当前位置:文档之家› 六自由度机械手运动控制

六自由度机械手运动控制

六自由度机械手运动控制
六自由度机械手运动控制

西南交通大学

本科毕业设计(论文)

六自由度机械手复杂运动控制

年级:200X级

学号:200XXXX

姓名:XXX

专业: 机械工程系数控技术

指导老师:XXX

0X年6月

院系机械工程系专业数控技术年级200X级姓名XXX 题目六自由度机械手复杂运动控制

指导教师

评语

指导教师(签章)

评阅人

评语

评阅人(签章)

成绩

答辩委员会主任(签章)

年月日

毕业设计(论文)任务书

班级0X级数控技术(1)班学生姓名XXX 学号200XXXXX

发题日期:0X年3月 1 日完成日期:6月18日

题目六自由度机械手复杂运动控制

1、本论文的目的、意义本设计主要以实验室设备(六自由度串联机械手)为基础,运用六自由度串联机械手完成现实工程及实际需要为出发点。通过对机械手的系统分析建立机器人坐标系的方法,并对其进行正运动分析和逆运动学分析结合矩阵的变换等研究该机器人系统在平面轨迹方面的设计。并利用MATLAB对该设计的准确行进行验证。本次设计让我们能有效的利用学校的设备对实际需要进行分析设计,从而使我们能将理论与实际有效结合。并从中掌握了工程设计的主要方法和了解了现存技术中需要我们进行探索的必要。

2、学生应完成的任务由于本课题取材于实际生产运用中,不仅从理论方面对设计有分析等要求,更要结合理论做出实际需要的运动控制。下面主要以学生的设计为主提出其需要完成的任务:(1)完成一万字符的外文翻译;

(2)完成复杂运动控制设计的总体方案;

(3)通过老师指导可以对机械手进行熟悉的操作和运用;

(4)利用现有资料对机械手进行运动学理论分析,并结合矩阵

工具对其建立的运动学方程进行求解;

(5)利用机械手完成平面文字轨迹的运动控制;

(6)对复杂运动控制的总结,分析其优缺点,并提出其缺点的

解决方案和需要注意的问题;

(7)完成毕业设计论文。

3、论文各部分内容及时间分配:(共17 周)

第一部分阅读相关文献并收集资料( 3周)

第二部分熟悉设备操作并进行相关简单的操作( 3周)

第三部分轨迹设计过程和相关计算分析( 4周)

第四部分完成设计部分到实际运行部分( 3周)

第五部分撰写毕业论文( 2周)

评阅及答辩准备好答辩的演示文档及进行答辩( 2周)

备注

指导教师:XXX 0X年3月日

审批人:年月日

摘要

本文以示教型六自由度串联机械手为试验设备,进行机械手的复杂运动控制,使机械手完成各种复杂轨迹的运动控制等功能,能够在现代工业焊接、喷漆等方面的任务。

本文从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。目前,六自由度机械手的复杂运动控制已经有了比较好的逆解算法,也有一些针对欠自由度机械手的逆解算法。逆解算法求出的解不是唯一的,它能使机械手达到更多位姿,完成大部分的原计划任务,但其中的一些解并不是最优化的,因此必须讨论其反解的存在性和唯一性。

本文通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。

最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。

关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄ABSTRACT

In this paper, mechanical hand control the complex movement based on the series of six degrees of freedom manipulator so that the mechanical hand complete the complex trajectory of the movement control functions. In modern industrial welding, painting, and other aspects of the mandate can be used.

This article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. At present, the six degrees of freedom manipulator complex movement has been relatively good control of

the inverse algorithm.There are also some less freedom for the inverse of the manipulator algorithm. Solutions sought by inverse algorithm is not the only solution, it can reach more manipulator Pose, originally planned to complete most of the task.But some of these solutions is not the most optimal, it is necessary to discuss their anti-the existence of solutions and uniqueness.

Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists.

So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct.

The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming.

key words:Six degree-of-freedom manipulators,Cartesian coordinates,Equations of motion,Simulation,Demonstration handle.

目录

绪论 (1)

课题研究背景和意义 (1)

国内外研究状况 (2)

六自由度机械手复杂运动控制的现实意义 (4)

课题的提出 (5)

本课题研究的主要内容 (5)

串联机器人运动学 (7)

2.1 机器人运动学方程的表示 (7)

2.1.1 运动姿态和方向角 (8)

2.1.2 运动位置和坐标 (9)

2.1.3 连杆变换矩阵及其乘和 (12)

2.2 机械手运动方程的求解 (15)

2.2.1 欧拉变换解 (16)

2.2.2 滚、仰、偏变换解 (20)

2.2.3 球面变换解 (21)

2.3 反解的存在性和唯一性 (23)

2.3.1 反解的存在性和工作空间 (23)

2.3.2 反解的唯一性和最优解 (24)

2.3.3 求解方法 (25)

六自由度机械手的平面复杂轨迹设计及运动学分析 (27)

3.1 系统描述及机械手运动轨迹设计方式 (27)

3.1.1 机器人技术参数一览表 (27)

3.1.2 机器人控制系统软件的主界面 (27)

3.1.3 机器人各部位和动作轴名称 (28)

3.1.4 机械手运动轨迹设计方式 (29)

3.2 平面复杂轨迹设计目的 (33)

3.2.1“西”字的轨迹设计和分析 (33)

3.2.2“南”字的轨迹设计和分析 (34)

3.2.3机械手的起始位姿和末态位姿 (35)

3.3机械手轨迹设计中坐标系的建立 (35)

3.4 平面轨迹设计的正运动学分析 (43)

3.4.1平面轨迹设计的正运动学分析原理 (43)

3.4.2 正运动学分析步骤及计算 (44)

3.5 平面轨迹设计的逆运动学分析 (45)

3.5.1 平面轨迹设计的逆运动学分析原理 (45)

3.5.2.逆运动学分析步骤及计算 (46)

设计实现过程和MA TLAB仿真计算 (50)

4.1 设计实现过程 (50)

4.2 MA TLAB仿真计算 (53)

结论与展望 (57)

5.1 结论 (57)

5.2 展望 (58)

致谢 (59)

参考文献 (60)

第一章绪论

1.1 课题研究背景和意义

在现代制造行业中,先进的制造技术不断的代替传统的加工方法和操作方式。现代工业的高技术要求,更促进了机器人的发展:例如,实行无人化的工作车间,自动生产线等。

特别九十年代以来,工业机器人性能不断提高,向着高速度、高精度、高可靠性的方向发展,同时表现在以下方面:

1.机械结构向模块化、可重构化发展。如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机。国外己有模块化装配机器人产品问市。2.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成速度高,控制距日见小巧,且采用模块化机构;大大提高了系统的可靠性、易操作性和可维修性。3.机器人中的传感器作用日益重要。除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器:而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中己有成熟应用。4.虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。

5.当代遥控机器人系统发展的特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统来构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。6.机器人机械化开始兴起。从1994年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。

当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不断提高,并逐步向智能化方向发展。在21世纪,机器人技术将继续是科学与技术发展的一个热点。机器人技术的进一步发展必将对社会经济和生产力的发展产生更加深远的影响。机器人将成为集机械、电子、计算机、控制、传感器、仿生学和人工智能等多学科理论与技术的机电一体化机器。在未来的100年中科学与技术的发展将会使机器人技术提高到一个更高的水平。机器人将成为人类多才多艺和聪明伶俐的“伙伴”,更加广泛地参与人类的生产活动和社会生活。

串联式机器人是一种典型的工业机器人,在自动搬运、装配、焊接、喷涂等工业现场中有着广泛的应用,通过该系列教学机器人可使学生能够模拟工业现场的实际运行状况。结构紧凑,工作范围大,具有高度的灵活性,是进行运动规划和编程系统设计的理想对象。

多自由度机械手做为现代机器人的一个重要组成部分,也随着技术的发展不断更新。普通机械手只能完成单工作任务或者较简单的操作,多自由度机械手在很多的工程技术及工程实际中能更为合理的进行一些现实操作。本课题正是在此背景下,研究其六自由度机械手复杂运动控制也更为重要。

1.理论意义六自由度串联机械手是由六个关节组成,机械手安装在工作台上,这种结构使机械手拥有几乎无限大的工作空间和高度的运动冗余性,并同时具有移动和操作功能,这使它优于普通的移动机器人和传统的机械手;另一方面,工作平台和机械手不但具有不同的动力学特性,同时考虑轨迹规划的不同特点,六自由度串联机械手在对固定机械手具有优势的同时,在运用上存在诸多难点,如逆解优化、控制方法、路径规划、解决方案的选用等。因此,六自由度串联机械手复杂运动控制的研究有十分重要的理论意义。

2.应用价值本课题的六自由度串联机器人具有重量轻、运动速度快、空间通过能力强、完成空间范围大等特点,通过在通用控制窗口上不同轴的控制上各个关节角度来实现不同的功能以完成各种示教及工作任务,由于其采用的控制方式为软件编程实现,对于国内工业发展各种机械手运用于现代工业焊接和汽车企业等的喷漆等方面有重要意义,因此对提高国家工业水平、实现其重要价值也具有十分重要的意义。

1.2 国内外研究状况

位置逆解问题是机械手机构学乃至机械手学中的最基础也是最重要的研究问题之一,它直接关系到机械手运动分析、离线编程、轨迹规划和实时控制等工作。因为速度和加速度分析都要在进行位置分析的基础之上才能进行,所以位置逆解问题是机械手运动规划和轨迹规划的基础,只有通过运动学逆解把空间位姿转换为关节变量,才能实现对机械手末端执行器的控制。而从工程应用的角度出发,位置逆解问题的研究成果可以很容易地应用到机械手上面去,往往更引起我们的兴趣,因此就更加促进了对位置逆解问题的研究。

对于运动学正解来说,它的解是唯一确定的,即各个关节变量给定之后,机械手的末端抓手和工具的位姿是唯一确定的;而运动学反解往往具有多重解,也可能不存在解。位置逆解的复杂程度往往与机械手的结构有很大关系。由于一般情况下,六个自由度便可满足机械手在工作空间内可达任一位姿,因此六自由度机械手最具有研究价值和实用价值。如果机械手的结构尺寸有些特殊,如轴线平行或相交或轴线长度为零等情况下,逆解运算相对比较简单;而如果结构尺寸一般,且6个关节又都是转动副,则逆解运算较为困难,该问题被喻为是空间机构运动分析中的珠穆朗玛峰。无论是结构特殊还是一般,仅仅用某种方法求得6自由度机械手的位置逆解不是不够的,还要在计算方法,计算精度等各个方面作进一步的研究。

机械手的位置逆解问题一般最终都归结为求解非线性方程组的问题。非线性

方程组的求解方法有很多,主要包括数值方法和代数方法。

在位置逆解问题中常用的数值方法主要包括牛顿拉夫森法、优化算法,区间算法,遗传算法和同伦算法等方法。数值方法求解一般是先建立包括若干个未知量的一个方程组,然后提供一组初始

值,再利用各种优化法进行迭代,使之逐步收敛于机构的一组解。这一类方法的优点是求解过程比较简单,但是在计算中需要提供适当的初始值,因此涉及到初始值的选取问题。另外,采用数值方法不能根据方程组的情况来确定机械手机构有多少组解,也很难得到全部解。

在位置逆解问题中常用的代数法主要包括析配消元法,聚筛法,Gorbener基法和吴文俊消元法。这些代数方法求解一般是先建立若干个关系式,然后进行消元,最终得到只含有一个变量的一元高次方程,求解该方程得到变量的全部根。然后对应此变量求出一系列的中间变量(被消去的变量)。在该过程中,只要保证各个步骤都是同解变换,就能够保证得出全部的解,而且不产生增根。这一类方法的优点是可以解出全部解,而且不需要初始值,但是求解过程较为复杂,有一定的难度。

对于六自由度机械手的位置逆解问题,有许多学者作了大量的研究工作。毕洁明等采用位置和姿态分别迭代的数值算法进行分析,可以快速求得全部解,但是当机械手末端位置和姿态高度藕合时会造成迭代过程发散,求解失败。Rengier等根据分布式人工智能的概念,提出了一种新的数值方法,采用此迭代和分布式的算法,能够求出6R,SRI,P4RZP和3R3P结构6自由度机械手的位置逆解全部解廖启征将位移封闭方程由三角函数形式转化为复指数形式,通过10个方程求出一般6R机械手没有增根的全部逆解。于艳秋将有理数逼近实数和三角函数的理论引入机械手位置逆解算法中,提高了计算精度以及运算当中处理异常情况的能力。

1.3 六自由度机械手复杂运动控制的现实意义

在实际应用中,六自由度机械手的某关节出现故障,系统将该关节锁定在当前角度,这样六自由度机械手就成为五自由度机械手,或称欠自由度机械手。对于欠自由度机械手,如何通过有效的运动控制和轨迹规划使其完成预期的任务至关重要。例如,机械手在航空航天方面的应用中,如果某航天飞行器所载的六自由度机械手的某关节出现故障成为欠自由度机械手,则该机械手不能再投入工作,将使该航天飞行器的一部分任务不能完成。但如果通过控制系统使用一种新的逆解算法代替机械呼.在正常运转情况下的位置逆解算法,使它在欠自由度情况下仍可到达其原工作空间中的大部分位姿,则该机械手仍可投入工作,并可完成原计划的大部分任务,从而提高了整个航天飞行器系统的可容性和可用性。由于是在某关节出现故障的情况下所使用的,所以可以称之为具有容错性能的六自由度机械手位置逆解算法。在其它方面的应用中也是如此。在有些情况下机械手代替人类在恶劣的环境中或人类不易工作的环境中工作。对于机械手来说,虽然一般是按照其工作环境特需的高级材料制成,如耐高温金属等,但是由于其系统结构复杂,作工精密,在这些环境中仍极易出现故障。而一旦某关节出现故障不能正常工作,环境又不允许立时维修的话,将给机械手应用带来严重的影响,甚至造成巨大的损失。这时如果能够使用具有容错性能的机械手位置逆解算法来代替机械手的原位置逆解算法,使机械手在欠自由度情况下仍可到达其原工作空间中的大部分位姿,能够完成原计划的大部分任务,则因关节故障所造成的缺失就可大大减少,该机械手应用系统的可容性和可用性也大大提高。

欠自由度机械手,在其工作空间内,只能达到全部定位和部分定向,对于轨迹规划出来的一系列中间位姿点,可能没有对应的逆解。由于位置全部可解,姿态部分可解,出现某些姿态不可实现问题,从而导致机械手不能完成预期的特定任务。对于欠自由度机械手的位置逆解,大多采用向量代数、线性变换等方法。但对于这种因关节故障原因形成的欠自由度机械手,如果采用普通的欠自由度机械手的位置逆解算法,一旦某位姿的位置逆解无解,机械手的轨迹规划就不可能实现,则任务就不可能完成。因此,研究具有容错性能的六自由度机械手位置逆解算法具有很高的研究价值和实用价值。

同时,在有些机械手的实际应用中,往往对机械手末端执行器的某个姿态不加限制,采用关节数少于6个的欠自由度机械手。则这种具有容错性能的六自由度机械手位置逆解算法也可以应用在这种普通的欠自由度机械手的位置反解问题中。

1.4 课题的提出

基于六自由度串联机械手的复杂运动控制的研究,期望通过一种使用的轨迹设计方法,即利用六自由度串联机械手实现平面复杂运动轨迹的设计,使其能在不同的工业生产下完成预定的轨迹实现的准确性和实用性,则该机械手将在实在加工工业中发挥更重要的作用,并可完成许多人工条件无法完成的任务,从而提高机械手的利用性。

另外,基于六自由度机械手轨迹设计中位置逆解算法的研究,期望通过MA TLAB仿真实现六自由度机械手位置逆解的准确性,尤其是在其逆解不唯一的情况下,配合MA TLAB仿真数据进行对比,实现轨迹控制的最优化,即满足轨迹设计要求和运动控制的要求。

1.5 本课题研究的主要内容

本文研究的主要内容和结构安排如下:

第一章:概括了六自由度机械手的研究背景和研究现状,并且详细介绍了六自由度机械手复杂运动控制问题的研究意义和用MA TLAB仿真对比位置逆解算法解的现实意义。在此基础上阐述了课题的提出,最后介绍了本文研究的主要内容。

第二章:阐述了机器人运动方程的表示,通过研究其机器人的运动姿态和方向角,运动位置和坐标等并结合矩阵的计算方法对机器人的运动进行求解。其中通过矩阵的变换研究其各种解的形式特征,最终以反解的存在性和工作空间等确定其机器人的解的唯一性和最优解。

第三章:对六自由度串联机械手的系统进行描述,然后运用D-H方法建立机器手坐标系。不仅详细叙述了六自由度串联机械手的正运动学原理和逆运动学原理,并通过原理对机械手进行正运动学分析和逆运动学分析;列出机械手运动轨迹的设计方式。本章为此课题的主要方面,通过六自由度串联机械手的平面复杂运动轨迹的控制来实现六自由度串联机械手完成平面文字轨迹的规划路径和实现方式。

第四章:主要是利用示教手柄引导末端执行器经过要求的位置由控制系统记录,然后利用记录中的程序对机械手任务进行再编程并结合MATLAB仿真的结果完成设计任务要求。

串联机器人运动学分析

新式的工业机器人都是以关节坐标直接编制程序的。机器人的工作是由控制器指挥的,而关节在每个位置的参数是预先记录好的。当机器人执行工作任务时,控制器给记录好的位置数据,使机器人按照预定的位置序列运动。

开发比较高级的机器人程序设计语言,要求具有按照笛卡儿坐标规定工作任务的能力。物体在工作空间内的位置以及机器人手臂的位置,都是以某个确定的坐标系来描述的;而工作任务则是以某个中间坐标系(如附于手臂端部的坐标系)来规定的。

由笛卡儿坐标系来描述工作任务时,必须把上述这些规定变换为一系列能够由手臂驱动的关节位置。确定手臂位置和姿态的各关节位置的解答,即运动方程的求解。

要知道工作物体和工具的位置,就要指定手臂逐点运动的速度。雅可比矩阵是由某个笛卡儿坐标系规定的各单个关节速度对最后一个连杆速度的线性变换。大多数工业机器人具有六个关节,这意味着雅可比矩阵是个6阶方阵。 2.1 机器人运动方程的表示

可以把任何机器人的机械手看作是一系列由关节连接起来的连杆构成的。我们将为机械手的每一连杆建立一个坐标系,并用齐次变换来描述这些坐标系间的相对位置和姿态。通常把描述一个连杆与下一个连杆间相对关系的齐次变换叫做A 矩阵。一个A 矩阵就是一个描述连杆坐标系间相对平移和旋转的齐次变换。如果A1表示第一个连杆对于基系的位置和姿态,A2表示第二个连杆相对于第一个连杆的位置和姿态,那么第二个连杆在基系中的位置和姿态可由下列矩阵的乘积给出:

212

T A A =

同理,若A3表示第三个连杆相对于第二个连杆的位置和姿态,则有:

3123

T A A A =

在历史文献上,称这些A 矩阵的乘积为T 矩阵,其前置上标若为0,则可略去不写。于是对于六连杆机械手,有下列T 矩阵:

6123456

T A A A A A A = (2-1)

一个六连杆机械手可具有六个自由度,每个连杆含有一个自由度,并能在其运动范围内任意定位与定向。其中,三个自由度用于规定位置,而另外三个自由度用来规定姿态。T6表示机械手的位置和姿态。

2.1.1 运动姿态和方向角 1.机械手的运动方向

图2-1表示机器人的一个夹手。把所描述的坐标系的原点置于夹手指尖的中心,此原点由矢量p 表示。描述夹手方向的三个单位矢量的指向如下:z 向矢量处于夹手进人物体的方向上,并称之为接近矢量a ;y 向矢量的方向从一个指尖指向另一个指尖,处于规定夹手方向上,称为方向矢量o ;最后一个矢量叫做法线矢量n ,它与矢量o 和a 一起构成一个右手矢量集合,并由矢量的交乘所规定:n o a =?因此,变换T6具有下列元素

六连杆机械手的T 矩阵(T6)可由指定其16个元素的数值来决定。在这16个元素中,只有12个元素具有实际含义。底行由三个零和一个1组成。左列矢量n 是第二列矢量o 和第三列矢量a 的交乘。当对p 值不存在任何约束时,只要机械手能够到达期望位置,那么矢量o 和a 两者都是

正交单位矢量,并且互相垂直.即有:1o o ?=,1a a ?=,0o a ?=。这些对矢量o 和a 的约束,使得对其分量的指定成为困难,除非是末端执行装置与坐标系处于平行这种简单情况。 2.用旋转序列表示运动姿态

机械手的运动姿态往往由一个绕轴x ,y 和z 的旋转序列来规定。这种转角的序列,称为欧拉(Euler )角。欧拉角用绕z 轴旋转φ角,再绕新的y 轴(y ′)旋转θ角,最后绕新的轴z (z 〃)旋转ψ角来描述任何可能的姿态,见图2-1。

在任何旋转序列下.旋转次序是十分重要的。这一旋转序列可由基系中相反的旋转次序来解释:先绕z 轴旋转ψ角,再绕y 轴旋转θ角,最后绕z 轴旋转φ角。 欧拉变换Euler(φ,θ,ψ)可由连乘三个旋转矩阵来求得,即: Euler( φ,θ,ψ)=Rot( z, φ)Rot (y, θ)Rot (z,ψ)

00000000010000(,,)00100000100

000

010000c s c s c s s c s c Euler s c φφθ

θψψφφψψφθψθ

θ

--??????

????? ?????= ?????

- ???????????

(2-2)

0000

1c c c s s c c s s c c s s c c c s s c s c c s s s c s s c φθψφψφθψφψφθφθψφψφθψφψ

φθφψθψθ---??

?+-+ ?= ?-

??

?

3.用横滚、俯仰和偏转角表示运动姿态 另一种常用的旋转集合是横滚(roll )、俯仰(pitch )和偏转(yaw )。

如果想象有只船沿着z 轴方向航行,见图2-1a ,那么这时,横滚对应于绕z 轴旋转φ角,俯仰对应于绕y 袖旋转θ角,而偏转则对应于绕x 轴旋转ψ角。适用于机械手端部执行装置的这些旋转角度,如图2-1(b)所示。

图2-1 用横滚、俯仰和偏转表示机械手运动姿态 对于旋转次序,我们作如下规定

RPY (φ,θ,ψ)=Rot (z ,φ)Rot (y, θ)Rot (x,ψ) (2-3)

式中,RPY 表示横滚、俯仰和偏转三旋转的组合变换。也就是说,先绕x 轴旋转ψ角,再绕y 轴旋转θ角,最后绕z 轴旋转φ角。此旋转变换计算如下:

(2-4)

2.1.2 运动位置和坐标

一旦机械手的运动姿态由某个姿态变换规定之后,它在基系中的位置就能够由左乘个对应于矢量p 的平移变换来确定

6100010[]001000

1x y z p p T p ??

?

?

= ? ???

某姿态变换 (2-5)

这一平移变换可用不同的坐标来表示。

除了已经讨论过的笛卡儿坐标外,还可以用柱面坐标和球面坐标来表示这一平移。 1.用柱面坐标表示运动位置

首先用柱面坐标来表示机械手手臂的位置,即表示其平移变换。这对应于沿x 轴平移r ,再统z 轴旋转α,最后沿z 轴平移z ,如图2-2a 所示。

图2-2 用柱面坐标和球面坐标表示位置 即有

Cy1 (z ,a, r )=Tarns( 0,0,z) Rot( z, a )Trans( r,0,0)

式中Cyl 表示柱面坐标组合变换。计算上式并化简得:

(2-6)

如果,用某个如式2-6所示的姿态变换右乘上述变换式,那么,手臂将相对于基系绕z轴旋转α角。要是需要相对于不转动的基系来规定姿态,那么我们就应对式2-7绕z轴旋转一个α角,即有:

(2-7)

这就是用以解释柱面坐标Cy 1(z ,a, r)的形式。

2.用球面坐标表示运动位置

现在讨论用球面坐标表示手臂运动位置矢量的方法。这个方法对应于沿z轴平移r,再绕y轴旋转β角,最后绕z轴旋转α角,如图2-2b所示,即为

Sph( α,β,r) =Rot (z, α)Rot (y, β)Trans (0,0,r)(2-8)

式中,Sph表示球面坐标组合变换。对上式进行计算结果如下:

(2-9)

如果,不希望用相对于这个旋转坐标系来表示运动姿态,那么就必须用Rot (y,-β)和Rot (z,-α)右乘式2-9,即

(,,)(,)(,)(0,0,)(,)(,)Sph Rot z Rot y Trans Rot y Rot z αβγαβγβα=--

1000100010

001rc s rs s rc αβαββ??

?

?= ?

?

??

(2-10)

这就是我们用于解释球面坐标的形式。 2.1.3 连杆变换矩阵及其乘积

曾把表示相邻两连杆相对空间关系的矩阵称为A 矩阵,也叫做连杆变换矩阵,并把两个或两个以上A 矩阵的乘积叫做T 矩阵。例如,234434

A A T A A =和的乘积为,它表示出连杆4对连杆2的相

对位置。同理,

6

T ,即

6

T ,表示连杆6相对于基系的位置。

6

T 能够用不同形式的平移和旋转来确

定。

2.1.

3.1 广义连杆

相邻坐标系间及其相应连杆可以用齐次变换矩阵来表示。要求出机械手所需要的变换矩阵,每个连杆都要用广义连杆来描述。在求得相应的广义变换矩阵之后,可对其加以修正,以适合每个具体的连杆。

机器人机械手是由一系列连接在一起的连杆(杆件)构成的。需要用两个参数来描述一个连杆,即公共法线距离

i

a 和垂直于

i

a 所在平面内两轴的夹角i α;需要另外两个参数来表示相邻两杆的

关系,即两连杆的相对位置

i d 和两连杆法线的夹角

i

θ,如图2-3所示。

除第一个和最后一个连杆外,每个连杆两端的轴线各有一条法线,分别为前、后相邻连杆的公共法线。这两法线间的距离即为i

d 。我们称

i

a 为连杆长度,

i α为连杆扭角,i d 为两连杆距离,i θ为

两连杆夹角。

图2-3转动关节连杆四参数示意图

机器人机械手上坐标系的配置取决于机械手连杆连接的类型。有两种连接——转动关节和棱柱联轴节。对于转动关节,

i θ为关节变量。连杆i 的坐标系原点位于关节i 和i+1的公共法线与关节

i+1轴线的交点上。如果两相邻连杆的轴线相交于一点,那么原点就在这一交点上。如果两轴线互相平行,那么就选择原点使对下一连杆(其坐标原点已确定)的距离

1

i d +为零。连杆i 的z 轴

与关节i+1的轴线在一直线上,而

x 轴则在连杆i 和i+1的公共法线上.其方向从i 指向i+1,见图2-3。当两关节轴线相交时,x 轴的方向与两矢量的交积1i i

z z -?平行或反向平行,x 轴的方向总是沿着公共法线从转轴n 指向i+1。

当两轴

1

i x -和

i

x 平行且同向时,第i 个转动关节的

i

θ为零。

当机械手处于零位置时,能够规定转动关节的正旋转方向或棱柱联细节的正位移方向,并确定z

轴的正方向。底座连杆(连杆0)的原点与连杆l 的原点重合。如果需要规定一个不同的参考坐标系,那么该参考系与基系间的关系可以用一定的齐次变换来描述。在机械手的端部,最后的位移

6

d 或旋转角度

6θ是相对于5z 而言的。选择连杆6的坐标系原点,使之与连杆5的坐标系原点

重合。如果所用工具(或端部执

行装置)的原点和轴线与连杆6的坐标系不一致,那么此工具与连杆6的相对关系可由一个确定的齐次变换来表示。 2.1.3.2 广义变换矩阵

一旦对全部连杆规定坐标系之后,我们就能够按照下列顺序由两个旋转和两个平移来建立相邻两连杆i-1与i 之间的相对关系,见图2-3。 1、11i i i i z x x θ--绕轴旋转角,使轴转到与同一平面内。

2、

11i i i z d x --i 沿轴平移一距离,把移到与x 同一直线上。

3、沿i 轴平移一距离

1

i a -,把连杆i-l 的坐标系移到使其原点与连杆n 的坐标系原点重合的地方。

4、绕

1

i x -轴旋转

1i α-角,使1i z -转到与i z 同一直线上。

这种关系可由表示连杆i 对连杆i-1相对位置的四个齐次变换来描述,并叫做i

A 矩阵。此关系式

(,)(0,0,)(,0,0)(,)

i i i i i A Rot z Trans d Trans a Rot x θα= (2-11)

展开上式可得

1111111100

01i i i i i i i i

i i i i i i i i i i c s c s s a c s c c c s a s A s c d θθαθαθθθαθαθαα---------??

?- ?= ?

???

(2-12) 对于棱柱关节,A 矩阵为

11111101000

1i i i i i i

i i i i i i i i c s c s s s c c c s A s c d θθαθαθθαθααα-------?? ?- ?= ? ???

(2-13)

当机械手各连杆的坐标系被规定之后,就能够列出各连杆的常量参数。对于跟在旋转关节i 后的连杆,这些参数为

i

d ,

1

i a -和

1i α-。对于跟在棱柱联轴节i 后的连杆来说,这些参数为i θ和1i α-。

然后,α角的正弦值和余弦值也可计算出来。这样,A 矩阵就成为关节变量θ的函数(对于旋转关节)或变量d 的函数(对于棱柱联轴节)。一旦求得这些数据之后,就能够确定六个i

A 变换矩

阵的值。

2.1.

3.3 用A 矩阵表示T 矩阵

机械手的末端装置即为连杆6的坐标系,它与连杆i-1坐标系的关系可由

1

6

i T -表示为

1

616

...i i i T A A A --= (2-14)

可得连杆变换通式为

111111111100001

i

i i i i i i i i i i i i i i i i i i c s s c c c s d s T s s c s c d c θθαθαθαααθαθααα-----------??

?

-- ?=

?

?

?? (2-15)

而由式2-15,机械手端部对基座的关系

6

T 为

6123456

T A A A A A A =

如果机械手与参考坐标系的相对关系是由变换Z 来表示的,而且机械手与其端部工具的关系由变换E 表示,那么此工具端部对参考坐标系的位置和方向可由变换X 表示如下:

6X ZT E

=

此机械手的有向变换图如图2-4所示。 从式2-15可求得:

11

6T Z XE --= (2-16)

图2-4操作手变换图

2.2 机械手运动方程的求解

大多数机器人程序设计语言,是用某个笛卡儿坐标系来指定机械手末端位置的。这一指定可用于求解机械手最后一个连杆的姿态

6

T 。不过,在机械手能够被驱动至这个姿态之前,必须知道与这

个位置有关的所有关节的位置。 求解运动方程时,我们从6

T 开始求解关节位置。使

6

T 的符号表达式的各元素等于

6

T 的一般形式,

并据此确定

i

θ。其他五个关节参数不可能从

6

T 求得,因为所求得的运动方程过于复杂而无法求

解它们。我们可以由上节讨论的其他T 矩阵来求解它们。一旦求得i θ之后,可由11A -左乘6T 的一

般形式,得:

11166

A T T -= (2-17)

式中,左边为

1

θ和

6

T 各元的函数。此式可用来求解其他各关节变量,如

2θ等。

不断地用A 的逆矩阵左乘式2-16,可得下列另四个矩阵方程式 11

2216

A A T --= (2-18) 11133216

A A A T ---= (2-19) 1111443216

A A A A T ----= (2-20) 111115543216

A A A A A T -----= (2-21)

上列各方程的左式为和

6

T 前(i-1)个关节变量的函数。可用这些方程来确定各关节的位置。

求解运动方程,即求得机械手各关节坐标,这对机械手的控制是至关重要的。根据

6

T 我们知道机

器人的机械手要移动到什么地方,而且我们需要获得各关节的坐标值,以便进行这一移动。求解各关节的坐标,需要有直觉知识,这是将要遇到的一个最困难的问题。只已知机械手的姿态,没有一种算法能够求得解答。几何设置对于引导求解是必需的。 2.2.1 欧拉变换解 1、基本隐式方程的解 首先令

Euler (φ,θ,ψ)=T (2-22) 由式2-2知式中,

Euler( φ,θ,ψ)=Rot( z, φ)Rot (y, θ)Rot (z,ψ)

已知任一变换T ,要求得φ,θ和ψ。也就是说,如果已知T 矩阵各元的数值,那么其所对应的φ,

θ和ψ值是什么?

由式2-3和2-22,我们有下式

00000

100

1

x x x x y y y y z z z z n o a p c c c

s s c c s

s c c s

n o a p s c c

s s s c s c c

s s

n o a p s c s s

c φθψφψφθψφψφθφθψφψφθψφψφθθψθψθ---???? ?

?+-+ ? ?= ? ?

- ?

?

?

??

? (2-23)

令矩阵方程两边各对应元素一一相等,可得16个方程式,其中有12个为隐式方程。我们将从这些隐式方程求得所需解答。在式(2-23)中,只有9个隐式方程,因为其平移坐标也是明显解。这些隐式方程如下 x n c c c s s φθψφψ=- (2-24) y n s c c s s φθψφψ

=+ (2-25)

z n s c φψ

=- (2-26)

x o c c s s c φθψφψ=-- (2-27) y o s c s c c φθψφψ

=-+ (2-28)

z o s s θψ

= (2-29) x a c s φθ= (2-30) y a s s φθ

= (2-31)

z a c θ

= (2-32)

2、用双变量反正切函数确定角度

可以试探地对φ,θ和ψ进行如下求解。据式2-32得

arccos()z a θ= (2-33)

据式2-30和式2-33有 arccos(/)x a s φθ= (2-34)

又据式2-26和2-33有

arccos(/)z n s ψθ=- (2-35)

但是,这些解答是无用的,因为

(1)当由余弦函数求角度时,不仅此角度的符号是不确定的,而且所求角度的准确程度又与该角度本身有关,即cos()θ=cos()θ-以及

90,180cos()/|0

d d θθ=。

(2)在求解φ和ψ时,见式2-34和2-35,我们再次用到反余弦函数,而且除式的分母为sin θ。这样,当sin θ接近于0时,总会产生不准确。

(3)当θ=0°或θ=±180°时,式2-34和2-35没有定义。

因此,在求解时,总是采用双变量反正切函数atan2(令atan 表示arctan )来确定角度。atan2提供二个自变量,即纵坐标y 和横坐标x ,见图2-5。当-π≤θ≤π,由atan2反求角度时,同时检查y 和x 的符号来确定其所在象限。这一函数也能检验什么时候x 或y 为0,并反求出正确的角度。atan2

的精确程度对其整个定义域都是一样的。 图2-5 反正切函数atan2 3、用显式方程求各角度

要求得方程式的解,采用另一种通常能够导致显式解答的方法。用未知逆变换依次左乘已知方程,对于欧拉变换有

1

(,)(,)(,)Rot z T Rot y Rot z φθψ-= (2-36)

11(,)(,)(,)Rot y Rot z Rot z θφψ--= (2-37) 式2-36的左式为已知变换T 和φ的函数,而右式各元素或者为0,或者为常数。令方程式的两边

应元素相等,对于式2-36即有

000000001000

00100010001x x x x y y y y z z z z c s n o a p c c c s s s c n o a p s c n o a p s c s s c φφθψθψθφφψψθψθψθ-????

?? ?

? ?- ?

? ?= ? ? ?- ?

? ???

???? (2-38) 在计算此方程左式之前,我们用下列形式来表示乘积

111111111212121213131313()()()()()()()()()()()()0

1f n f o f a f p f n f o f a f p f n f o f a f p ??

? ? ?

???

其中,

111213,,f c x s y f s x c y f z

φφφφ=+=-+=而x ,y 和z 为

111213

,,f f f 的各相应分量,例如:

1211()()x y x y

f a s a c a f p c p s p φφφφ=-+=+

于是,我们可把式2-38重写为

111111111212121213131313()

()()()0()()()()00()()()()00

10

1f n f o f a f p c c c s s f n f o f a f p s c f n f o f a f p s c s s c θψ

θψθψ

ψθψθψθ-????

? ? ? ?= ? ?- ? ?????

(2-39)

检查上式右式可见,

,x y z

p p p 和均为0。这是我们所期望的,因为欧拉变换不产生任何平移。此

外,位于第二行第三列的元素也为0。所以可得12()0

f a =,即

x y s a c a φφ-+= (2-40)

上式两边分别加上

x

s a φ,再除以

y

c a φ可得

tan y

x a s c a φθφ=

=

这样,即可以从反正切函数atan2得到 tan 2(,)

y x a a a φ= (2-41)

对式2-40两边分别加上

y

c a φ-,然后除以x

c a φ-,可得

tan y

x a s c a φφφ-=

=

-

这时可得式2-40的另一个解为

tan 2(,)

y x a a a φ=-- (2-42)

式2-41与式2-42两解相差1800。 除非出现

y

a 和

x

a 同时为0的情况,我们总能得到式2-40的两个相差1800的解。当

y

a 和

x

a 均为

0时,角度φ没有定义。这种情况是在机械手臂垂直向上或向下,且φ和ψ两角又对应于同一旋转时出现的,参阅图2-2b 。这种情况称退化(degeneracy)。这时,我们任取φ=0。

求得φ值之后,式2-39左式的所有元素也就随之确定。令左式元素与右边对应元素相等,可得:

1113()()

s f a c f a θθ=?=,或

x y

s c a s a θφφ=+,

x

c a θ=。于是有

tan 2(,)

x y x a c a s a a θφφ=+ (2-43)

当正弦和余弦都确定时,角度θ总是惟一确定的,而且不会出现前述角度φ那种退化问题。 最后求解角度ψ。由式2-39有

1212(),(),,x y x y

s f n c f o s s n c n c s a c o ψψψφφφφφ===-+=-+或

从而得到

tan 2(,)

x y x y a s n c n s a c o ψφφφφ=-+-+ (2-44)

概括地说,如果已知一个表示任意旋转的齐次变换,那么就能够确定其等价欧拉角

tan 2(,),180

y x a a a φφφ==+

tan 2(,)

x y x a c a s a a θφφ=+ (2-45)

tan 2(,)

x y x y a s n c n s a c o ψφφφφ=-+-+

2.2.2 滚、仰、偏变换解

在分析欧拉变换时,已经知道,只有用显式方程才能求得确定的解答。所以在这里直接从显式方程来求解用滚动、俯仰和偏转表示的变换方程。式(2-4)和(2-5)给出了这些运动方程式。从式(2-4)得

1(,)(,)(,)Rot z T Rot y Rot x φθψ-=

111111111212121213131313()()()()0()()()()0

0()()()()00

00

100

1f n f o f a f p c s s s c f n f o f a f p c s f n f o f a f p s c s c c θ

θψθψψψθ

θψθψ????

? ?- ? ?=

? ?- ? ??

???

(2-46)

式中,

1112

,f f 和13

f 的定义同前。令人12()

f n 与式(2-46)右式的对应元素相等,可得

x y s n c n φφ-+=

从而得

tan 2(,)

y x a n n φ= (2-47)

180φφ=

+ (2-48) 又令式2-45中左右式中的(3,1)及(1,1)元素分别相等,有x

s n θ-=,

x y

c c n s n θφφ=+于是得

tan 2(,)

x x y a n c n s n θφφ=-+ (2-49)

最后令第(2,3)和(2,2)对应元素分别相等,有

x y s s a c a ψφφ-=-+,

x y

c s o c o ψφφ=-+,据此

“慧鱼模型”三自由度机械手

湖北理工学院毕业设计(论文) “慧鱼模型”三自由度机械手 设 计 小 册 学院:机电工程学院 班级:机械设计与制造 指导老师: 姓名:学号:201030120130 湖北理工学院毕业设计(论文) 一、概述 ............................................................ 1 1.1机电一体化技术 ................................................... 1 1.1.1机电一体化技术的定义和内容 (1) 1.1.2机电一体化系统组成 (1) 1.2. 慧鱼机器人 ..................................................... 2 1.2.1慧鱼创意教学组合模型简介 (2) 二、机器人的组成 .....................................................

2.1组成构件 ......................................................... 3 2.2慧鱼机器人分析 ................................................... 6 2.2.1机器人机构组成 (6) 2.2.2主要成分构成及功能 (7) 2.3. 机器人的工作空间形式 ............................................ 9 2.4机器人的机械运动形态和变换控制 .................................. 11 2.5机器人的位移、速度、方向的控制方法 (13) 湖北理工学院毕业设计(论文) 一、概述 1.1机电一体化技术 1.1.1机电一体化技术的定义和内容 机电一体化技术综合应用了机械技术、计算机与信息技术、系统技术、自动控制技术、传感检测技术、伺服传动技术,接口技术及系统总体技术等群体技术,从系统的观点出发,根据系统功能目标和优化组织结构目标,以智能、动力、结构、运动和感知等组成要素为基础,对各组成要素及相互之间的信息处理、接口耦合、运动传递、物质运动、能量变换机理进行研究,使得整个系统有机结合与综合集成,并在系统程序和微电子电路的有序信息流控制下,形成物质和能量的有规则 运动,在高质量、高精度、高可靠性、低能耗意义上实现多种技术功能复合的最佳功能价值的系统工程技术。 1.1.2机电一体化系统组成 1.机械本体机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。 2.检测传感部分检测传感部分包括各种传感器及其信号检测电路,其作用就是检测机电一体化系统工作过程中本身和外界环境有关参量的变化,并将信息传递给电子控制单元,电子控制单元根据检查到的信息向执行器发出相应的控制。 3.电子控制单元电子控制单元是机电一体化系统的核心,负责将来自各传感器的检测信号和外部输入命令进行集中、存储、计算、分析,根据信息处理结果,按照一定的程度和节奏发出相应的指令,控制整个系统有目的地进行。 4.执行器执行器的作用是根据电子控制单元的指令驱动机械部件的运动。执行器是运动部件,通常采用电力驱动、气压驱动和液压驱动等几种方式。 5.动力源动力源是机电一体化产品能量供应部分,是按照系统控制要求向机械系统提供能量和动力使系统正常运行。提供能量的方式包括电能、气能和液压

自由度机械手设计

设计说明书 课题:凸轮轴加工自动线机械手 班级:数控69902 设计:沈晓春 审核: 二00五年九月

目录 一、目录 (2) 二、前言 (3) (一)机械手的用途说明 (3) (二)设计机械手的目的、意义 (3) (三)设计指导思想应达到的技术性能要求 (4) 三、设计方案论证 (5) (一)机械手的原始依据 (5) (二)机械手的运动方案论证 (6) 四、机械手各组成部件设计计算 (8) (一)抓取机械设计 (8) (二)手腕机构 (12) (三)手臂设计 (14) (四)缓冲装置设计 (22) (五)定位机构设计…………………………………………………………………………………

25 (六)机械手驱动系统设计 (25) 五、机械手控制系统设计 (25) 六、设计总结 (26) 七、参考文献 (27) 二、前言 (一)机械手的用途说明 机械手是模仿人手工作的机械设备。实验用机械手的设计,是指机械手臂在一定范围内的摆动,手臂的垂直方向的上下移动及手爪的伸缩运动组成。由启动系统实现各运动的驱动。它的主要作用是将工件按预定的程序自动地搬运到需要的位置,或者保持工具进行工作。机械手是利用PLC控制整个系统实现各种运动的自动化控制,且能用于教学演示。 (二)机械手的目的、意义 机械手是模仿人手的动作,生产中应用机械手可以提高自动化水平和劳动生产率,可以减轻劳动强度,保证产品质量,实现安全生产,尤其在恶劣的劳动条件下,它代替人作业的意义更加重大。因此,在机械加工中得到越来越广泛的应用。

目的是,我们对机械手的设计步骤有一定的平衡了解;也能基本掌握机械设计的方法;综合运用学过的理论知识;全面复习绘图技巧,并较好的运用于毕业设计绘图上。通过这次设计,使我了解到,自动控制的对象主要是单机或某个生产过程,智能控制则包括控制对象及整个工作环境或整个生产过程;自动控制的目标是使在系统控制的某个状态下,尽量消除环境对系统的影响,智能控制关心的使最终状态或现行状态是否合乎要求。因此,要充分考虑环境的影响;自动控制的学习来源重要是对象的状态的反馈,所以智能控制需要一个庞大的数据库;自动控制理论着重描述对象的数学模型,然后,通过各种控制算法进行控制,以达到目的,智能控制着重直接控制经验。(三)设计的指导思想,应达到的技术性能要求 结构简单:设计为三自由度的机械手臂,运动形式简单,可以把手臂设计成为沿导向装置运动,直接选用标准规格的液压缸和内胀式机械手爪,无须另行设计。 外观不要有手臂堵塞外形:设计尽量要求安装方便,各非标准件加工方便。因此,不必设计成套形式,管道也不必安排在手臂内部,可以采用软管直接连接。 本次设计的手臂不要光用于工业生产,因此,对各部件的加工精度及安装要求不高,可以在通用机床上加工完成。

六自由度机械手设计

机械设计课程设计说明书 六自由度机械手 TOPWORK 上海交通大学机械与动力工程学院专业机械工程与自动化 设计者: 李晶(5030209252) 李然(5030209316) 潘楷 (5030209345) 彭敏勤 (5030209347) 童幸 (5030209349) 指导老师:高雪官 2006616

、八— 刖言 在工资水平较低的中国,制造业尽管仍属于劳动力密集型,机械手的使用已经越来越普及。那些电子和汽车业 的欧美跨国公司很早就在它们设在中国的工厂中引进了自 动化生产。但现在的变化是那些分布在工业密集的华南、 华东沿海地区的中国本土制造厂也开始对机械手表现出越 来越浓厚的兴趣,因为他们要面对工人流失率高,以及交 货周期缩短带来的挑战。 机械手可以确保运转周期的一贯性,提高品质。另 外,让机械手取代普通工人从模具中取出零件不仅稳定, 而且也更加安全。同时,不断发展的模具技术也为机械手 提供了更多的市场机会。 可见随着科技的进步,市场的发展,机械手的广泛应用已渐趋可能,在未来的制造业中,越来越多的机械手将 被应用,越来越好的机械手将被创造,毫不夸张地说,机 械手是人类是走向先进制造的一个标志,是人类走向现代化、高科技进步的一个象征。因此如何设计出一个功能强大,结构稳定的机械手变成了迫在眉睫的问题。

目录 一.设计要求和功能分析 4 - ?- ■基座旋转机构轴的设计及强度校核 5 三.液压泵俯仰机构零件设计和强度校核 8 四.左右摇摆机构零件设计和强度校核 11五.连腕部俯仰机构零件设计和强度校核 14六.旋转和夹紧机构零件设计和强度校核 19七.机构各自由度的连接过程 25八.设计特色 28九.心得体会 28十.参考文献30 一. 任务分工31 十二.附录(零件及装配图)31

六自由度机械手重载搬运机器人本体结构设计(全套CAD图纸)

全套设计通过答辩优秀CAD图纸QQ 36396305 XX学院 毕业设计说明书(论文) 作者: 学号: 学院(系): 专业: 题目: 重载搬运机器人本体结构设计【六自由 度机械手】 2015 年5月

全套设计通过答辩优秀CAD图纸QQ 36396305 毕业设计说明书(论文)中文摘要 机械手是一种典型的机电一体化产品,搬运机械手是机械手研究领域的热点。研究搬运机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。 本文对一种使用在搬运机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。 关键词:结构设计,机器臂,关节型机械手,结构分析

毕业设计说明书(论文)外文摘要

目录 1 绪论 (1) 1.1 引言 (2) 1.2 搬运机械手研究概况 (3) 1.2.1 国外研究现状 (3) 1.2.2 国内研究现状 (4) 1.4 搬运机械手的总体结构 (5) 1.5 主要内容 (5) 2 总体方案设计 (6) 2.1 机械手工程概述 (6) 2.2 工业机械手总体设计方案论述 (7) 2.3 机械手机械传动原理 (8) 2.4 机械手总体方案设计 (8) 2.5 本章小结 (10) 3 机械手大臂结构设计 (1) 3.1 大臂部结构设计的基本要求 (1) 3.2 大臂部结构设计 (2) 3.3 大臂电机及减速器选型 (2) 3.4 减速器参数的计算 (3) 3.5承载能力的计算 (7) 3.5.1 柔轮齿面的接触强度的计算 (7) 3.5.2 柔轮疲劳强度的计算 (7) 3.6 轴的计算校核 (8) 3.7 大臂的平衡设计 (11) 3.7.1 弹簧的受力分析 (11) 3.7.2 弹簧的设计计算 (14) 4机械手小臂结构设计 (18) 4.1 腕部设计 (18) 4.2 小臂部结构设计 (31)

机械工程及自动化专业毕业设计论文-多自由度机械手设计

前言 1.1 课题背景及意义 机械手通过运动控制芯片、单片机、可控制编程器等来控制电机、气缸、液压缸的运动,从而模仿人手和臂的某些动作,按固定程序实现物体的抓取。它可代替人的劳动,也可以在有害环境下保护人身安全,因而广泛应用于机械制造、电子、原子能等部门。目前机械手主要用于以下几个方面。 (1).恶劣的工作环境和危险的工作 在核工业中,核产品具有较强的放射性,为了人员的安全,需要机械手来完成相关的清理工作。 (2).自动化生产领域 主要用于生产上实现自动化。如当机械手末端夹持焊枪时,可以对汽车或摩托车的车体进行点焊或弧焊作业。 (3).在特殊作业场合进行极限作业 在一些高危领域经常要用到机器人去探索。目前研制出了螃蟹机器人,用于水下勘测、海洋搜寻及石油天然气的勘测。 (4).农业生产 目前研制出了太阳能农用机器人,他可以找到隐藏在农作物中的杂草,通过机械手隔断杂草,同时还可以利用机械手喷洒除草剂。 (5).军事应用 在军事应用中,军人执勤经常会遇到危险,这就需要机器人帮助完成执勤任务,当今世界机器人竞争很激烈,要在这个激烈的国际竞争中立于不败之地,就需要有我国自己的机器人产业,未来世界高科技的竞争更重要的则是人才的竞争。因此,从现在开始就应该注意培养后备力量。机械手是机器人产业的典型代表,因此可以用来作为教学应用的示例。 机械手为典型的机电产品,包含了驱动元件,控制元件,信息处理元件,执行机构,传动机构,机械本体等组成元素,并且具有控制能力强,改变控制程序灵活方便、可靠性高等特点,为学生提供了良好的学习工具。它将现代工业与教学联系在了一起,通过控制—执行这整个的过程使学生对所学的知识有一个更好的认识,从而激发学生的学习兴趣。随着当今计算机技术的飞速发展,它已突破纯开关量控制的局限,进入模拟量控制等领域。通过该机械手的教学开拓了学生专业视野,为他们迎接就业和深造的挑战打下坚实的基础。

(完整版)具有五个自由度的机械手设计毕业论文设计

具有五个自由度的机械手设计 摘要 随着工业自动化发展的需要,机械手在工业应用中越来越重要。文章主要叙述了机械手的设计计算过程。 首先,本文介绍机械手的作用,机械手的组成和分类,说明了自由度和机械手整体座标的形式。同时,本文给出了这台机械手的主要性能规格参量。机械手采用液压传动,使传动系统简单可靠;选用可编程控制器对机械手的动作进行控制,使控制程序简单,系统维护方便。设计过程中,对机械手和液压缸部分做了详细的设计计算。同时,对机械手的通用性主要是采用可更换式手部结构来实现,通过更换手部,可使机械手抓取外圆零件和内圆零件,从而实现了系统的多功能化。机械手总体结构能够实现手臂的水平伸缩、垂直升降、旋转和抓取等功能,这些动作都是可编程控制器控制,用液压缸驱动机械手来完成的。 文章中介绍了搬运机械手的设计理论与方法。全面详尽的讨论了搬运机械手的手部、腕部、手臂以及机身等主要部件的结构设计。 最后使用软件对机械手PLC控制仿真。 关键词:机械手;液压传动;液压缸;PLC仿真;

Abstract The applying of the manipulators are more and more important in the industry, with the development of industrial automation. The paper mainly narrated the design and calculation of light and transfer manipulator. The first,The paper introduces the function,composing and classification of the manipulator,tells out the free-degree and the form of coordinate.At the same time,the paper gives out the primary specification parameter of this manipulator. Manipulator use system can be simple and reliable. The manipulator and in this paper. The movements of mechanical be convenient. And the universal ability of manipulator is based on the interchangeability of the grasp cylindrical parts and inner parts through the replacement of and captures the semifinished materials. All those movements are controlled by programmable controller and realized by industry manipulator's design theory and method. The comprehensive exhaustive discussion ,which the major structural design computation. Finally uses the software to carry out the PLC control simulation for manipulator's ; Hydraulic cylinder;Programmable logic Controller simulation;

3个自由度机械手设计

第一章引言 机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。 机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。 1.1 机械手的分类 机械手一般分为三类:第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定的操作。它的特点是具备普通机械的性能之外,还具备通用机械、记忆智能的三元机械。第二类是需要人工才做的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是用专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数以外,工作程序一般是固定的,因此是专用的。

四自由度搬运机械手的设计毕业论文

四自由度搬运机械手的设计毕业论文 1引言 1.1机械手研究的背景及其意义 机械手是当今世界的科技革命发展飞速变革的必然产物,它的出现标志着现今的工业、制造业水平发展到了前所未有高水平阶段。最初出现的机械手只是应用在航空航天和海洋勘探等高端科技领域,随着近几十年来计算机在科技领域全面应用,科技革命的变革也加速了科学技术的蓬勃发展。在此背景下机械手技术也在飞速发展,并且在其应用领域也不断地深入、飞速地拓宽,特别是近些年来机械手在现代制造业领域更是得到了非常广泛的应用。由于机械手是通过预先编写好的程序来控制其动作次序和轨迹,所以机械手可以代替人力去完成那些单调的、重复的、特别是对于人类来说毫无意义的工作,除此之外机械手还能够在恶劣的环境中完成那些人类不想完成的或不能完成的工作,特别是在一些危险的工作环境或者是对精度要求较高的工作条件之下,机械手相比较人力有得天独厚的优势——机械手在某些邻域能够完全替代人力,将人类从脏、乱、差的工作环境中解放出来,这是人类社会几千年来的又一次变革和人类生活方式的又一次蜕变。特别是近几十年来工业、制造业领域在机械手的广泛应用下发生了伟大的变革,在此背景下整个社会的生产力水平、产品生产质量和生产效率大大提高,与此同时在工业生产中现代工人的劳动强度也大大降低。 机械手技术虽然发展迅猛,但现在市场上的机械手大多还处在高端应用领域,价格也相对昂贵,不能满足低成本、低层次应用领域的需求。所以本课题希望设计出一种成本低、应用层次相对较低的机械手,填补这一领域市场的空白,这对

于工业、制造业领域以及人类社会的发展都具有及其重要的意义和价值。在机械手技术领域中,机械手在模型设计上,四自由度机械手是机械手产品中的典型设计模型,在技术上,四自由度机械手技术门槛相对较低——四自由度便于设计和实现,在应用层面上,四自由度机械手对于一般的重复性工作条件完全满足,在成本上,四自由度机械手在满足一些复杂动作的工作条件下便于实现低成本,也就说其性价比相对较高,所以本论文以《四自由度搬运机械手》为课题进行研究旨在设计出一个比较实用的、成本低的、具有一定的实际应用价值的机械手。1.2机械手的研究现状和发展前景 机械手是现代工业革命变革、现代工业水平高度提高催生的一种新技术产品,从较高应用层次来说,机械手是集机械设计、计算机程序控制等多领域知识和多种设计方法于一身的一种新型自动化装备,特别是近年来互联网、大数据的出现和应运机械手已开始从自动化向智能化领域迈进。机械手虽然在近几十年来才出现,其发展历史并不算太长,机械手最早起源于美国,接着又在德国、日本等工业发达国得到了飞速发展,然而我国近十年来虽然工业发展迅猛,可机械手在工业领域的应用才刚刚起步,机械手设计的技术水平同国外仍有很大差距,特别实是在机械手的高端应用领域,主要体现在机械手的可靠性和精度指标上面。 近年来机械手在工业、制造业领域的应用突飞猛进,这对于工业文明的进步产生了“雪崩式效应”,越来越多的无人化工厂随着机械手的发展如春笋般涌现。随着进入21世纪以来,互联网技术飞速发展,工业、制造业领域正发生着一场伟大的变革,从美国的“工业互联网”到德国的“工业 4.0”,再到“中国制造2025”,世界工厂已经开始由“无人化工厂”向“智能化工厂”转变,在此历

六自由度机械手设计说明书

六自由度机械手设计说明书

设计参数

摘要 随着现代科技和现代工业的发展,工业的自动化程度越来越高。工业的自动化中机械手发挥了相当大的作用,小到机床的自动换刀机械手,大到整个的全自动无人值守工厂,无一不能看到机械手的身影。 机械手在工业中的应用可以确保运转周期的连贯,提高品质。另外,由于机械手的控制精确,还可以提高零件的精度。机械手在工业中的应用十分广泛,如:一、以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 二、以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 三、可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都设有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产。 应用前景 工业机械手是近几十年发展起来的一种高科技自动化生产设备。工业机械手的是工业机器人的一个重要分支。它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发殿起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用

四自由度机械手控制系统设计

前言 可编程控制器是20世纪70年代以来,在集成电路,计算机技术基础上发展起来的一种新型工业控制设备。由于具有功能强、可靠性高、配置灵活、使用方便以及体积小、重量轻等优点,国外已广泛应用于自动化控制的各个领域,并已成为现实工业生产自动化的支柱产品。近年来,国内在PLC技术与产品开发应用方面发展很快,除有许多从国外引进的设备,自动化生产线外,国内的机床设备已越来越多采用PLC控制系统采用控制系统取代传统的继电—接触器控制系统小;价格上能与继电—接触器控制系统竞争;易于在现场变更程序;便于使用、维护、维修;能直接推动电磁阀,接触器与之相当的执行机构;能向中央执行机构;能向中央数据处理系统直接传播数据等。 本课题是基于PLC控制四自由度机械手运行。 工业机械手是一种模仿人体上肢部分功能,按照预定要求输送工件或握持工具进行操作的自动化技术设备,它可以代替手的繁重劳动,改善劳动条件,提高劳动生产率和自动化水平。有着广阔的发展前途。本课题通PLC自动控制对机械手实现机械手规定动作并实现回原点、手动方式和自动方式三种工作方式的选择,并对系统进行运行效率分析。

摘要 随着工业机械手的进一步发展,其发展将更趋向于人性化、智能化并将在更加广泛的领域得到应用。机械手是一种模仿人体上肢运动的机器,它能按照预定要求输送工种或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。因而具有强大的生命力,受到人们的广泛重视和欢迎。工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,提高劳动生产率和自动化水平。通过对机械制造与自动化大学专科三年的所学知识进行整合,对工业机械手各部分机械结构和功能的论述和分析,确定机械手的工作原理和运动机理。设计了一种四自由度机械手,采用可编程序控制器(PLC)设计其控制系统,以提高其工作的稳定性能。 关键词:机械手梯形图 PLC 电磁阀 Abstract With the further development of industrial robots, and its development tends to be more humane, intelligent and in a wider range of applications. Manipulator is a kind of imitation of the upper body movement machine, it can be scheduled according to request type or holds the automation tool operation of technical equipment, industrial automation, promote the production of industrial production of the further development plays an important role .Manipulator noted extensively and welcome by people for it has powerful vitality. Industrial robots can replace the hands of heavy labor, significantly reduce labor intensity, and improve labor productivity and automation level.Mechanical manufacturing and automation through the junior college for three years to integrate the knowledge of industrial manipulator mechanical structure and function of various parts of exposition and analysis to determine the robot motion principle and mechanism.Design a four-DOF manipulator to enhance the stability of their work for using the programmable logic controller to control system. Keywords: Manipulator Ladder diagram PLC Solenoid valve

六自由度转动关节工业机器人调查报告

六自由度转动关节工业机器人调查报告 一 ,定义 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 戴沃尔提出的工业机器人有以下特点:将数控机床的伺服轴与遥控操纵器的连杆机构联接在一起,预先设定的机械手动作经编程输入后,系统就可以离开人的辅助而独立运行。这种机器人还可以接受示教而完成各种简单的重复动作,示教过程中,机械手可依次通过工作任务的各个位置,这些位置序列全部记录在存储器内,任务的执行过程中,机器人的各个关节在伺服驱动下依次再现上述位置,故这种机器人的主要技术功能被称为“可编程”和“示教再现”。

1962年美国推出的一些工业机器人的控制方式与数控机床大致相似,但外形主要由类似人的手和臂组成。后来,出现了具有视觉传感器的、能识别与定位的工业机器人系统。 当今工业机器人技术正逐渐向着具有行走能力、具有多种感知能力、具有较强的对作业环境的自适应能力的方向发展。目前,对全球机器人技术的发展最有影响的国家是美国和日本。美国在工业机器人技术的综合研究水平上仍处于领先地位,而日本生产的工业机器人在数量、种类方面则居世界首位。 具体的特点如下: (1)技术先进工业机器人集精密化、柔性化、智能化、软件应用开发等先进制造技术于一体,通过对过程实施检测、控制、优化、调度、管理和决策,实现增加产量、提高质量、降低成本、减少资源消耗和环境污染,是工业自动化水平的最高体现。 (2)技术升级工业机器人与自动化成套装备具备精细制造、精细加工以及柔性生产等技术特点,是继动力机械、计算机之后,出现的全面延伸人的体力和智力的新一代生产工具,是实现生产数字化、自动化、网络化以及智能化的重要手段。 (3)应用领域广泛工业机器人与自动化成套装备是生产过程的关键设备,可用于制造、安装、检测、物流等生产环节,并广泛应用于汽车整车及汽车零部件、工程机械、轨道交通、低压电器、电力、IC装备、军工、烟草、金融、医药、冶金及印刷出版

单片机六自由度机械手控制程序

单片机六自由度机械手控制程序 #include #include #include #define uint unsigned int #define uchar unsigned char #define COM1 XBYTE[0x5800] #define C01 XBYTE[0x4000] #define C11 XBYTE[0x4800] #define C21 XBYTE[0x5000] #define COM2 XBYTE[0x3800] #define C02 XBYTE[0x2000] #define C12 XBYTE[0x2800] #define C22 XBYTE[0x3000] sbit k1=P3^2;//电机复位按钮 sbit k2=P3^3;//电机选择按钮 sbit k3=P3^4;//电机正转 sbit k4=P3^5;//电机反转 sbit rs=P2^0; sbit rw=P2^1; sbit en=P2^2; uint m=0,i=0; void reservo(); void lcd(uint i); void timer(uint n); void delay(uint n); void lcd_init(); void lcd_wcom(uchar com); void lcd_wdat(uchar dat); void lcd_wndat(uint dat); void delay(uint n);

void init(void); void EXT1_INT(void) { EX1=1; IT1=1; EA=1; } void EXT0_INT() { EX0=1; IT0=1; EA=1; } void EXT1_INT_SRV() interrupt 2 { i++; } //主程序 void main() { while(1) {if(k1==0) {reservo();//电机复位程序break;} } EXT1_INT();//中断初始化 if(i!=0&&i%6==0)

六自由度机械手复杂运动控制

本文以示教型六自由度串联机械手为试验设备,进行机械手的复杂运动控制,使机械手完成各种复杂轨迹的运动控制等功能,能够在现代工业焊接、喷漆等方面的任务。 本文从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。目前,六自由度机械手的复杂运动控制已经有了比较好的逆解算法,也有一些针对欠自由度机械手的逆解算法。逆解算法求出的解不是唯一的,它能使机械手达到更多位姿,完成大部分的原计划任务,但其中的一些解并不是最优化的,因此必须讨论其反解的存在性和唯一性。 本文通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。 最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。 关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄ABSTRACT

In this paper, mechanical hand control the complex movement based on the series of six degrees of freedom manipulator so that the mechanical hand complete the complex trajectory of the movement control functions. In modern industrial welding, painting, and other aspects of the mandate can be used. This article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. At present, the six degrees of freedom manipulator complex movement has been relatively good control of the inverse algorithm.There are also some less freedom for the inverse of the manipulator algorithm. Solutions sought by inverse algorithm is not the only solution, it can reach more manipulator Pose, originally planned to complete most of the task.But some of these solutions is not the most optimal, it is necessary to discuss their anti-the existence of solutions and uniqueness. Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists. So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct. The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming. key words:Six degree-of-freedom manipulators,Cartesian coordinates,Equations of motion,Simulation,Demonstration handle.

慧鱼四自由度机械手说明书

课程设计说明书 设计名称:综合课程设计 题目:机械模型的远程控制 ——四自由度机械手 学生: 专业:机械设计制造及其自动化 班级: 学号: 指导教师: 日期:2013年12月25 日

目录 一.课程设计的主要容和任务分析 (1) 二.机构模型的的原理图及工作原理 (1) 2.1 总体工作流程 (2) 2.2 前后运动部分 (2) 2.3 左右转动部分 (3) 2.4 上下运动部分 (5) 2.5 机械手转动部分 (5) 2.6 机械手开闭合部分 (5) 三.远程控制系统的工作原理 (5) 四.慧鱼接口板的处理器操作模式的选择以及计算机与接口板的通讯 (6) 4.1 慧鱼接口板概述 (6) 4.2 微处理器的两种处理模式 (6) 4.3 计算机与接口板通讯 (7)

五.客户端程序中主要功能模块的设计过程 (8) 六.结论及心得体会 (13) 七.参考文献 (13) 一.主要容和任务分析 利用德国慧鱼公司的“智能创意教具”模型设计、装配出较有创意的机构或机械设备模型,模型完成之后应用VB开始编程以及对程序的调试最终能完成对模型的远程控制。 认真复习机械原理、机械设计、自动生产线、VB的基本知识以及学习新的知识(主要为mscomm、winsock、timer三种控件的使用)等。在实验室熟悉慧鱼模型的元件及其撘建方法,参考现有的模型基础,然后设计出有创意的机械模型。 二、机构模型的的原理图及工作原理

2.1 总体工作流程 作品拟实现的主要功能有以下五个运动:①前后运动;②左右转动; ③上下运动;④手爪顺逆时针转动;⑤手爪的开闭合。全景图如下: 2.2 前后运动部分 如图1所示,其工作过程为:向前运动时,电动机1正转,通过减速箱2减速,再通过齿轮链条3的传动将动力传到蜗杆4。此时限位开关5常开开关打开,蜗杆4旋转将底盘7向前运动,底盘到达最前端,此时,限位开关6常开关开闭合,向前运动完成,电动机1停止。向后远动时,电动机1反转,回程至限位开关4闭合时,电动机1停止。

六自由度机械手三维运动仿真研究

收稿日期: 2005 03 11;修返日期: 2005 05 24 基金项目:国家 863 计划资助项目(2001AA 423230);中新联合研究计划项目;湖北省自然科学基金(2003ABA 002) 六自由度机械手三维运动仿真研究 * 陈幼平,马志艳,袁楚明,周祖德 (华中科技大学机械科学与工程学院,湖北武汉430074) 摘 要:以六自由度机械手三维运动仿真为背景,介绍了利用Ope nGL 实现机械手运动仿真的有效方法,重点分析 了机械手运动学模型的构建以及运动轨迹规划的实现。对于一般的机械手运动仿真系统,该实例具有一般普遍性。关键词:Open GL ;机械手;三维运动仿真;轨迹规划 中图法分类号:TP242 文献标识码:A 文章编号:1001 3695(2006)06 0205 03 R esearch on S i m u l ati on of 3D M oti on for 6 DOF M an i pu lator C HEN Y ou p i ng ,MA Zh i y an ,YUAN Chu m i ng,ZHOU Zu de (Colle g e o f M ec han ic a l Sc i ence &E ng i n ee ring,Huazhong Universit y of S cie n c e &T ec hnology ,W uhan Hu bei 430074,Ch i na ) Abstract :The effecti ve met hod of a sm i u lati on syste m ofm anipu l atorw it h Open GL based on t he sm i ulati on of 3D m otion for 6 DOF m an i pu lator i s presented .The constructi on of k i neti cm odel and pat h p lann i ng are anal yzed e m phaticall y .To the usual 3D sm i u lati on syste m ofm anipu l ator ,the instance is un i versal reference .Key words :Open GL ;M an i pu l ator ;Sm i ulati on of 3D Moti on ;Path Planni ng 科学可视化、计算机仿真和虚拟现实是近年来计算机仿真领域的三大热门技术,而这三大热门技术的核心均是三维真实感图形的显示与交互。其中机器人三维运动仿真技术在机器人的研究与应用中发挥着重要的作用。它对于在实际工作中机器人行走路径的生成、工作空间防碰撞等具有十分重要的现实意义[1,2]。 在我国某些核电站的设备检修工作中,目前采用的机器人检修系统全部是国外的软硬件设备。在使用过程中,对于工作对象的尺寸变更难以适应,而且对工作人员有较高的使用要求,不能根据实际使用要求定制软硬件功能。本文根据实际项目经验,对检修机器人三维运动仿真部分进行了介绍。 1 三维实体建模 1 1 仿真方案的确定 进行机器人仿真的三维实体建模工作方案一般有如下几种:!使用VRM L 和Jav a3D 在一般的微机上构造轻量级的仿真平台,可应用于网络功能要求较高的机器人运动仿真。VRM L 和Java3D 的跨平台性、网络化和强大的可编程能力,对于实现网络化机器人仿真不失为一种简单、廉价而有效的手段。?使用虚拟样机技术。通过在PRO /E 或其他三维环境下建立的机器人三维模型和在ADAM S 环境下建立的力学模型对机器人进行仿真研究。主要应用于检验机器人各部件的设计性能以及部件之间的兼容性,并检查整机的综合设计性能,实现高质量、快速、低成本的设计。#在W i ndows 环境下配合某些三维建模工具如Autodesk Inventor 或3D M ax 等,使用V is ua l C++工具调用O pen GL 图形库中的函数,实现三维运动仿真。 O penGL 是SG I 公司开发的,作为一种三维工具软件包在交互式三维图形建模能力和编程方面具有无可比拟的优越性,可以灵活方便地实现二维和三维的高级图形技术。由于其强大的图形功能和跨平台的能力,已经成为事实上的图形标准,广泛应用于科学可视化、实体造型、CAD /CAM 、模拟仿真等诸多领域。目前,M icroso ft ,S G I ,IB M 等大公司都采用了O pen G L 作为三维图形标准。特别是随着PC 性能的不断提升和微软的加入,使得在微机上实现三维真实感图形的显示与交互成为可能,也为广大用户提供了在微机上使用以前只能在高性能图形工作站上运行各种软件的机会。另外,由于系统中涉及较多的机械手正、逆运动学方程求解问题,因而采用V C 作为编程语言,一方面可以方便地调用O pen G L 图形库函数;另一方面有利于算法的实现[3]。1 2 仿真实体的绘制 在本系统中,三维实体的绘制采用了以下方法来实现:(1)对于结构比较复杂而控制要求简单的工作对象或者其他附件,使用O penGL 直接绘制是一件十分烦琐的工作。而3D M ax 是一个相当好的流行建模工具,通过对简单几何形体进行并、交、切等布尔运算和曲面编辑等功能就能构造出复杂的几何形体。在完成复杂的建模后,输出3DS 格式文件,再通过一些相关工具软件(如3D Explorati on)可以生成O penGL 格式的C++数据文件,直接导入到VC 工程中,稍加修改就可完成复杂模型的绘制工作。 (2)对于结构简单而控制要求较复杂的机械手各轴,可直接使用Open GL 提供的三维建模函数完成绘制[1]。在此过程 中,对各轴的缩放、位置、角度的调整主要使用函数g lSca lef(),g l T ranslatef(),g l R otate f()来完成,为使绘制出来的各轴形象逼真,可对各轴进行相应的材质、光照设置;在进行轴之间进行装 ?205?第6期陈幼平等:六自由度机械手三维运动仿真研究

相关主题
文本预览
相关文档 最新文档