及初等变换矩阵的初等变换⼜分为矩阵的初等⾏变换和矩阵的初等列变换。
1)初等⾏变换:所谓数域P上矩阵的初等⾏变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i⾏,即为E i(k),那它的逆矩阵⾃然就是E i(1 k)。
b. 把矩阵第i⾏的k倍加到第j⾏,这⾥k是P中的任意⼀个数,记为E ij(k),要想把第j⾏变回去,⾃然得减掉第i⾏的k倍,即E ij(−k)。
c. 互换矩阵中第i⾏和第j⾏,记为E ij,逆矩阵为E ij,这是很显然的,就是再交换⼀次就变回去了。
2)初等列变换:所谓数域P上矩阵的初等列变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i列,记为E i(k)。
b. 把矩阵的第i列的k倍加到第j列,这⾥k是P中的任意⼀个数,记为E ij(k)。
c. 互换矩阵中第i列和第j列,记为E ij。
初等矩阵:由单位矩阵E经过⼀次初等变换得到的矩阵称为初等矩阵。
矩阵经过初等变换后不会改变它原来的秩,因为初等矩阵是满秩的⽅阵,所以它是可逆的,如PA=B于是有r(B)≤r(A)因为P可逆,所以有A=P−1B于是r(A)≤r(B)所以r(A)=r(B)注:如果不了解这个过程,可以先去阅读。
左⾏右列定理:初等矩阵P左乘或(右乘) A得到PA(AP),就是对A做了⼀次与P相同的初等⾏(列)变换。
即要使矩阵A做出和初等阵相同的列变换,则A右乘P。
要使矩阵A做出和初等阵相同的⾏变换,则A左乘P。
为什么是这样的呢?可以阅读。
其实就是从向量⾓度来理解矩阵乘法,对于矩阵相乘AB=C,我们可以这样理解:1)矩阵C的每⼀个⾏向量是矩阵B的⾏向量的线性组合,组合的系数是矩阵A的每⼀⾏。
2)矩阵C的每⼀个列向量是矩阵A的列向量的线性组合,组合的系数是矩阵B的每⼀列。
Processing math: 100%。