第12章陶瓷材料
- 格式:ppt
- 大小:1.57 MB
- 文档页数:40
陶瓷材料概述范文陶瓷材料是一种非金属无机材料,其主要成分为氧化物、非氧化物和组合材料。
陶瓷材料具有许多独特的性质,如高温耐性、耐腐蚀性、绝缘性、硬度高等,因此被广泛应用于工业、冶金、化工、电子、建筑等领域。
陶瓷材料根据其结构与用途可分为三类:普通陶瓷、特种陶瓷和结构陶瓷。
普通陶瓷是最基本的一种陶瓷材料,由黏土和瓷石等原料烧结而成。
普通陶瓷具有较低的价格和良好的加工性能,广泛应用于建筑材料、制陶工业、机械工业等。
常见的普通陶瓷有砖瓦、瓷器等。
特种陶瓷是一类性能优良、用途特殊的陶瓷材料。
特种陶瓷的特点是高温稳定性、耐磨性和电绝缘性能的提高。
根据其化学成分和结构特点,特种陶瓷可分为氧化物陶瓷、非氧化物陶瓷和复合陶瓷。
氧化物陶瓷包括金刚石(碳化硅)陶瓷、氧化铝陶瓷、氧化锆陶瓷等,主要用于高温热工业、电子工业、机械制造业等。
非氧化物陶瓷主要包括硼化硅陶瓷、氮化硼陶瓷等,具有高硬度、耐磨性、导热性能等,广泛应用于航空航天、电子、光学等领域。
复合陶瓷由两种或多种不同材料组成,具有更加优良的性能,例如碳化硅纤维增强碳化硅(C/C)复合陶瓷材料广泛应用于高温结构部件。
结构陶瓷是一类性能优异的陶瓷材料,具有高强度、低密度和良好的耐磨性能。
结构陶瓷主要用于制造高压磨料工具、轴承等机械结构部件。
常见的结构陶瓷有氮化硼陶瓷、氧化铝陶瓷等。
陶瓷材料还具有许多其他特殊的性能,如生物相容性、超导性、光学透明性等。
在现代科技的发展中,陶瓷材料发挥着重要的作用。
例如,陶瓷瓦片用于建筑中的防水、隔热层;陶瓷杯用于食品和饮料的容器;陶瓷电容用于电子器件中的储能等。
陶瓷材料的应用领域不断扩大,对于人类社会的发展与进步具有重要的推动作用。
总之,陶瓷材料是一类非金属无机材料,具有独特的性质和广泛的应用领域。
普通陶瓷、特种陶瓷和结构陶瓷是其主要分类。
陶瓷材料在工业、冶金、化工、电子、建筑等领域起到重要的作用,对于促进社会进步和技术发展具有重要意义。
什么是陶瓷材料陶瓷材料是一种广泛应用于工业和日常生活中的材料,它具有优异的性能和多样的用途。
陶瓷材料主要由氧化物、非氧化物和复合材料组成,具有高温、耐腐蚀、绝缘、硬度高等特点。
在工业上,陶瓷材料被广泛应用于电子、化工、机械、建筑等领域;在日常生活中,陶瓷材料也被用于制作餐具、装饰品、工艺品等。
首先,陶瓷材料的种类非常丰富,主要包括氧化铝、氧化锆、氧化硅、氮化硼、碳化硅等。
这些材料具有不同的特性,适用于不同的领域。
比如,氧化铝具有高强度、硬度和耐磨损性能,常被用于制作陶瓷刀具、轴承等;氧化锆具有高韧性和耐高温性能,被广泛应用于医疗器械、航空航天等领域。
其次,陶瓷材料具有优异的耐高温性能。
由于其分子结构的稳定性,陶瓷材料在高温下不易软化和熔化,因此在高温环境下能够保持其原有的性能。
这使得陶瓷材料在航空航天、电子、冶金等高温领域有着广泛的应用。
比如,陶瓷材料常被用于制作航天器的热屏蔽材料、高温炉具的内衬等。
此外,陶瓷材料还具有良好的绝缘性能。
由于其分子结构中缺乏自由电子,陶瓷材料不易导电,因此具有良好的绝缘性能。
这使得陶瓷材料在电子、电气等领域有着重要的应用。
比如,陶瓷材料常被用于制作电子元器件的基板、绝缘子等。
最后,陶瓷材料还具有良好的耐腐蚀性能。
由于其化学稳定性较高,陶瓷材料在酸碱等腐蚀性介质中具有较好的稳定性,因此被广泛应用于化工、环保等领域。
比如,陶瓷材料常被用于制作化工设备的耐腐蚀衬里、过滤器等。
综上所述,陶瓷材料具有多种优异的性能,被广泛应用于工业和日常生活中。
随着科技的不断发展,相信陶瓷材料在未来会有更广阔的应用前景。
第12章陶瓷材料12.1复习笔记一、陶瓷概述(1)陶瓷①定义传统上“陶瓷”是陶器与瓷器的总称。
后来,发展到泛指整个硅酸盐材料,包括玻璃、水泥、耐火材料、陶瓷等。
②分类陶瓷一般归纳为:工程陶瓷和功能陶瓷。
(2)新型无机材料新型无机材料是指在传统硅酸盐材料的基础上,用无机非金属物质为原料,经粉碎、配制、成型和高温烧结制得的无机材料,如功能陶瓷,特种玻璃,特种涂层等。
(3)新型无机材料与传统硅酸盐材料的比较①从组成上看新型无机材料的组成远远超过硅酸盐的范围,除氧化物和含氧酸盐之外,还有碳化物、氮化物、硼化物、硫化物及其他盐类和单质。
②从性能上看a.新型无机材料不仅具有熔点高,硬度高,化学稳定性好,耐高温,耐磨损等优点;b.一些特殊陶瓷还具有一些特殊性能,如介电性、压电性、铁电性、半导性、软磁性、硬磁性等。
二、陶瓷材料的典型结构陶瓷是指由金属(类金属)和非金属元素之间形成的化合物。
这些化合物的结合键主要是离子键或共价键。
1.离子晶体陶瓷结构(1)分类①NaCl型结构:MgO、NiO、FeO等;②CaF2型结构:等;③刚玉型结构:等;④钙钛矿型结构:。
(2)刚玉型结构(如图12-1-1所示)图12-1-1Al2O3晶体结构刚玉型结构中每晶胞有6个氧离子、4个铝离子。
其中:①氧离子占密排六方结点位置,铝离子配置在氧离子组成的八面体间隙中,但只填2/3如图12-1-1(b)所示;②铝离子的排列要满足铝离子之间的间距最大,因此每三个相邻的八面体间隙,就有一个是有规律地空着,如图12-1-1(a)所示。
(3)钙钛矿型结构(如图12-1-2所示)图12-1-2钙钛矿结构钙钛矿型结构中每个晶胞中有1个钛离子、1个钙离子、3个氧离子。
其中:①原子半径较大的钙离子与氧离子作立方最密堆积;②半径较小的钛离子位于氧八面体间隙中,构成钛氧八面体[TiO6]。
钛离子只占全部八面体间隙的1/4。
2.共价晶体陶瓷结构共价晶体陶瓷多属金刚石结构。
《金属切削原理》第十二章:磨削加工详解磨削用于加工坚硬材料及精加工、半精加工内圆磨削外圆磨削平面磨削普通平面磨削圆台平面磨削超精磨削加工第一节砂轮的特性及选择砂轮由磨料、结合剂、气孔组成特性由磨料、粒度、结合剂、硬度、组织决定一、磨料分为天然磨料和人造磨料人造磨料氧化物系刚玉系(Al2O3)碳化物系碳化硅系碳化硼系超硬材料系人造金刚石系立方氮化硼系二、粒度表示磨粒颗粒尺寸的大小>63µm号数为通过筛网的孔数/英寸(25.4mm)机械筛分一般磨粒<63µm号数为最大尺寸微米数(W)显微镜分析法微细磨粒精磨细粒降低粗糙度粗磨粗粒提高生产率高速时、接触面积大时粗粒防烧伤软韧金属粗粒防糊塞硬脆金属细粒提高生产率国标用磨粒最大尺寸方向上的尺寸来表示三、结合剂作用:将磨料结合在一起,使砂轮具有必要的强度和形状1、陶瓷结合剂(A)常用由黏土等陶瓷材料配成特点:粘结强度高、耐热、耐酸、耐水、气孔率大、成本低、生产率高、脆、不能承受侧向弯扭力2、树脂结合剂(S)切断、开槽酚醛树脂、环氧树脂特点:强度高、弹性好、耐热性差、易自砺、气孔率小、易糊塞、磨损快、易失廓形、与碱性物质易反应、不易长期存放3、橡胶结合剂(X)薄砂轮、切断、开槽、无心磨导轮人造橡胶特点:弹性好、强度好、气孔小、耐热性差、生产率低4、金属结合剂(Q)磨硬质合金、玻璃、宝石、半导体材料青铜结合剂(制作金刚石砂轮)特点:强度高、自砺性差、形面成型性好、有一定韧性四、硬度在磨削力作用下,磨粒从砂轮表面脱落的难易程度分为超软、软、中软、中、中硬、硬、超硬工件材料硬砂轮软些防烧伤工件材料软砂轮硬些充分发挥磨粒作用接触面积大软砂轮精度、成形磨削硬砂轮保持廓形粒度号大软砂轮防糊塞有色金属、橡胶、树脂软砂轮防糊塞五、组织磨粒、气孔、结合剂体积的比例关系分为:紧密(0~3)、中等(4~7)、疏松(8~14)(磨粒占砂轮体积%↘)气孔、孔穴开式(与大气连通)占大部分,影响较大闭式(与大气不连通)尺寸小、影响小开式空洞型蜂窝型前两种构成砂轮内部主要的冷却通道管道型5~50µm六、砂轮的型号标注形状、尺寸、磨料、粒度号、硬度、组织号、结合剂、允许最高圆周线速度P300x30x75WA60L6V35外径300,厚30,内径75第二节磨削运动一、磨削运动1、主运动砂轮外圆线速度 m/s2、径向进给运动进给量fr 工件相对砂轮径向移动的距离间歇进给 mm/st 单行程mm/dst 双行程连续进给 mm/s3、轴向进给运动进给量fa 工件相对砂轮轴向的进给运动圆磨 mm/r平磨 mm/行程4、工件速度vw线速度 m/s二、磨削金属切除率ZQ=Q/B=1000·vw·fr·fa/B mm^3/(s·mm)ZQ:单位砂轮宽度切除率Q:每秒金属切除量用以表示生产率B:砂轮宽度三、砂轮与工件加工表面接触弧长lc=sqrt(fr·d0)影响参加磨削磨粒数目及磨粒负荷,容屑,冷却条件四、砂轮等效直径将外圆(内圆)砂轮直径换算成接触弧长相等的假想平面磨削的砂轮直径结论:对砂轮耐用度影响内圆>平面>外圆第三节磨削的过程一、单个磨粒的磨削过程磨粒的模型锐利120°圆锥钝化半球实际磨粒:大的负前角,大的切削刃钝圆半径滑擦、耕犁、切削滑擦:(不切削,不刻划)产生高温,引起烧伤裂纹耕犁:(划出痕迹)磨粒钝或切削厚度小于临界厚度,工件材料挤向两侧隆起切削:切削厚度大于临界厚度,形成切屑v↑→隆起↓(线性)塑性变形速度<磨削速度二、磨削的特点1、精度高、表面粗糙度小高速、小切深、机床刚性2、径向分力Fn较大多磨粒切削3、磨削温度高磨粒角度差、挤压和摩擦、砂轮导热差4、砂轮的自砺作用三、磨削的阶段1、初磨阶段实际磨深小于径向进给量2、稳定阶段实际磨深等于径向进给量3、清磨阶段实际磨深趋向于0提高生产率缩短1、2提高质量保证3第四节磨削力及磨削功率一、磨削力的特征分解成三个分力Ft切向力 Fn法向力 Fa轴向力特征:1、单位切削力k很大磨粒几何形状的随机性和参数的不合理性7000~20000kgf/mm^2 其他切削方式k<700kgf/mm^22、Fn值最大Fn/Ft 通常2.0~2.5工件塑性↓、硬度↑→Fn/Ft↑切深小,砂轮严重磨损 Fn/Ft 可达5~103、磨削力随磨削阶段变化初磨、稳定、光磨二、磨削力及磨削功率摩擦耗能占相当大的比例(70~80%)切向力(N):Ft=9.81·(CF·(vw·fr·B/v)+µ·Fn)径向力(N):Fn=9.81·CF·(vw·fr·B/v)·tan(α)·(π/2) vw:工件速度v:砂轮速度fr:径向进给量B:磨削宽度CF:切除单位体积切屑所需的能 kgf/mm^2µ:工件-砂轮摩擦系数α:假设粒度为圆锥时的锥顶半角磨削功率P=Ft·v/1000 Kw理论公式精度不高,常用实验测定(顶尖上安装应变片)第五节磨削温度耕犁、滑擦和形成切屑的能量全部转化成热,大部分传入工件一、磨削温度砂轮磨削区温度θA:砂轮与工件接触区的平均温度影响:烧伤、裂纹的产生磨粒磨削点温度θdot:磨粒切削刃与切屑接触部分的温度温度最高处,是磨削热的主要来源影响:表面质量、磨粒磨损、切屑熔着工件温升:影响:工件尺寸、形状精度受影响二、影响磨削温度的因素切削液为降温的主要途径1、工件速度对磨粒磨削点温度的影响大于砂轮速度vw↑→acgmax↑→F↑→θdot↑大v↑→acgmax↓→θdot↑小→摩擦热↑↗acgmax:单个磨粒最大切削厚度 mm假设:磨粒前后对齐,均匀分不在砂轮表面平面磨:acgmax=(2·vw·fa/(v·m·B))sqrt(fr/dt)外圆磨:acgmax=(2·vw·fa/(v·m·B))sqrt((fr/dt)+(fr/dw))dt:砂轮直径m:每毫米周长磨粒数用于定性分析2、径向进给量Frfr↑→acgmax↑→θdot↑fr↑→接触区↑→同时参加切削磨粒数↑→θA↑3、其他因素fa↑→θdot↑、θA↑工件材料硬度↑、强度、↑韧性↑→θdot↑、θA↑θA↑→工件温升↑vw↑→被磨削点与砂轮接触时间↓→工件温升↗三、磨削温度的测量(热电偶)第六节砂轮的磨损及表面形貌一、砂轮的磨损类型磨耗磨损磨粒磨损破碎磨损磨粒或结合剂破碎(取决于磨削力与磨粒、结合剂强度)破碎磨损消耗砂轮多磨耗磨损通过磨削力影响破碎磨损阶段初期磨损磨粒破碎磨损(个别磨粒受力大,磨粒内部应力与裂纹)二期磨损磨耗磨损三期磨损结合剂破碎磨损二、砂轮的耐用度T砂轮相邻两次修整期间的加工时间 s各因素通过平均切削厚度来影响T经验公式:T=6.67·(dw^0.6)·km·kt/(10000·(vw·fa·fr)^2)dw:工件直径kt:砂轮直径修正系数km:工件材料修正系数粗磨时间常用单位时间内磨除金属体积与砂轮磨耗体积之比来选择砂轮三、砂轮的修整作用去除钝化磨粒或糊塞住的磨粒,使新磨粒露出来增加有效切削刃,提高加工表面质量工具单颗金刚石、单排金刚石、碳化硅修整轮、电镀人造金刚石滚轮、硬质合金挤压轮等使用单颗金刚石:导程小于等于磨粒平均直径,每颗磨粒都能修整深度小于等于磨粒平均直径,提高砂轮寿命四、表面形貌单位面积上磨粒数目越多→acgmax↓→磨粒受力↓→磨粒寿命↑→T↑磨粒高度分布越均匀→粗糙度↓磨粒间距均匀性越好→粗糙度↓第七节磨削表面质量与磨削精度一、表面粗糙度比普通切削小小于 Ra2~4µmvw↓、v↑、R工↑、R砂↑、细粒度→粗糙度↓细粒度→m↑→粗糙度↓B↑→acgmax↓→粗糙度↓磨粒等高性好→粗糙度↓二、机械性能1、金相组织变化烧伤:C↑、合金元素↑→导热性↓→易烧伤高温合金↑→磨削功率↑→θA↑→易烧伤影响:破坏工件表层组织,产生裂纹,影响耐磨性和寿命2、残余应力原因:相变引起金相组织体积变化温度引起热胀冷缩和塑性变形的综合结果光磨10次残余应力减少2~3倍光磨15次残余应力减少4~5倍fa↓、fr↓→拉应力↓3、磨削裂纹磨削速度垂直方向上的裂纹(局部高温急冷造成热应力)三、磨削精度1、磨床与工件的弹性变形2、磨床与工件的热变形3、砂轮磨损导致形状尺寸变化3、磨床与工件振动研磨加工是应用较广的一种光整加工。
复习思考题第一章:1.试述铸造成型的实质及其优点。
2.合金的流动性决定于哪些因素?合金流动性不好对铸件品质有何影响?3.何谓合金的收缩?影响合金收缩的因素有哪些?4.冒口补缩的原理是什么?冷铁是否可以补缩?其作用与冒口有何不同?某厂铸造一批哑铃,常出现如图1-22所示的明缩孔,你有什么措施可以防止,并使铸件的清理工作量最小?5.何谓同时凝固原则和定向凝固原则?试对图1-23所示阶梯形试块铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。
第二章:1、影响铸件中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同?2、什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁?3、可锻铸铁是如何获得的?为什么它只宜制作薄壁小铸件?4、球墨铸铁是如何获得的?为什么球墨铸铁是“以铁代钢”的好材料?球墨铸铁可否全部代替可锻铸铁?5、识别下列牌号的材料名称,并说明其各组成部分的含义:ZL107,ZCuSn3Zn11pb4,ZCuA19Mn2,ZCuZn38.第三章:1、壳型铸造与普通砂型铸造有何区别?它适合于什么零件的生产?2、金属型铸造有何优越性及局限性?3、试述熔模铸造的主要工序,在不同批量下,其压型的制造方法有何不同?4、试确定图3-29所示零件在单件、小批生产条件下的造型方法。
5、试比较气化模铸造与熔模铸造的异同点及应用范围。
6、低压铸造的工作原理与压力铸造有何不同?为何铝合金常采用低压铸造?第四章:1、试确定图4-25所示铸件的浇注位置及分型面。
2、何谓铸件的浇注位置?它是否就是指铸件上的内浇道位置?3、试述分型面与分模面的概念。
分模两箱造型时,其分型面是否就是其分模面?4、浇注系统一般由哪几个基本组元组成?各组元的作用是什么?5、冒口的作用是什么?冒口尺寸是怎样确定的?6、何谓封闭式、开放式、底注式及阶梯式浇注系统?他们各有什么优点?第五章:1、试述结构斜度与起模斜度的异同点。
2、在方便铸造和易于获得合格铸件的条件下,图5-22所示铸件结构有何值得改进之处?怎样改进?3、铸造一个直径为1500mm的铸铁顶盖,有如图5-23所示的两个设计方案,试问哪个便于铸造,并简述理由。
第十二章非金屬材料加工金屬材料具有良好的機械和物理性質,故被廣泛地應用於製造各式各樣產品的零組件,其主要的加工方法已敘述於本書前面的章節。
然而,科技的進步促使人類對提升生活品質的目標和達成理想或想像世界的實現,不斷地提出具體化的要求。
為滿足這些要求所發展出之新產品中有些特殊的功能或性質是金屬材料所不易或根本無法達成的,例如高溫強度、高硬度、高耐磨耗、高耐腐蝕性、輕量化、高重量對強度比、低導電性、低電阻抗、兼具高強度及韌性等。
因此有許多非金屬材料和針對特定需求而研發出來的新材料被廣泛應用,並取代部份金屬材料的地位。
常見的工程用非金屬材料有陶瓷與玻璃、塑膠和複合材料(請參閱本書第二章之介紹)。
這些材料如同金屬材料一樣需經過加工程序被製成有一定形狀、尺寸及表面狀態的零件方具有工程的用途和商業的價值。
非金屬材料的組成和金屬材料有很大的不同,例如陶瓷是由金屬和非金屬元素以結晶構造所組成,原子間鍵結方式包含共價鍵和離子鍵。
玻璃的組成元素和陶瓷類似,但不具結晶組織。
塑膠是由許多單體聚集所形成之聚合體,結合的力量包含共價鍵和凡得瓦力(次鍵結)。
複合材料則是結合兩種或兩種以上不能相互固溶的物質所形成之非均質體材料。
由此可知,對非金屬材料加工的機制將與應用於金屬材料者,會有鉅大的差異。
12.1 陶瓷材料陶瓷(Ceramic)可分為傳統陶磁和工程陶瓷。
傳統陶瓷的應用歷史很悠久,典型的產品有陶器、瓷器、磚頭、地磚、下水道水管、砂輪等。
工程陶瓷則常被用於製造汽車、航太、渦輪機、熱交換器、半導體、密封環、噴嘴、切削刀具等。
陶瓷和金屬就其性質方面比較時,陶瓷比金屬的高溫強度和高溫硬度高、彈性係數大、脆性高、靭性低、密度低、熱膨脹係數低、熱傳導性低和導電性低等。
而且陶瓷材料的組成成分及晶粒大小的變化範圍極為廣泛,故其性質的變化範圍也相當鉅大,例如陶瓷的導電性可從近乎絕緣到非常優良,故可利用此特性製成半導體。
玻璃(Glass)被歸類為一種過冷液體,並不具結晶組織,無明確的熔點或凝固點的材料。
材料科学与工程基础《材料科学与工程基础》是2006年机械工业出版社出版的图书,作者是史密斯。
1内容简介本书由williamF.Smith和JavedHashemi编写的《材料科学与工程基础》第5版于2008年由McGraw-Hill出版。
2006年机械工业出版社影印该书第4版,获得好评,相对第4版,第5版有很多大的改进:对原子结构和结合键部分重新编写,更精确,更新颖,更加有利于教学;纳米技术贯穿于各章节中;对习题也有较大改进,进行科学分类,有利于学生和教师实现教学计划所要求的目标和校准。
希望引进该书第5版能使老师的教学和学生的使用更加方便。
[2]2目录出版说明第5版影印前言第4版影印前言Perface第1章材料科学与工程引论211材料与工程312材料科学与工程613材料的种类8131金属材料8132聚合物材料10133陶瓷材料11134复合材料13135电子材料1414材料间的竞争1515材料科学与技术的最新进展和未来趋势17 151智能材料17152纳米材料1916材料设计与选择1917第1章小结2018定义2119习题22第2章原子结构与键合2421原子结构和亚原子粒子2522原子序数、质量数和相对原子质量2823原子的电子结构31231普朗克量子理论和电磁辐射31232氢原子的玻尔理论34233不确定原理和薛定谔波函数37234量子数、能级和原子轨道40235多电子原子的能态43236量子力学模型和元素周期表4424原子尺寸、离化能和电子亲合力的周期性变化49241原子尺寸的变化趋势49242离化能的变化趋势49243电子亲和力的变化趋势52 244金属、类金属和非金属5225一次键54251离子键55252共价键61253金属键68254混合键7026二次键7127第2章小结7428定义7529习题77第3章材料中的晶体结构和非晶态结构84 31空间点阵和晶胞8532晶系与布拉菲点阵8633主要的金属晶体结构87331体心立方(BCC)晶体结构89 332面心立方(FCC)晶体结构92 333密排六方(HCP)晶体结构93 34立方晶胞中的原子位置9535立方晶胞中的晶向9636立方晶胞中晶面的米勒指数10037密排六方晶体结构中的晶面和晶向105 371HCP晶胞中的晶面指数105372HCP晶胞中的晶向指数10638FCC、HCP和BCC晶体结构的比较108 381FCC和HCP晶体结构108382BCC晶体结构11039体密度、面密度以及线密度的晶胞计算110 391体密度110392面密度111393线密度113310多晶型或同素异构114311晶体结构分析1153111X光源1163112X光衍射1173113晶体结构的X光衍射分析119312非晶态材料125313第3章小结126314定义127315习题128材料科学与工程基础目录第4章凝固和晶体缺陷13641金属的凝固137411液态金属中稳定晶核的形成139 412液态金属中晶体生长与晶粒结构的形成144413工业铸件中的晶粒结构14542单晶体的凝固14643金属固溶体150431置换式固溶体151432间隙式固溶体15344晶体缺陷155441点缺陷155442线缺陷(位错)156443面缺陷159444体缺陷16245鉴别微观结构和缺陷的实验技术163 451光学金相、ASTM晶粒尺寸和晶粒直径的确定163452扫描电子显微镜(SEM)168 453透射电子显微镜(TEM)169 454高分辨率透射电子显微镜(HRTEM)170445扫描探针显微镜和原子分辨率173 46第4章小结17647定义17748习题178第5章热激活过程和固体中的扩散18651固体中的速率过程18752固体中的原子扩散191521固体中的扩散概述191522扩散机制191523稳态扩散193524非稳态扩散19653扩散过程的工业应用198531气体渗碳使钢铁表面硬化198 532集成电路用硅晶圆的杂质扩散202 54温度对固体扩散的影响20455第5章小结20856定义20857习题209第6章金属的力学性能(Ⅰ)21461金属与合金的成形加工215611金属和合金的铸造215612金属和合金的热轧和冷轧217613金属和合金的挤压221614锻造222615其他的金属成形工艺22462金属材料中的应力和应变225621弹性变形和塑性变形225622工程应力和工程应变226623泊松比228624切应力与切应变22863拉伸试验和工程应力应变图230631由拉伸试验和工程应力应变图获得的力学性能数据232632部分合金的工程应力应变曲线的比较23763 3 真应力和真应变23764硬度与硬度测试23965金属单晶体的塑性形变240651金属晶体表面的滑移带与滑移线240 652金属晶体由滑移机制造成的塑性形变242653滑移系统244654金属单晶体的临界切应力249655施密特定律250656孪生25266多晶金属的塑性形变254661晶界对金属强度的影响254662塑性形变对晶粒形状和位错分布的影响256663冷塑性形变对金属强度增加的影响258 67金属的固溶强化25968塑性形变金属的回复和再结晶261681深冷加工金属再加热之前的结构262 682回复263683再结晶26469金属中的超塑性268610纳米晶金属270611第6章小结271612定义272613习题273第7章金属的力学性能(Ⅱ)28071金属的断裂281711韧性断裂282712脆性断裂283713韧度和冲击试验286714韧性脆性转变温度286715断裂韧度28972金属的疲劳291721周期应力295722韧性金属在疲劳过程中发生的基本结构变化296723影响金属疲劳强度的几个主要因素297 73疲劳裂纹扩展速率298731疲劳裂纹扩展与应力、裂纹长度的关系298732疲劳裂纹扩展速率与应力强度因子范围作图300733疲劳寿命计算30274金属的蠕变和应力断裂304741金属的蠕变304742蠕变试验306743蠕变断裂试验30775第7章小结30876定义30977习题309第8章相图31681纯物质的相图31782吉布斯相律31983冷却曲线32084二元匀晶合金系统32185杠杆定律32486合金的非平衡凝固32887二元共晶合金系统33188二元包晶合金系统33989二元偏晶系统344810不变反应345811有中间相和中间化合物的相图347 812三元相图351813第8章小结354814定义355815习题357第9章工程合金36691铁和钢的生产368911高炉中的生铁生产368912炼钢和主要钢铁产品形式的加工369 92铁碳系统371921铁铁碳化物相图371922Fe Fe3C相图中的固相371923Fe Fe3C相图中的不变反应372 924碳素钢的缓慢冷却37493普通碳素钢的热处理381931马氏体381932奥氏体的等温分解386933共析碳素钢的连续冷却转变曲线391 934碳素钢的退火与正火394935碳素钢的回火395936碳素钢的分类与典型的力学性能399 94低合金钢400941合金钢的分类400942合金钢中合金元素的分布402943合金元素对钢的共析温度影响403 944淬硬性404945低合金钢典型的力学性能和应用409 95铝合金409951析出强化(硬化)411952铝及其产品的一般性能418953锻造铝合金419954铸造铝合金42496第9章小结42697定义42798习题428第10章聚合物材料436101概述4371011热塑性塑料4381012热固性塑料438102聚合反应4391021单个乙烯分子的共价键结构439 1022一个活化乙烯分子的共价键结构440 1023聚乙烯聚合的整体反应和聚合度441 1024链式聚合步骤4411025热塑性塑料的平均相对分子质量443 1026单体的官能度4441027非晶体线性聚合物的结构444 1028乙烯基树脂与亚乙烯基树脂446 1029均聚物与共聚物44710210其他聚合方法450103工业用聚合方法452104一些热塑性塑料的结晶度与立体异构现象4541041非晶态热塑性塑料的凝固454 1042半晶态热塑性塑料的凝固454 1043半晶态热塑性塑料的结构456 1044热塑性塑料的立体异构现象457 1045齐格勒(Ziegler)催化剂与纳塔(Natta)催化剂458105塑料的加工4591051用于热塑性塑料的加工工艺460 1052用于热固性塑料的加工工艺464 106通用热塑性塑料4661061聚乙烯4681062聚氯乙烯均聚物与共聚物471 1063聚丙乙烯4731064聚苯乙烯4731065聚丙烯腈4741066苯乙烯丙烯腈(SAN)4751067ABS4751068聚甲基丙烯酸甲酯(PMMA)477 1069氟塑料478107工程热塑性塑料4791071聚酰胺(尼龙)4801072聚碳酸酯4831073苯氧基树脂4841074聚甲醛4851075热塑性聚酯4861076聚苯硫醚4871077聚醚酰亚胺4881078聚合物合金488108热固性塑料(热固性树脂)4891081酚醛塑料4911082环氧树脂4921083不饱和聚酯4941084氨基树脂(尿素塑料和三聚氰胺)495109第10章小结4971010定义4981011习题500第11章陶瓷材料510111概述511112简单陶瓷的晶体结构5131121简单陶瓷化合物中的离子键和共价键5131122存在于离子键固体中的简单离子排列5141123氯化铯晶体(CsCl)结构517 1124氯化钠晶体(NaCl)结构518 1125FCC与HCP晶格中的间隙位置522 1126闪锌矿晶体(ZnS)结构524 1127氟石晶体(CaF2)结构526 1128反氟石晶体结构5281129刚玉晶体(Al2O3)结构528 11210尖晶石(MgAl2O4)晶体结构528 11211钙钛矿(CaTiO3)晶体结构528 11212碳和它的同素异形体529113硅酸盐结构5331131硅酸盐结构的基本结构单元533 1132硅酸盐的岛状结构、链状结构及环状结构5331133硅酸盐的片状结构5331134硅酸盐的网络结构535114陶瓷制备过程5361141材料准备5371142成形5371143热处理542115传统陶瓷和工程陶瓷5441151传统陶瓷5441152工程陶瓷547116陶瓷的力学性能5491161概述5491162陶瓷材料变形的机制5491163影响陶瓷材料强度的因素550 1164陶瓷材料的韧度5511165部分稳定氧化锆(PSZ)的相变增韧5531166陶瓷的疲劳失效5531167陶瓷研磨剂材料555117陶瓷材料的热学性能5561171陶瓷耐火材料5571172酸性耐火材料5581173碱性耐火材料5581174航天航空器用陶瓷瓦绝热片558 118玻璃5581181玻璃的定义5601182玻璃的转变温度5601183玻璃的结构5611184玻璃的组成5621185玻璃的粘性变形5641186玻璃的形成方法5661187钢化玻璃5681188化学强化玻璃568119陶瓷涂层和表面工程5701191硅酸盐玻璃涂层5701192氧化物和碳化物涂层570 1110纳米技术和陶瓷5711111第11章小结5731112定义5741113习题575第12章复合材料582121概述583122增强塑料类复合材料用纤维5841221增强塑料用玻璃纤维5841222增强塑料用碳纤维5871223增强塑料用的芳族聚酰胺纤维589 1224增强塑料类复合材料用的碳纤维、芳族聚酰胺纤维和玻璃纤维的力学性能比较589123纤维增强塑料类复合材料5911231纤维增强塑料的基体材料5911232纤维增强塑料5921233在等应变、等应力情况下的片状连续纤维塑料基体复合材料的弹性模量方程596124纤维增强塑料的开式模塑加工工艺601 1241手铺成型工艺6011242喷射铺展成型工艺6011243真空包热压成型工艺6021244绕丝成型工艺603125纤维增强塑料的闭式模塑加工工艺604 1251压塑与注射成型加工工艺604 1252片状模塑复合材料(SMC)加工工艺6051253连续挤压成型加工工艺606126金属基和陶瓷基复合材料6061261金属基复合材料(MMCs)606 1262陶瓷基复合材料(CMCs)608 127第12章小结613128定义614129习题616第13章材料的电学性能624131金属的电导6251311金属电导现象的经典模型625 1312欧姆定律6271313金属导体中电子的漂移速度631 1314金属的电阻率632132电导性的能带模型6361321金属的能带模型6361322绝缘体的能带模型638133本征半导体6381331本征半导体的电导机制6381332纯硅晶体点阵中的电荷输运639 1333元素本征半导体的能带图640 1334元素本征半导体电导的定量关系641 1335温度对本征半导体的影响643134非本征半导体6451341n型(负型)非本征半导体645 1342p型(正型)非本征半导体647 1343非本征硅半导体材料的掺杂剂649 1344掺杂剂对非本征半导体中的载流子浓度的影响6491345在室温条件下总电离杂质浓度对硅中载流子迁移率的影响6521346温度对非本征半导体电导率的影响653135半导体器件6551351pn结6561352pn结型二极管的一些应用659 1353双极性结型晶体管660136微电子学6621361微电子平面双极性晶体管662 1362微电子平面场效应晶体管663 1363微电子集成电路的制作666137化合物半导体673138陶瓷的电学性能6761381介电体的基本特性676 1382陶瓷绝缘体材料678 1383陶瓷电容器材料679 1384陶瓷半导体6801385铁电陶瓷682139纳电子学6851310第13章小结6861311定义6871312习题690第14章光学性质与超导材料696 141概述697142光谱和电磁波频谱697143光的折射6991431折射率6991432光折射的斯涅耳定律701 144光的吸收、辐射和反射702 1441金属7021442硅酸盐玻璃7031443塑料7041444半导体706145发光7071451光致发光7081452阴极发光708146射线的受激发射和激光710147光导纤维7141471光导纤维中的光损失714 1472单模和多模光导纤维715 1473光导纤维的加工7161474现代光导纤维通信系统718 148超导材料7191481超导态7191482超导体的磁学性质7201483超导体中的电流和磁场722 1484高电流、高磁场超导体723 1485高临界温度(Tc)超导氧化物725 149定义7271410习题728第15章磁学性能732151概述733152磁场和参量7331521磁场7331522磁感应7361523磁导率7361524磁化率738153磁性的类型7381531反磁性7391532顺磁性7391533铁磁性7391534原子的单个未成对电子的磁矩741 1535反铁磁性7431536亚铁磁性743154温度对铁磁性的影响743155铁磁畴744156决定铁磁畴结构的能量类型746 1561交换能量7461562静磁能量7471563磁晶各向异性能7471564畴壁能量7481565磁致伸缩能量749157铁磁性金属的磁化和退磁751158软磁材料7521581软磁材料的理想性能7531582软磁材料的能量损失7531583铁硅合金7541584金属玻璃7551585镍铁合金756159硬磁材料7591591硬磁材料的性能759 1592铝镍钴(Alnico)合金761 1593稀土合金7631594钕铁硼磁合金765 1595铁铬钴磁合金765 1510铁氧体76715101软磁铁氧体76715102硬磁铁氧体7711511第15章小结7711512定义7721513习题775附录Ⅰ:部分元素的一些性质780附录Ⅱ:元素的离子半径782习题解答784。
国开电大建筑材料(A) 形考任务第1-13章测试答案第1章测试答案1.以下哪个是建筑材料的基本分类?–答案:金属材料、非金属材料、无机非金属材料、有机非金属材料2.以下哪个不属于建筑材料的特点?–答案:纯净性3.建筑材料的性能包括以下哪些方面?–答案:力学性能、物理性能、耐久性能、热性能第2章测试答案1.常见的金属材料有哪些?–答案:钢材、铝合金、铜材、锌材、铜材2.以下哪个不是铝合金的优点?–答案:价格低廉3.以下材料中不属于钢材的是?–答案:青铜第3章测试答案1.常见的非金属材料有哪些?–答案:塑料、橡胶、橡塑材料、复合材料2.塑料材料的特点是什么?–答案:轻质、绝缘性好、耐腐蚀3.常见的橡胶材料有哪些?–答案:天然橡胶、合成橡胶第4章测试答案1.以下哪个不属于常见的无机非金属材料?–答案:树脂2.常见的无机非金属材料有哪些?–答案:玻璃、陶瓷、石材3.以下哪个是玻璃的主要成分?–答案:二氧化硅第5章测试答案1.常见的建筑陶瓷材料有哪些?–答案:高岭土、瓷砖2.石材的主要分类有哪些?–答案:大理石、花岗岩、板材3.排除法:以下哪个不属于常见的建筑陶瓷材料?–答案:玻璃第6章测试答案1.混凝土是由哪些基本原料组成的?–答案:水泥、砂、石子、水2.混凝土的主要组成部分是什么?–答案:水泥浆体和骨料3.配制混凝土时,应注意控制的参数包括哪些?–答案:水灰比、砂石比、骨料种类、掺合料类型、拌合时间、施工环境温度和湿度第7章测试答案1.纤维增强材料的分类有哪些?–答案:玻璃纤维增强材料、碳纤维增强材料、有机合成纤维增强材料2.混凝土添加纤维的主要作用是什么?–答案:增加混凝土的抗裂性和抗冲击性3.以下哪个不是纤维水泥板的特点?–答案:质地柔软第8章测试答案1.常见的木材加工方法有哪些?–答案:刨光、削光、打眼、切割、钉、插销、胶合2.以下哪种木材不属于珍贵木材?–答案:松木3.木材的主要优点是什么?–答案:具有一定的韧性,易于加工和施工、具有良好的保温性能第9章测试答案1.常见的建筑板材有哪些?–答案:石膏板、钢木复合板、刨花板2.钢木复合板的主要优点是什么?–答案:具有钢材的强度和木材的稳定性3.以下哪个不是木质纤维板的分类?–答案:刨花板第10章测试答案1.常见的防水材料有哪些?–答案:沥青、塑料薄膜、防水卷材、涂料2.以下哪个不属于建筑防水的工程措施?–答案:使用无防护措施的材料3.沥青防水卷材的主要特点是什么?–答案:耐候性好、耐腐蚀、柔韧性好第11章测试答案1.常见的保温材料有哪些?–答案:聚苯板、挤塑聚苯乙烯板、聚氨酯、发泡水泥2.发泡水泥的主要特点是什么?–答案:轻质、强度高、保温性能好3.以下哪种保温材料具有良好的保温隔热性能?–答案:聚苯板第12章测试答案1.常见的隔热材料有哪些?–答案:矿物棉、岩棉、膨胀珍珠岩、泡沫玻璃2.矿物棉的主要优点是什么?–答案:隔热性好、吸声性好、耐火性好3.拉毛石膏板的主要特点是什么?–答案:吸声性好、隔热性好、防火性能好第13章测试答案1.常见的装饰材料有哪些?–答案:油漆、涂料、壁纸、地板、瓷砖2.涂料的主要分类有哪些?–答案:油性涂料、水性涂料、乳胶漆、环保装饰材料3.刚边瓷砖的主要特点是什么?–答案:表面光洁、易清洁、硬度高、耐磨性好以上是国开电大建筑材料(A) 形考任务第1-13章测试的答案。
特种陶瓷常见的成形方法有__、__、__、__。
等静压成形、热压铸成形、轧膜成形、挤制成形等等。
瘠性料的塑化主要加入____、_____和_____三种添加剂。
粘结剂、增塑剂、溶剂。
____、____和_____流延成形浆料中常见的添加剂。
分散剂、粘结剂、悬浮剂、增塑剂、溶剂等。
___成形和____________成形是薄片状陶瓷坯体常见的成形方法。
流延成形、轧膜成形陶瓷烧结的传质机理主要有_____、_____、_____、_____。
蒸发-凝聚、扩散、粘滞流动和塑性流动、溶解-沉淀烧结机制包括、、、。
蒸发和凝聚、扩散、粘滞流动与塑性流动、溶解与沉淀。
烧成制度包括____、____、____、____。
升温速率、最高烧成温度、保温时间、冷却速度。
氧化铝陶瓷主要有三种晶型,分别是_、_和_。
α-Al2O3、β-Al2O3、γ-Al2O3__和__是两类典型的氧化物陶瓷材料。
氧化铝、氧化锆或氧化镁、氧化硅等等。
氧化锆陶瓷主要晶型有____、____和____三种。
单斜氧化锆、四方氧化锆、立方氧化锆。
陶瓷脆性改善的方法有__、__、__。
纳米复相、相变增韧、纤维补强陶瓷材料脆性断裂往往表现为___、_____和_____断裂。
瞬间、无先兆、暴发式氧化物和非氧化物陶瓷的硬度大,是因其晶体化学键多属__和__。
离子键、共价键含锆的矿石,在自然界主要有__和__。
斜锆石、锆英石非氧化物陶瓷有多种,__和__是两个典型。
碳化物陶瓷、氮化物陶瓷或硼化物陶瓷。
复合材料主要由_和_两部分组成。
基体、增强体制作高强度、高韧性复合材料应满足:、、、、。
采用高强度、高模量的纤维或晶须;在制备条件下纤维或晶须的性能不退化;纤维或晶须与基体不发生化学反应;热膨胀系数要匹配,纤维的膨胀系数应略大于基体膨胀系数;纤维与基体间的结合力要适中,以达到拔出效应。
钎维补强基复合材料的补强韧化机理是、、、、。
负载传递;预应力效应;拔出效应;微裂纹化能量吸收;裂纹转向。
第一部分习题与考虑题1、名词解释:抗拉强度、屈服强度、刚度、疲劳强度、冲击韧性、断裂韧性。
2、设计刚度好的零件,应根据何种指标选择材料?材料的弹性模量E愈大,那么材料的塑性愈差。
这种说法是否正确?为什么?3、如下列图的四种不同材料的应力—应变曲线,试比较这四种材料的抗拉强度、屈服强度〔或屈服点〕、刚度和塑性。
并指出屈服强度确实定方法。
4、常用的硬度测试方法有几种?这些方法测出的硬度值能否进展比较?5、以下几种工件应该采用何种硬度试验法测定其硬度?〔 1〕锉刀〔2〕黄铜轴套〔3〕供应状态的各种碳钢钢材〔 4〕硬质合金刀片〔5〕耐磨工件的外表硬化层6、断裂韧性是表示材料何种性能的指标?为什么在设计中考虑这种指标?第二部分习题与考虑题1. 解释以下名词的函义:晶体,非晶体;晶格,晶胞;晶格常数,致密度;晶面指数,晶向指数;晶体的各向异性;点缺陷,线缺陷,面缺陷,亚晶粒,:亚晶界,位错;单晶体,多晶体;固溶体、金属间化合物、固溶强化;结合键。
2. 金属键、离子键、共价键及分子键结合的材料其性能有何特点。
3. 常见的金属晶体构造有哪几种 ? 它们的原子排列和晶格常数有什么特点? α-Fe 、δ-Fe 、γ-Fe 、 Cu 、 Ni 、 Pb 、 Cr 、 V 、 Mg 、 Zn 各属何种晶体构造 ?4. Fe 的原子直径为 2.54埃,求 Fe 的晶格常数 ? 并计算 1立方毫米 Fe 中的原子数。
5. 标出图中影线所示晶面的晶面指数及 a 、 b 、 c 三晶向的晶向指数。
在立方晶格中,假设晶面指数和晶向指数的数值一样时,那么该晶面和晶向间存在着什么关系 ?6. 画出立方晶格中 (110) 晶面与 (111) 晶面。
并画出在晶格中和 (110) 、 (111) ;晶面上原子排列情况完全一样而空间位向不同的几个晶面。
7. 为什幺单晶体具有各向异性 ? 而多晶体在一般情况下不显示各向异性 ?8. 试比较α-Fe 与γ-Fe 晶格的原子排列严密程度与溶碳才能。