当前位置:文档之家› 太西无烟煤冶炼碳化硅的特征

太西无烟煤冶炼碳化硅的特征

太西无烟煤冶炼碳化硅的特征
太西无烟煤冶炼碳化硅的特征

太西无烟煤冶炼碳化硅的特征

宁夏天净集团晨光碳化硅有限公司王明孝

摘要用煤岩学的原理,分析解释太西无烟煤的结构特征。并简要介绍了太西煤在冶炼煤质碳化硅优越性。

煤是一种固体燃料,由于它的沉积生成年代不同,其岩相组成,微观物理结构,化学性能,反应活性截然不同。结构性能不同的煤有着不同的用途。有的适用于做燃料;有的适用于高温炼焦;有的适用于低温干馏和气化;有的适用于液化;有的适用于氮化;有的适用于作碳置换剂;有的适用于加工成水处理过滤剂等。煤在加工转化的过程中得到的各种不同产品,将是冶金,化工、医药、环保等行业的重要能源和原料。

无烟煤大都是沉积于古生代的石碳纪和二选纪,在久远的地质年代中,受深成、岩浆和动力变质作用条件下生成的一种煤化度最深的煤种,根据生成年代的不同和变质程度可分为:超无烟煤,年老无烟煤和年轻无烟煤

年老无烟煤和超无烟煤,由于沉积的地质年代久远,变质程度最高,挥发份很低,煤中的有机成分少。是煤化程度最深的煤种,该煤的基本微晶层状排列比较规则,微晶间交叉连接较少。很少有架桥结构的杂乱排列。空隙结构不发达。虽然有一定的气孔率,但微孔结构少,化学反应能力弱。这种结构的煤比重较大。微晶颗粒大,比电阻低,适合做炭素原料,不适合作炭置换反应的原料。宁夏中宁的碱沟山煤矿的无烟煤就是这个品种的无烟

煤。它不是作碳化硅冶炼的理想原料。有些古生代沉积的无烟煤其挥发份小于3%,灰分也很底,但基本上没有活性,属于超无烟煤。这种煤的无机化程度很深,不能当作碳化硅冶炼的碳材料使用。额尔多斯地区就有这种超无烟煤。固定碳虽能达到95%以上,但在碳化硅冶炼炉中反应能力很弱。碳化硅产出率很低。这种碳质原料在冶炼碳化硅时效果很差。

年轻无烟煤即具有含碳量高,挥发份适中的优点,又具有加热不产生煤焦油。物料不粘结,不膨胀,高密度,高硬度,不易形成微晶规则排列的石墨晶体结构。

适用于冶炼碳化硅的煤质原料,必须具有低灰,低硫,高固定碳,高比电阻,高化学活性,适中的挥发分。适合于这种条件的煤种只能是年轻无烟煤。

我国低灰无烟煤特别是最适合冶炼碳化硅的低灰分年轻无烟煤储量很少,且分布很不均匀。碳化硅产量占全国50-60%的宁夏,青海,甘肃省的碳化硅生产企业,全部采用宁夏汝箕沟矿区的无烟煤(太西煤)作碳质材料生产黑色冶炼碳化硅。

太西煤无烟煤储藏于贺兰山腹地的汝箕沟分水岭两侧,呈北偏东36°40’走向。煤田在久远的地质年代中,由于风化和剥蚀作用,背斜部位已完全被风化剥蚀掉不复存在。现存的只是大岭‘向斜’和二道岭‘向斜’两块煤田。煤田属于缓倾斜煤层。煤田沉积于中生代的侏罗纪。煤层中CH4的含量甚高,属于高瓦斯含量煤层。煤层共分7层储藏,其中2层、3层、5层和7层

局部属于可采煤层。2层是特厚煤层,3层、5层、7层是中厚煤层。煤的挥发份含量从煤田南端的5%到最北端逐渐升高,北部边缘地带的挥发份高达10%以上。强度也从煤田的南端到煤田的北端逐步降低。是一种低灰,低硫,低挥发份和高电阻,高强度,高化学活性的无烟煤。

太西煤无烟煤和宁东含煤区的储煤同属中生代侏罗纪含煤沉积。宁东煤属于年轻的不粘煤和少量的长焰煤和褐煤。唯独汝箕沟矿区因受到区域变质和强烈动力变质作用形成了无烟煤。这种成煤机理和生成条件在全球范围内,侏罗纪沉积的无烟煤也没有第二例。极为罕见,是一个特殊的珍惜煤种。世界少有,中国不多。但就这样一个宝贵的资源,因开采年代久远,据历史记载,早在宋代就已开始采挖,到目前为止储量已所剩有限。

太西煤的组织成分中含有纤维素碳,丝碳较多。加热时比较容易形成微晶杂乱排列的架桥结构。具有高比电阻特性。坚固的架桥结构容易形成较多的空隙结构,特别是微孔结构发达。在碳化硅冶炼炉气氛中,硅蒸气分子进入碳的微孔结构中,很容易被来自微孔壁很强的物体分散力,即物理吸附力吸附。被碳化反应形成碳化硅“晶核”。由于这些“晶核”在冶炼结晶过程中的“诱导”作用,在表面上吸收外来更多碳化硅分子而逐步成长为碳化硅结晶。这就是比较典型的“晶籽”成核机理。也是标准异相成核反应。也是太西煤具有很强的化学活性的基本原理。

其它煤种,虽有很高的气孔率,但微孔结构少,在很大孔隙

中,来自孔壁的物体分散力,因几何距离远而迅速的减小,很弱物理吸附力,吸附不住进入孔隙中的硅蒸气分子,无法进行有效碳化‘成核’和结晶反应。形成新物相物质(碳化硅晶体)的动力很小。只有在很有限的‘饱和’气份中发生‘气相’成核反应。所以化学活性很低。反应能力很弱。这种煤不能用来做冶炼碳化硅的碳质材料。

侏罗纪含煤沉积的煤种,煤灰分中的CaO;MgO;Fe2O3;K2O;Na2O 的含量比一般煤种高,灰分中铁和碱金属氧化物能提高煤的反应性,起催化作用,提高煤的转化速率。

太西煤的有机成分高于其他品种的无烟煤。太西煤的挥发份适中。而且是低分子化合物结构。特别是含氢量较高,达Hdaf3.15%-3.64%。氢含量高的煤有利于煤的热加工时反应活性的提高,能增加产品的数量,而且还能加速产品中杂质外排的速度。以提高碳化硅产品的质量。

太西煤的挥发份适中,煤的挥发份和转换率之间的关系与实际反应条件及煤本身性质关系较大.在一般情况下,挥发份较高的煤,反应活性比挥发份较低的煤,反应活性要强。煤加热时在气体挥发的同时,使煤的结构空隙量增大,通道加长,增大了空隙的内比表面积,增强了物体分散力,提高了吸附力,使煤的活性提高,有利于sio2和C元素的直接碳化还原作用的进行。煤中挥发份逸散时也带走了反应生成的CO。减少了冶炼炉在冶炼时炉内的“正压”。有利于结晶反应的正向进行。从而大大提高碳化效

果。既能提高碳化硅产品的生成量,又能有益于杂质的外排。净化产品。提高碳化硅的纯度,增加成品率。所以即是同一矿区出产的同一煤种,使用挥发份高的煤作原料比使用挥发份低的煤作原料时,碳化硅产品的产量高。

太西煤的煤质指标:

灰分:4.5﹪;挥发份:8.25﹪;硫份:<0.5﹪;发热量:7800—9100(大卡/千克)。

太西煤元素分析:

碳:93.56﹪;氢:3.64﹪;氮:0.7﹪:氧:1.5﹪;磷:0.0011﹪砷:0.5ppm.

太西煤灰分成分分析(典型值):

二氧化硅:19.2﹪;三氧化二铝:16.2﹪;三氧化二铁:26.1﹪;氧化钙:21.99﹪;氧化镁:10.32﹪;三氧化硫:1.2﹪;五氧化二磷。0.1﹪;氧化钠:4﹪;氧化钾2﹪。

太西煤煤质特征:

化学活性:81.2﹪;比电阻:3.1×109。

太西无烟煤和石油焦制炼碳化硅时的不同性质:

1、灰分石油焦炭灰分很低,一般在0.5-1%左右,

冶炼出的碳化硅块杂质含量低,韧性好。太西煤:灰分较高,一般在5-6%之间,特别是灰分中的Cao Mgo Fe2O3 Ai2O3等有害杂质较高,影响碳化硅结晶的品质。

2、活性石油焦是一种黑色或暗色蜂窝状焦,焦块内气

孔多数呈椭圆形,且一般相互贯通。气孔率高达50%,但都是大中孔结构,很少有微孔结构,比表面积较小,来自孔壁物体分散力很弱,‘异相’成核的机遇很少,很难通过“晶籽”成核成长为结晶。故用石油焦做原料制炼碳化硅,炉产量较低,其原因是石油焦的结构差异。反应活性差,结晶能力弱,它的反应能力仅为55%。

太西无烟煤是变质程度高的一种煤,具有含碳量高,挥

发份适中,密度大,强度高,外观金属光泽强,气孔率底虽仅有5%左右,但微孔结构发达,比表面积很大。微孔内的孔壁有很强的物体分散力,物理吸附力很强。异相分子很容易在微孔中形成“晶籽”,成长为成结晶。在碳化硅冶炼炉的环境气氛中,用太西无烟煤作原料,结晶在形成过程中“晶籽”成核和气相成核现象都很活拨,反应速度快。产品产量高于用石油焦炭作原料碳化硅冶炼炉。太西无烟煤反应能力大于81.2%

3、导电性

对于大多数碳材料来说,他们不具备理想的石墨晶体那样有序的结构。他们的网状平面很不完整,存在空洞、位错、杂质夹杂等缺陷。他们连成波浪形层面,平行堆积,构成乱层结构。这些乱层结构堆积层片数少,层间距大。他们没有宏观晶体性质,但在微细的区域内基本还是有一定的有序排列。这些微细结构称为微晶,根据微晶的聚焦状态可以有两种典型的结构。

(1)微晶定向性较好,微晶颗粒偏大,微晶间交叉连接较少,

为易石墨化碳,它在进一步热处理可转化为石墨碳,导电性能增强,石油焦就是典型的易石墨化碳。加热煅烧后比电阻小于500×106欧·米,在冶炼炉的高温状态中很容易形成石墨化无定形碳。化学反应能很弱,比电阻降低,增加了炉料的漏电性,尤其是作碳化硅冶炼炉的保温料反复循环使用时,漏电现象更为严重。

(2)微晶定向性差,微晶颗粒小,微晶间交叉链接,微晶间排列杂乱,微晶间有许多空隙,微细孔发达,在加热初期过程中,

微晶间就能生成坚固的架桥结构,即使通过高温处理也不能形成微晶取向一致的排列。具有这种微晶的杂乱排列和架桥结构的碳为难石墨化碳。木炭就是这种典型的结构,所以活性很好,导电性很差.太西无烟煤也类似这种性质,比电阻为3.1×109欧·米,即使高温煅烧后,比电阻也大于1500×106欧·米,导电性较差,这正是冶炼碳化硅时,作保温料的优良特性.它能多次反复循环使用。能使保温料保持一定的绝缘性质,延缓保温料老化周期。大大减少炉料的漏电量。冶炼时能节约耗电量。适合于采用“新料法”工艺进行冶炼。

太西无烟煤由于形成的地质年代较近,变质程度适中,煤中的有机载体丰富,是一种极为年轻的无烟煤。其低灰、低硫、低磷和高发热量、高机械强度、高化学活性、高比电阻的特点,是冶炼煤质碳化硅产品的最佳原料。

参考文献:

1 张念东. 碳化硅磨料工艺学. 机械工业出版社, 1982

2 王晓刚. 碳化硅合成理论与技术. 陕西科学出版社, 2001

3 钱湛芬. 炭素工艺学. 冶金工业出版社, 2006

4 像英温,杨先林. 煤的综合利用. 冶金工业出版社,2005

5 张西春. 浅谈宁夏煤煤质特征及加工利用.

煤炭加工与综合利用,1993,3

6 磨具磨料协会编. 磨具磨料技术手册. 兵器工业出版社.

7 汝箕沟煤矿编. 汝箕沟煤矿志.

碳化硅是什么材料

硅: 硅(台湾、香港称矽xī)是一种化学元素,化学符号是Si,旧称矽。原子序数14,相对原子质量28.0855,有无定形硅和晶体硅两种同素异形体,属于元素周期表上第三周期,IVA族的类金属元素。 硅也是极为常见的一种元素,然而它极少以单质的形式在自然界出现,而是以复杂的硅酸盐或二氧化硅的形式,广泛存在于岩石、砂砾、尘土之中。硅在宇宙中的储量排在第八位。在地壳中,它是第二丰富的元素,构成地壳总质量的26.4%,仅次于第一位的氧(49.4%)。 碳化硅: 碳化硅又名碳硅石、金刚砂,是一种无机物,化学式为SiC,是用石英砂、石油焦、木屑等原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。 物质品质: 碳化硅有黑碳化硅和绿碳化硅两个常用的基本品种,都属α-SiC。 ①黑碳化硅含SiC约95%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。②绿碳化硅含SiC约97%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。此外还有立方碳化硅,它是以特殊工艺制取的黄绿色晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。 品质规格:

①磨料级碳化硅技术条件按GB/T2480—96。各牌号的化学成分由表6-6-47和表6-6-48给出。 ②磨料粒度及其组成、磨料粒度组成测定方法:按GB/T2481.2-2009。 GB/T 9258.1-2000|涂附磨具用磨料粒度分析第1部分:粒度组成 GB/T 9258.2-2008|涂附磨具用磨料粒度分析第2部分:粗磨粒P12~P220粒度组成的测定

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,IGBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f ,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL HD)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极 管的V f 更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关 联差别很大:快速硅二极管具有负的温度系数,150°C下的V f 比25°C下的V f 低。 对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不均匀。这里,SiC肖特基二极管显示出最佳的性能。但与常规硅二极管相比,SiC肖特基二极管的静态损耗较高。由于二极管是基于10A额定电流进行比较的,考虑不同供应商的器件之间有时不同

分解炉内煤的燃尽特性研究

第23卷 第7期 2001年7月 武 汉 理 工 大 学 学 报 JOURNAL OF W UHAN UN IVERSIT Y OF TECHNOLOG Y V o l .23 N o.7 Ju l .2001 文章编号:100022405(2001)0720011204 分解炉内煤的燃尽特性研究 3 谢峻林 何 峰 袁润章(武汉理工大学)   摘 要: 煤粉的燃尽时间已成为进行分解炉设计的重要参数。针对水泥分解炉的低温燃烧工况,根据裹灰缩核模型及有关理论,采用失重分析法及扫描电镜,进行煤的燃尽特性实验方法、及煤焦燃尽时间与煤质之间的关系探讨,力求寻找到有关规律。提出的煤质评判指标(着火指数、燃尽指数)与实验方法,较好的定量反映出各煤样的燃尽特性。同时还根据水泥厂的实际实验条件,寻找出着火温度、燃尽时间与煤工业分析值之间的关系式,从而可以根据煤的工业分析结果对煤质进行预测。 关键词: 煤粉; 燃尽特性; 分解炉中图法分类号: T K 16; TQ 038.1 文献标识码: A 收稿日期:2001205218. 作者简介:谢峻林(19652),女,副教授;武汉,武汉理工大学硅酸盐工程中心(430070).3教育部骨干教师计划资助. 分解炉内煤粉的燃尽程度,与所用煤种、分解炉结构和操作参数有很大关系,为保证煤粉在分解炉内的 完全燃烧,煤粉的燃尽时间已成为进行分解炉设计的重要参数[1]。特别是目前低挥发份煤、高灰分煤在分解炉内应用的迫切性日趋增大,深入研究煤粉的燃尽特性,是解决不同煤质在分解炉内得到良好应用的关键。 1 研究方法 1.1 煤粉燃尽指标的确定 在水泥分解炉内由于CaCO 3分解吸热与煤燃烧放热之间达到了热平衡,分解炉内温度基本保持不变[2]。分解炉内煤的燃尽指标,应由最大燃烧速度及各特征时间来表达,为此,从煤的微分失重与时间关系曲线确定燃尽指标D f 的计算式为: D f =(d w d t )m ax ?t 1 2t m t f 式中:(d w d t )m ax 为最大燃烧速度,t 0为着火时所需时间,?t 1 2为(d w d t ) (d w d t )m ax =1 2时对应的时间区间。t m 为最大燃烧速度所对应时间,t f 为燃尽所需时间。 1.2 煤焦燃尽动力学参数确定 采用失重分析法。将直径为1000~5000Λm 的煤圆球,放入带盖坩埚内,于850℃无氧状态下加热至恒重,得到煤焦,同时求得各煤焦的密度Θc 值 。将炉温设置在850℃,炉内气氛为空气,高温进样测得各煤焦重量与时间的关系,当燃烧产物重量变化量在300s 内少于0.5%时,认为实验结束。根据裹灰缩核模型及有关理论[3,4],可建立关于k c 、k ∞、D h 的方程式: 1 k c +r 2 r 0k ∞+1 D h (r -r 2 r 0)=4Πr 2 ΒC ∞q (1)1 k c (1- r r 0)+r 03k ∞(1-r 3 r 30)+r 06D h (1-3r 2r 20+2r 3 r 30)= t Βc ∞c r 0 (2)对球形颗粒,t 时刻炭粒半径 r =( m c 4 3ΠΘc )1 3 (3)

中国煤炭分类、煤质指标的分级

煤质指标的分级

中国煤炭分类(2008-06-19 10:04:30) 中国煤炭分类: 首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤; 对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类; 烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤;>5~20为弱粘结煤;>20~50为中等偏弱粘结煤;>50~65为中等偏强粘结煤;>65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度Y>25mm或奥亚膨胀度b>150%(对于Vdaf>28%的烟煤,b>220%)的煤分为特强粘结煤。 在煤类的命名上,考虑到新旧分类的延续性,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 在烟煤类中,对G>85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度B值来区分肥煤、气肥煤与其它烟煤类的界限。当Y值大于25mm时,如Vdaf>37%,则划分为气肥煤。如Vdaf<37%,则划分为肥煤。如Y值<25mm,则按其Vdaf值的大小而划分为相应的其它煤类。如Vdaf>37%,则应划分为气煤类,如Vdaf>28%-37%,则应划分为1/3焦煤,如Vdaf 在于28%以下,则应划分为焦煤类。 这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。 在我国的煤类分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度B值(%)来确定肥煤、气煤与其它煤类的界限,即对Vdaf<28%的煤,暂定b值>150%的为肥煤;对Vdaf>28%的煤,暂定b值>220%的为肥煤(当Vdaf值<37%时)或气肥煤(当Vdaf值>37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因而在确定新分类的强粘结性煤的牌号时,可只测Y值而暂不测b值。 (中国煤煤分类国家标准表)

碳化硅工艺过程

生产技术 一、生产工艺 1.碳化硅 原理:通过石英砂、石油胶和木屑为原料通过电阻炉高温冶炼而成,主要反应机理是SiO2+3C----SiC+2CO。 碳化硅电阻炉制炼工艺:炉料装在间歇式电阻炉内,电阻炉两端端墙,近中心处是石墨电极。炉芯体连接于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。冶炼时,给电炉供电,炉芯温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发尘化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成碳化硅愈来愈多。碳化硅在炉内不断形成,蒸发移动,晶体长大,聚集成为—个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。 破碎:把碳化硅砂破碎为微粉,国内目前采用两种方法,一种是间歇的湿式球磨机破碎,一种是用气流粉末磨粉机破碎。我公司已由气流粉末磨碎机代替湿式球磨机破碎。 湿式球磨机破碎时用是用湿式球磨机将碳化硅砂磨成微粉原料,每次需磨6-8小时。所磨出的微粉原料中,微粉约占60%左右。磨的时间越长,则微粉所占的比例越大。但过粉碎也越严重,回收率就会下降。具体的时间,应该与球磨比、球径给配、料浆浓度等工艺参数一起经实验优选确定。该方法最大的优点就是设备简单,缺点是破碎效率较低,后续工序较复杂。

雷蒙磨粉机工作原理是:颚式破碎机将大块物料破碎到所需的粒度后,由提升机将物料输送到储料仓,然后由电磁振动给料机均匀连续地送到主机的磨腔内,由于旋转时离心力作用,磨辊向外摆动,紧压于磨环,铲刀与磨辊同转过程中把物料铲起抛入磨辊与辊环之间,形成填料层,物料在磨辊与磨环之间进行研磨。粉磨后的粉子随风机气流带到分级机进行分选,不合要求的粉子被叶片抛向外壁与气流脱离,粗大颗粒在重力的作用F落入磨腔进行重磨,达到细度要求的细粉随气流经管道进入大旋风收集器,进行分离收集,再经卸料器排出即为成品粉子,气流由大旋风收集器上端回风管吸入鼓风机。在磨腔内因被磨物料中有—定的水分,研磨时发热,水气蒸发,以及各管道接口不严密,外界气体被吸入,使循环风量增高,为保证磨机在负压吠态下工作,增加的气流通过余风管排入除尘器,被净化后排入大气。整个气流系统是密闭循环的,并且是在正负压状态下循环流动的。该法最大的优点是效率较高。而且后续工序较简单。 2、碳化硅微粉 (一)、碳化硅微粉的生产

无烟煤的特性以及市场前景

无烟煤的特性以及市场前景 无烟煤 无烟煤(英文名称anthracite),俗称白煤或红煤。是煤化程度最大的煤。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。黑色坚硬,有金属光泽。以脂摩擦不致染污,断口成介壳状,燃烧时火焰短而少烟。不结焦。一般含碳量在90%以上,挥发物在10%以下。无胶质层厚度。热值约8000-8500千卡/公斤。有时把挥发物含量特大的称做半无烟煤;特小的称做高无烟煤。 无烟煤和烟煤有什么差别 无烟煤(英文名称anthracite),俗称白煤或红煤。是煤化程度最大的煤。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。黑色坚硬,有金属光泽。以脂摩擦不致染污,断口成介壳状,燃烧时火焰短而少烟。不结焦。一般含碳量在90%以上,挥发物在10%以下。无胶质层厚度。热值约8000-8500千卡/公斤。有时把挥发物含量特大的称做半无烟煤;特小的称做高无烟煤。 无烟煤为煤化程度最深的煤,含碳量最多,灰分不多,水分较少,发热量很高,可达25000~32500kJ/kg,挥发分释出温度较高,其焦炭没有黏着性,着火和燃尽均比较困难,燃烧时无烟,火焰呈青蓝色。煤样在规定条件下隔绝空气加热,煤中的有机物质受热分解出一部分分子量较小的液态(此时为蒸汽状态)和气态产物,这些产物称为挥发物。挥发物占煤样质量的分数成为挥发分产率或简称为挥发分。以干燥无灰基为分析基,挥发分低于10%的煤称为无烟煤。挥发分大于6.5%小于10%的无烟煤称为无烟煤三号。01 号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。 中国无烟煤预测储量为4740 亿吨,占全国煤炭总资源量的10%,年产2 亿吨。山西省占32%,河南省占18%,贵州省占11%。中国有六大无烟煤基地:北京京煤集团,晋城煤业集团,焦作煤业集团,河南永城矿区,神华宁煤集团,阳泉煤业集团。 无烟煤块煤主要应用是化肥(氮肥、合成氨)、陶瓷、制造锻造等行业;无烟粉煤主要应用在冶金行业用于高炉喷吹(高炉喷吹用煤主要包括无烟煤、贫煤、瘦煤和气煤)。 烟煤和无烟煤主要的参数区别在于挥发分与水分,以及可燃基中的碳分。 无烟煤的挥发分与水分较烟煤更低,且析出温度更高。因此更难起火及燃烧,也因此在燃烧时几乎无烟气及火焰。 由于无烟煤碳分更高,所以它的低位发热量更大,也是煤中低位发热量最大的一种。 “标煤”可理解为用于燃烧计算的一种参照,和标准气体体积的概念相似。实际燃烧情况下的燃料消耗,可折标计算。 他们烧的锅炉是不同的.因为锅炉设计时时根据不同燃烧煤种进行设计,即使都是烟煤,

无烟煤性质

通常,国内外将可燃基挥发份<10%的煤列为无烟煤。无烟煤具有含碳量多、挥发份低、机械强度高、质硬、密度大、内孔隙小、不易研磨、挥发份析出温度高、导热性差、着火困难、着火温度高、热稳定性差、燃烧时化学反应速度缓慢,不易燃烬等特性,在无烟煤的燃烧中要着重解决着火、稳燃、燃烬三个主要问题。为此,从燃烧学考虑,对无烟煤的燃烧,有如下要求: (1)、原煤磨细。因为煤粒越细小,加热到着火温度愈快,反应的表面积增大,即提高了风粉混合物的着火品质。一般,取煤粉细度R90与煤的挥发份数值相近。 (2)、高的一次风粉混合物浓度。尽可能维持低的空气份额,加速煤粉吸热,使风粉混合物在燃烧器附近达到着火温度。 (3)、高的一次风粉混合物进口温度和燃烧空气温度。这样可以减少加热时间,易于着火。: (4)、低的一次风粉混合物出口速度。为延长煤粉在燃烧器喷口附近的停留时间以及改善煤粉空气混合物的加热条件,应选用较小的速度。 (5)、燃烧空气分级输入。为进一步改善加热和着火条件,必须根据燃烧进程分阶段输入空气。 (6)、长的燃烧路程。为使碳粒充分燃烬,就应使燃料颗粒有一个尽可能长的燃烬路程。 (7)、锅炉的着火区域具有高的燃烧室温度和燃烧室壁温,以使煤粉尽早地达到着火条件。 ----------------- 手烧炉具有最简单的燃烧设备——炉排手烧常用的固定炉排有条状和板状两种:条状炉排通风截面比约为(20%一40%)适用于高挥发分烟煤;板状炉排的通风截面比为(8%~20%)可燃用贫煤或无烟煤。 烟煤和无烟煤有何区别 无烟煤俗称白煤,挥发份含量小于等于 10%,地质演化的年代 久,机械强度高, 不易研磨,储藏时不易自燃, 便于长途运输有明亮的黑色光泽, 较难着火,着火后也难于完全燃烧,燃烧时有很短的青蓝色火焰,不冒黑烟,结焦性差。它一般喊水分 不高,无烟煤的着火温度约 700℃。我国京西、阳泉、焦作、金竹山等矿产无烟煤。 烟煤挥发份比较高( 15-45%) ,外表灰黑色,有光泽,发热量较高,较易着火与完全燃烧,煤质 一般较无烟煤软。烟煤容易着火和燃烧,对于挥发超过 25%的烟煤及煤粉,要防止贮存时 发生自燃,灰分大的劣质烟煤对受热面易产生灰积、结渣和磨损,要做好防护措施。较多的

纳米碳化硅材料

纳米碳化硅材料 摘要:本文主要讨论的是关于纳米碳化硅材料的结构、性能及其应用,主要在其 光学性质、力学性质等方面对其进行讨论。 关键词:纳米碳化硅光学性质力学性质 1. 引言 SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常 数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等特性,成为制作 高频、大功率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。 SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极 管的理想材料。近年来的研究表明:微米级SiC晶须已被应用于增强陶瓷基、金 属基和聚合物基复合材料,这些复合材料均表现出良好的机械性能,可以想象用 强度硬度更高及长径比更大的SiC 一维纳米材料作为复合材料的增强相,将会 使其性能得到进一步增强。随着研究的深入,研究者还发现一维SiC纳米结构在 储氢、光催化和传感等领域都有广泛的应用前景。 2. 纳米碳化硅结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物, 自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面 体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立 方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为 工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关 系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃, 也是非常稳定的。下面是三种SiC多形体结构图

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

碳化硅性能与碳化硅生产工艺

碳化硅性能与碳化硅生产工艺 天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。 (1)碳化硅的性质: 碳化硅主要有两种结晶形态:b-SiC 和 a-SiC。b-SiC 为面心立方闪锌矿型结构,晶格常 数 a=0.4359nm。a-SiC 是 SiC 的高温型结构,属六方晶系,它存在着许多变体。 碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的密度接近, a-SiC 一般为3.217g/cm3,b-SiC 为 3.215g/cm3.纯碳化硅是无色透明的,工业 SiC 由于含有游离 Fe、Si、C 等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC 热膨胀系数不大,在25~1400℃平均热膨胀系数为 4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为 64.4W/ (m·K)。常温下SiC 是一种半导体。 碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。 (2)碳化硅的合成: ①碳化硅的冶炼方法,合成碳化硅所用的原料主要是以 SiO2 为主要成分的脉石低档次的碳化硅可用低灰分的无烟煤为原料。辅助原料为木屑和食盐。 碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中 SiO2 含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的 SiO2 可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于 1.2%,挥发分小于 12.0%,石油焦的粒度通常在 2mm 或 1.5mm 以下。木屑用于调整炉料的透气性能,通常的加入量为 3% ~5%(体积)。食盐仅在冶炼绿碳化硅时使用。 硅质原料与石油焦在 2000~2500℃的电阻炉内通过以下反应生成碳化 硅:SiO2+3C→SiC+2CO↑-526.09Kj CO 通过炉料排出。加入食盐可与 Fe、Al 等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO 气体排出。 碳化硅形成的特点是不通过液相,其过程如下:约从 1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2 熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成 Sic 的反应;温度升高至1700~1900℃时,生成 b-SiC;温度进一步升高至 1900~2000℃时,细小的 b-SiC 转变为 a-SiC,a-SiC 晶粒逐渐长大和密实;炉温再升至 2500℃左右,SiC 开始分解变为硅蒸汽和石墨。 大规模生产碳化硅所用的方法有艾奇逊法和ESK 法。 艾奇逊法:传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

煤炭指标及煤种

焦炭:烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。 精煤:原煤经过洗煤,除去煤炭中矸石,即为精煤。 肥煤是指国家煤炭分类标准中,对煤化变质中等,粘结性极强的烟煤的称谓,炼焦煤的一种,炼焦配煤的重要组成部分,结焦性最强,熔融性好,结焦膨胀度大,耐磨;精煤是指经洗选加工供炼焦用或其他用途的洗选煤炭产品的总称。 煤的挥发分 煤的挥发分,即煤在一定温度下隔绝空气加热,逸出物质(气体或液体)中减掉水分后的含量。剩下的残渣叫做焦渣。因为挥发分不是煤中固有的,而是在特定温度下热解的产物,所以确切的说应称为挥发分产率。 (1)煤的挥发分不仅是炼焦、气化要考虑的一个指标,也是动力用煤的一个重要指标,是动力煤按发热量计价的一个辅助指标。 挥发分是煤分类的重要指标。煤的挥发分反映了煤的变质程度,挥发分由大到小,煤的变质程度由小到大。如泥炭的挥发分高达70%,褐煤一般为40~60%,烟煤一般为10~50%,高变质的无烟煤则小于10%。煤的挥发分和煤岩组成有关,角质类的挥发分最高,镜煤、亮煤次之,丝碳最低。所以世界各国和我国都以煤的挥发分作为煤分类的最重要的指标。 (2)煤的挥发分测试。从广义上来讲,凡是以发电、机车推进、锅炉燃烧等为目的,产生动力而使用的煤炭都属于动力用煤,简称动力煤。 1)无烟煤(WY)。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。如北京、晋城、阳泉分别为01、02、03号无烟煤。 2)贫煤(PM)。贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性。在层状炼焦炉中

纳米碳化硅材料

纳米碳化硅材料 王星 (武汉工业学院化学与环境工程学院湖北武汉430023) 摘要:本文介绍了碳化硅的结构,纳米碳化硅几种常用的制备的方法和它掺杂改性以及应用。虽然SiC纳米材料制备规模小、成本高、工序复杂,近期难以实现大规模生产,但SiC纳米材料性能优于传统的SiC材料,能够达到高新技术领域的严格要求,具有更为广泛的用途,为此,应进一步加大对SiC纳米材料的研究。 关键词:纳米碳化硅掺杂改性应用 1 引言 纳米材料的出现是21世纪材料科学发展的重要标志,它所表现出的强大的科学生命力不仅是因为揭示出科学的深刻物理含义,而更重要的是它所发现的新结构、新现象、新效应源源不断地被用来开发具有新结构、新性能的固体器件,对通讯、微电子等高新技术产生极其深远的影响。SiC纳米材料具有高的禁带宽度,高的临界击穿电场和热导率,小的介电常数和较高的电子饱和迁移率,以及抗辐射能力强,机械性能好等优点,成为制作高频、大工率、低能耗、耐高温和抗辐射器件的电子和光电子器件的理想材料。SiC 纳米线表现出的室温光致发光性,使其成为制造蓝光发光二极管和激光二极管的理想材料。所以,对纳米碳化硅材料的研究具有十分重要的意义。 2碳化硅的结构 碳化硅(SiC)俗称金刚砂,又称碳硅石是一种典型的共价键结合的化合物,自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC 具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H 多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。下面是三种SiC多形体结构图

碳化硅工艺过程简述

碳化硅磨料通常以石英、石油焦炭为主要原料。它们在备料工序中经过机械加工,成为 合适的粒度,然后按照化学计算,混合成为炉料。磨料调节炉料的透气性,在配炉料时要加适量的木屑。制炼绿碳化硅时,炉料中还要加适量的食盐。 炉料装在间歇式电阻炉内。电阻炉两端是端墙,近中心处有石墨电极。炉芯体即连于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。制炼时,电炉供电,炉芯体温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发生化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成的碳化硅也越来越多。它在炉内不断形成,蒸发移动,结晶长大,聚集成为一个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。炉自送电初期,电热主要部分用于加热炉料,而用以形成碳化硅的热量只是较少的一部分。送电中期,形成碳化硅所用的热量所占比例较大。送电后期,热损失占主要部分。调整送电功率与时间的关系,优选出最有利的停电时间,以期获得最好的电热利用率。大功率电阻炉通常选择送电时间在24小时左右,以利作业安排。在此基础上,调整电炉功率与炉子规格的关系。 电阻炉送电过程中,除了形成碳化硅这一基本反应外,炉料中各种杂质也发生一系列化学的和物理的变化,并发生位移。食盐亦然。炉料在制炼过程中不断减少,炉料表面变形下沉。反应所形成的一氧化碳则弥漫于大气中,成为污染周围大气的有害成分。 停电后,反应过程基本结束。但由于炉子很大,蓄热量就很大,一时冷却不了,炉内温度还足以引起化学反应,因此,炉表面仍继续有少量一氧化碳逸出。对于大功率电炉来说,延续的残余反应可达3~4小时。这时的反应比起送电时的反应来说,是微不足道的。但因为当时 炉表面温度已经下降,一氧化碳燃烧更不彻底。从劳动保护角度来说,仍应予以足够重视。停电后经过一段时间冷却,就可以拆除炉墙,然后逐步取出炉内各种物料。 制炼后炉内的物料,从外到里,构成下列各物层: (1)未经反应的物料 这部分炉料在制炼时未达到反应温度,因而不起反应,只起保温作用,它在炉中所占的位置叫保温带。保温带炉料与反应带炉料的配制方法、制炼后该部位炉料的利用方法不尽相同。有一种工艺方法,在保温带的特定区域内装炉时装以新料,制炼后取出配到反应料中去,这就叫做焙烧料。若将保温带上未反应的料经再生处理,稍加焦炭及适量木屑,配制成保温料重新利用,就称之为乏料。 (2)氧碳化硅层

碳化硅主要用途__碳化硅用于耐火材料时特性

碳化硅主要用途__碳化硅用于耐火材料时特性 碳化硅主要用途是什么呢?碳化硅用于耐火材料时有哪些特性呢?碳化硅又名金刚砂,包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。那么碳化硅的主要用途有哪些? 【碳化硅主要用途】 一、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自 由研磨,从而来加工玻 璃、陶瓷、石材、铸铁 及某些非铁金属、硬质 合金、钛合金、高速钢 刀具和砂轮等。 二、耐火材料和耐腐蚀 材料---主要是因为碳 化硅具有高熔点(分解 度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 三、化工--因为碳化硅可在溶融钢水中分解并和钢水中的离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂。这一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。 四、电工--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作的各种电炉),非线性电阻元件,各式的避雷阀片。

五、其它--配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。【碳化硅用于耐火材料时特性】 1、还原气氛下使用温度一般可达1760℃; 2、抗热震性能好,能承受温度急剧变化,防止炉衬出现裂纹或断裂 3、因热态强度高,中高温条件时可承受一定应力,可作为结构材料 4、耐磨性能好,在一定温度下,可作为耐磨衬体 5、能耐受一定熔渣或热态金属,包括碱金属熔液的侵蚀和渗透 6、可承受一些炉气的作用,能用于气氛炉。 其中,碳化硅应用于耐火材料的关键技术有以下四种方式: 1、氧化物结合:以硅酸铝、二氧化硅等为结合剂; 2、氮化物结合:氮化硅、氧氮化硅和赛隆结合; 3、自结合:按碳化硅的当量比例加入石墨和金属硅,高温下反应生成;

无烟煤煅烧技术介绍(华润南宁)

天津水泥工业设计研究院
华润水泥(南宁)有限公司
5000 t/d 熟料烧成系统
天津水泥工业设计研究院

天津水泥工业设计研究院 系统概述 回转窑 无烟煤研究及系统方案
内容
工程实践 结束语

天津水泥工业设计研究院
系统概述

天津水泥工业设计研究院
华润南宁5000 t/d原燃料条件
生料易烧性为D级,中等 煤质情况如下
煤样
90%燃尽时间 (s)
Aad
Vad
Qnet,ad
(%) (%) (kJ/kg ) 42.74 19.35 6.50 7.32 17200 26430
湖南冷水江无烟煤 贵州高兰芝无烟煤
51.7 33.5
贵州煤的工业分析
Mad 0.61 Aad 28.00 Vad 6.00 Qnet,ad(kJ/kg) 21000 St,ad 1.00 Cl- ad 0.003

天津水泥工业设计研究院
烧成系统主要技术指标
l 熟料产量:实际生产能力达到5500 t/d熟料 l 热耗:725 kcal/kg熟料 l C1出口压力:5300±300 Pa l C1出口温度:325±15 ℃

天津水泥工业设计研究院
华润南宁工艺及装备的特点
? 1、吸收近期国际上先进的预分解 窑的技术思想; ? 2、容纳天津院烧成系统开发的最 新技术; ? 3、充分考虑大型化装备的特殊要 求,在回转窑、分解炉、预热器及 煤粉燃烧器等的设计上充分考虑, 如分解炉及预热器断面风速适当提 高,以提高其湍流度,加强物料预 热及分解效果; ? 4、以可靠为前提、先进为目标; 使系统取得最佳效益。
? 设计的基本原则
? 结合我院开发成功的预分解窑上采用的 低挥发分煤煅烧技术,根据当地无烟煤 挥发份低的特性作针对性开发设计。在 设计上使窑有增产余地,设备和系统配 套具备达到10%的富裕能力。 ? 整个无烟煤煅烧工艺的设计确保生产可 靠、操作灵活方便

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.doczj.com/doc/7c8683567.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

碳化硅陶瓷工艺流程

碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的β-SiC粉末。 3、热分解法:

相关主题
文本预览
相关文档 最新文档