当前位置:文档之家› 等差数列的性质总结

等差数列的性质总结

等差数列的性质总结
等差数列的性质总结

等差数列性质总结 1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n );

2.等差数列通项公式:

*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a

推广: d m n a a m n )(-+=. 从而m

n a a d m n --=; 3.等差中项

(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +?=+≥∈212+++=?n n n a a a /

4.等差数列的前n 项和公式:

1()2n n n a a S +=1(1)2n n na d -=+211()22

d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)

5.等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . -

⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。

6.等差数列的证明方法

定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.

7.提醒:

(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)设项技巧:

:

①一般可设通项1(1)n a a n d =+-

②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d )

8.等差数列的性质:

(1)当公差0d ≠时,

等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;

前n 和211(1)()222

n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

;

(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

注:12132n n n a a a a a a --+=+=+=???,

(4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列

(5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列

%

(6)数列{}n a 为等差数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++???)仍为等差数列

(7)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和

。当项数为偶数n 2时,

()121135212

n n n n a a S a a a a na --+=+++???+==奇 ()22246212

n n n n a a S a a a a na ++=+++???+==偶 ()11n n n n n S S na na n a a d ++-=-=-=偶奇

]

11n n n n

S na a S na a ++==偶

。当项数为奇数12+n 时,则

21(21)(1)1n S S S S n a S n a n S S a S na S n +?=+=+=+?????=??-==+????

偶n+1n+1奇偶奇n+1n+1奇偶偶奇 (其中a n+1是项数为2n+1的等差数列的中间项).

(8){}n b 的前n 和分别为n A 、n B ,且

()n n A f n B =, 则

2121

(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. .

(9)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+ a ,,n m m a n ==则a 0n m +=

(10)求n S 的最值

法一:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。

法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和

即当,,001<>d a 由???≤≥+0

01n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。

即 当,,001>

01n n a a 可得n S 达到最小值时的n 值. 或求{}n a 中正负分界项

注意:解决等差数列问题时,通常考虑两类方法:

①基本量法:即运用条件转化为关于1a 和d 的方程;

②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.

等差数列常用性质

合作探究: 问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件? 由定义得A-a =b -A ,即: 2b a A += 反之,若2 b a A += ,则A-a =b -A 由此可可得:,,2b a b a A ?+=成等差数列 也就是说,A =2 b a +是a ,A ,b 成等差数列地充要条件 问题2:在直角坐标系中,画出通项公式为53-=n a n 地数列地图象,这个图象有什么特点? (2)在同一直角坐标系中,画出函数y=3x-5地图象,你发现了什么?据此说说等差数列q pn a n +=地图象与一次函数y=px+q 地图象之间有什么关系?定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 地等差中项 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 例1在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a . 分析:要求一个数列地某项,通常情况下是先求其通项公式,而要求通项公式,必须知道这个数列中地至少一项和公差,或者知道这个数列地任意两项(知道任意两项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手……例2 等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a 分析:要求通项,仍然是先求公差和其中至少一项地问题而已知两个条件均是三项复合关系式,欲求某项必须消元(项)或再弄一个等式出来精品文档收集整理汇总例3已知数列{n a }地通项公式为q pn a n +=,其中p,q 为常数,那么这个数列一定是等差数列吗? 分析:判定{n a }是不是等差数列,可以利用等差数列地定义,也就是看)1(1>--n a a n n 是不是一个与n 无关地常数. 等差数列地常用性质: 1.若数列{a n }是公差为d 地等差数列: (1)d>0时,{a n }是 ;d<0时,{a n }是 ;d=0时,{a n }是 ; (2)d= = = (m ,n ∈N +) (3)通项公式地推广:a n =a m + d (m ,n ∈N +). 精讲点评: 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

等差数列的基本性质

等差数列 一、等差数列的定义以及证明方法: 1、定义:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. 注意一些等差数列的变形形式,如: 111n n d a a +-=(d 为常数,此时,数列{1 n a }为等差数列) d =(d 为常数,此时,数列??为等差数列) …… 2、证明方法: (1)定义法:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2 (3)通项公式法:若数列{a n }的通项公式为a n =pn+q 的一次函数,则数列{a n }为等差数列. (4)若数列{a n }的前n 项和为S n =An 2+Bn ,则数列{a n }为等差数列. 【例题1】【2013年,北京高考(文)】给定数列a 1,a 2,a 3,……,a n ,……,对i =1,2,……,n-1,该数列的前i 项的最大值记为A i ,后n –i 项a i+1,a i +2,……,a n 的最小值记为B i ,d i =A i –B i . (I)设数列{a n }为3,4,7,1,求d 1,d 2,d 3的值. (II)设d 1,d 2,……,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,a 3,……,a n -1是等差数列.

3、等差数列的通项公式: (1)等差数列的通项公式:a n =a 1+(n-1)d 累加法和逐项法:对于形如() 1n n a a f n --=的形式,我们一般情况下,可以考虑使用逐项法或者累加法,从而达到求a n 的目的. 变形形式: a n =a m +(n-m )d 由以上公式可以得到:n m a a d n m -= - (2)等差数列通项公式的一些性质: ①若实数m,n,p,q 满足:m+n=p+q ,则:n m p q a a a a +=+;特别的,若m+n=2p ,则: 2n m p a a a +=; ②若数列{a n }为等差数列,则下标成等差数列的新数列仍然成等差数列; ③若数列{a n }为等差数列,数列{b n }为等差数列,则数列{pa n +qb n }还是等差数列; ④当d >0时,{a n }为递增数列;当d =0时,数列{a n }为常数列;当d <0时,数列{a n }为递减数列; 【例题1】【2015届黑龙江省双鸭山一中高三上学期期末考试,3】在等差数列{}n a 中,首项 01=a ,公差,0≠d 若7321a a a a a k ++++=Λ,则k =( ) A . 22 B . 23 C . 24 D. 25 【变式训练】【2015届吉林省东北师大附中高三上学期第三次摸底考试,3】设等差数列{}n a 的前n 项和为n S ,若151,15a S ==,则6a 等于 ( ) A .8 B .7 C .6 D .5 4、等差数列的求和问题:——方法:倒序相加 ()()()111111222 n n n n n n S a a a a n d na d -= +=++-=+???? (1)在等差数列{a n }中,k S ,2k k S S -,32k k S S -成等差数列;或者:()233k k k S S S -=; (2)奇偶项问题: 在等差数列中,若项数为偶数项,即:当n=2m (n,m ∈N*)时,有:S 偶-S 奇=md , 1 = m m S a S a +奇偶;

等差数列的性质

(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式为S n =na 1+n (n ﹣1)d 或者S n = 性质:①若项数为() *2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1 n n S a S a +=奇偶. ②若项数为() *21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶, 1 S n S n = -奇偶(其中n S na =奇,()1n S n a =-偶). 【例题精讲】 例1、若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列 例2、等差数列{a n }前n 项和为S n ,且﹣ =3,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 例3、设S n 是等差数列{a n }的前n 项和,若,则 =( ) A .1 B .2 C .3 D .4 例4、在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( ) A .4 B.-4 C .5 D.-5

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高二数学 等差数列的定义及性质

等差数列的定义及性质 ?等差数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为a n+1-a n=d。 ?等差数列的性质: (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列; (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和; (3)m,n∈N*,则a m=a n+(m-n)d; (4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p; (5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数。 (6) (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即 (8)仍为等差数列,公差为

?对等差数列定义的理解: ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同 一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有 ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数 列;当d<0时,数列为递减数列; ④是证明或判断一个数列是否为等差数列的依据; ⑤证明一个数列是等差数列,只需证明a n+1-a n是一个与n无关的常数即可。 等差数列求解与证明的基本方法: (1)学会运用函数与方程思想解题; (2)抓住首项与公差是解决等差数列问题的关键; (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,a n,S n,知道其中任意三 个就可以列方程组求出另外两个(俗称“知三求二’).

数列系列等差数列的性质

数列系列 等差数列的性质 一、思维导图 ????????????????????????????++++++++++--? ????=+=+=+=++=++=+????????? ??+=?? ? ??????=-=-+=+= -++成等差数列 成等差数列 成等差数列则是等差数列若片段和性质当心则时若则若下标和性质即的等差中项和是中等差数列或则成等差数列若等差中项等差数列的性质6425319638527412321212 2,,,,,}{:2,2,:2:}{2222 ,,a a a a a a a a a a a a a a a S S S S S ,a a a a a a a a p n m a a a a q p n m a a a ,a a ,a a a b A b a A b a A b a A , b A a n n n n n n n n p n m q p n m n m n m n m n m n

二、例题精析 1、(2018商洛模拟)等差数列}{n a 中,,12031581=++a a a 则1092a a -的值为__________ [解析]:已知,24,1202338881581=∴=+=++a a a a a a 242,281091089==-∴+=a a a a a a 2、(2018温州模拟)已知等差数列}{n a 的公差不为零,且242a a =,则3 21642a a a a a a ++++的值是__________ [解析]:2323332 224321642=?==++++a a a a a a a a a a ,下标和性质 3、(2017中原区校级月考)已知}{n a 为等差数列,,7,22683==+a a a 则=5a __________ [解析]:已知1572222,22655683=-=-=∴=+=+a a a a a a ,下标和性质 4、(2018南关区校级期末)在等差数列}{n a 中,102,a a 是方程0722=--x x 的两根,则=6a __________ [解析]:已知4 1)(21,21211026102=+=∴=-- =+a a a a a ,下标和性质 5、(2018塑州期末)在等差数列}{n a 中,若,39741=++a a a ,33852=++a a a 则=++963a a a _____ [解析]:设27,39332,963=∴+=?∴=++x x x a a a ,片段和性质 6、(2017商丘期末)等差数列}{n a 中,0>n a 且,301021=+++a a a 则=+65a a __________ [解析]:已知,6,30)(5101651011021=+=+∴=+=+++a a a a a a a a a 下标和性质 7、(2018太原期末)在等差数列}{n a 中,若,9531=++a a a ,21654=++a a a 则=7a __________ [解析]:已知,3,9333531=∴==++a a a a a ,7,21355654=∴==++a a a a a 92357=-=a a a

等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:

等差数列的性质总结

等差数列性质总结 1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +?=+≥∈212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘 以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.

等差数列题型总结、知识点

等差数列题型总结、知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列 一.等差数列知识点: 1等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 3等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或 b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是: =+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S , k k S S -2,k k S S 23-成等差数列如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 二、题型选析: 考试对等差数列的考察,侧重在求值、等差数列性质和前n 项和,求值的过程中,对首项和公差的把握是重中之重,其实很多的试题都是在围绕对首项和公差的应用在考察。性质的题要求学生对性质的熟练应用,题目一般在简单难度。 题型一、计算求值(等差数列基本概念的应用)

2.2等差数列的概念、通项公式、性质练习含答案

2.2 等差数列概念、通项公式、性质 第1课时 等差数列的概念及通项公式 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,…. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 题型二 等差中项 例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中, (1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10. 跟踪训练3 (1)求等差数列8,5,2,…的第20项; (2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 等差数列的判定与证明 典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1. (1)证明:数列???? ??a n 3n 是等差数列;

(2)求数列{a n }的通项公式. 典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式. 【课堂练习】 1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2 B .3 C .-2 D .-3 3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120° 4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13 的等差数列 C .公差为-13 的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92 B .47 C .46 D .45 1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)?{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)?{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N +)?{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可. 2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量. 【巩固提升】 一、选择题 1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4 B .3 C .2 D .1 2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52 B .62 C .-62 D .-52 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )

等差数列的性质总结

等差数列的性质总结 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=?+

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

相关主题
文本预览
相关文档 最新文档