当前位置:文档之家› 二次函数中考压轴题 平行四边形 解析精选

二次函数中考压轴题 平行四边形 解析精选

二次函数中考压轴题 平行四边形 解析精选
二次函数中考压轴题 平行四边形 解析精选

二次函数中考压轴题(平行四边形)解析精选【例一】(2013?嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为

A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;

(2)求DE的长?

(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

考点:二次函数综合题.

专题:数形结合.

分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;

(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;

(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;

②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.

解答:解:(1)当m=2时,y=(x﹣2)2+1,

把x=0代入y=(x﹣2)2+1,得:y=2,

∴点B的坐标为(0,2).

(2)延长EA,交y轴于点F,

∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,

∴△AFC≌△AED,

∴AF=AE,

∵点A(m,﹣m2+m),点B(0,m),

∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,

∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,

∴△ABF∽△DAE,

∴=,即:=,

∴DE=4.

(3)①∵点A的坐标为(m,﹣m2+m),

∴点D的坐标为(2m,﹣m2+m+4),

∴x=2m,y=﹣m2+m+4,

∴y=﹣?++4,

∴所求函数的解析式为:y=﹣x2+x+4,

②作PQ⊥DE于点Q,则△DPQ≌△BAF,

(Ⅰ)当四边形ABDP为平行四边形时(如图1),

点P的横坐标为3m,

点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,

把P (3m ,﹣ m 2+m+4)的坐标代入y=﹣x 2+x+4得:

﹣m 2+m+4=﹣

×(3m )2+×(3m )+4,

解得:m=0(此时A ,B ,D ,P 在同一直线上,舍去)或m=8. (Ⅱ)当四边形ABDP 为平行四边形时(如图2), 点P 的横坐标为m ,

点P 的纵坐标为:(﹣ m 2+m+4)+(m 2)=m+4, 把P (m ,m+4)的坐标代入y=﹣x 2+x+4得:

m+4=﹣

m 2+m+4,

解得:m=0(此时A ,B ,D ,P 在同一直线上,舍去)或m=﹣8, 综上所述:m 的值为8或﹣8.

点评: 本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及

分类讨论.

【例二】已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。

(1)求抛物线的解析式;

(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为

顶点的四边形为平行四边形,求D 点的坐标;

(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP

与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 【例三】(2013?湘潭)如图,在坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A (1,

0),B (0,2),抛物线y=x 2+bx ﹣2的图象过C 点.

(1)求抛物线的解析式;

(2)平移该抛物线的对称轴所在直线l .当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分? (3)点P 是抛物线上一动点,是否存在点P ,使四边形PACB 为平行四边形?若存在,求出P 点坐标;若不存在,说明理由. 考点: 二次函数综合题. 分析: 如解答图所示:

(1)首先构造全等三角形△AOB ≌△CDA ,求出点C 的坐标;然后利用点C 的坐标求出抛物线的解析式;

(2)首先求出直线BC 与AC 的解析式,设直线l 与BC 、AC 交于点E 、F ,则可求出EF 的

表达式;根据S △CEF =S △ABC ,列出方程求出直线l 的解析式;

(3)首先作出?PACB ,然后证明点P 在抛物线上即可.

解答: 解:(1)如答图1所示,过点C 作CD ⊥x 轴于点D ,则∠CAD+∠ACD=90°.

A

A B B

O

O x x

y y

∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,

∴∠OAB=∠ACD,∠OBA=∠CAD.

∵在△AOB与△CDA中,

∴△AOB≌△CDA(ASA).

∴CD=OA=1,AD=OB=2,

∴OD=OA+AD=3,

∴C(3,1).

∵点C(3,1)在抛物线y=x2+bx﹣2上,

∴1=×9+3b﹣2,解得:b=﹣.

∴抛物线的解析式为:y=x2﹣x﹣2.

(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.

∴S△ABC=AB2=.

设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),

∴,

解得k=﹣,b=2,

∴y=﹣x+2.

同理求得直线AC的解析式为:y=x﹣.

如答图1所示,

设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.

由题意得:S△CEF=S△ABC,

即:EF?h=S△ABC,

∴(﹣x)?(3﹣x)=×,

整理得:(3﹣x)2=3,

解得x=3﹣或x=3+(不合题意,舍去),

∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.

(3)存在.

如答图2所示,

过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.

过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.

过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,

∴PH=BG=1,AH=CG=3,

∴OH=AH﹣OA=2,

∴P(﹣2,1).

抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.

∴存在符合条件的点P,点P的坐标为(﹣2,1).

点评:本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.

【例四】(2013?盘锦)如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y

轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.

(1)求抛物线的解析式;

(2)当四边形ODEF是平行四边形时,求点P的坐标;

(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

考点:二次函数综合题.

分析:(1)利用待定系数法求出抛物线的解析式;

(2)平行四边形的对边相等,因此EF=OD=2,据此列方程求出点P的坐标;

(3)本问利用中心对称的性质求解.平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与?ODEF 对称中心的直线平分?ODEF的面积.

解答:解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,

∴,

解得a=﹣1,b=2,

∴抛物线的解析式为:y=﹣x2+2x+3.

(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).

设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:

解得k=﹣1,b=3,

∴y=﹣x+3.

设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3),

∴EF=y E﹣y F=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.

∵四边形ODEF是平行四边形,

∴EF=OD=2,

∴﹣x2+3x=2,即x2﹣3x+2=0,

解得x=1或x=2,

∴P点坐标为(1,0)或(2,0).

(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与?ODEF对称中心的直线平分?ODEF的面积.

①当P(1,0)时,

点F坐标为(1,2),又D(0,2),

设对角线DF的中点为G,则G(,2).

设直线AG的解析式为y=kx+b,将A(﹣1,0),G(,2)坐标代入得:

解得k=b=,

∴所求直线的解析式为:y=x+;

②当P(2,0)时,

点F坐标为(2,1),又D(0,2),

设对角线DF的中点为G,则G(1,).

设直线AG的解析式为y=kx+b,将A(﹣1,0),G(1,)坐标代入得:

解得k=b=,

∴所求直线的解析式为:y=x+.

综上所述,所求直线的解析式为:y=x+或y=x+.

点评:本题是二次函数的综合题型,考查了二次函数的图象与性质、待定系数法、平行四边形的性质、中心对称的性质等知识点.第(3)问中,特别注意要充分利用平行四边形中心对称的性质,只要求出其对称中心的坐标,即可利用待定系数法求出所求直线的解析式.

【例五】(2013?沈阳)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和

点B(1,),与x轴的另一个交点为C.

(1)求抛物线的函数表达式;

(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;

(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.

①判断四边形OAEB的形状,并说明理由;

②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,

请直接写出线段BM的长.

考点:二次函数综合题.

分析:(1)利用待定系数法求出抛物线的函数表达式;

(2)由∠BDA=∠DAC,可知BD∥x轴,点B与点D纵坐标相同,解一元二次方程求出点D 的坐标;

(3)①由BE与OA平行且相等,可判定四边形OAEB为平行四边形;

②点M在点B的左右两侧均有可能,需要分类讨论.综合利用相似三角形的性质、等腰三角

形的性质和勾股定理,求出线段BM的长度.

解答:

解:(1)将A(,0)、B(1,)代入抛物线解析式y=x2+bx+c,得:

解得:.

∴y=x2x+.

(2)当∠BDA=∠DAC时,BD∥x轴.

∵B(1,),

当y=时,=x2x+,

解得:x=1或x=4,

∴D(4,).

(3)①四边形OAEB是平行四边形.

理由如下:抛物线的对称轴是x=,

∴BE=﹣1=.

∵A(,0),

∴OA=BE=.

又∵BE∥OA,

∴四边形OAEB是平行四边形.

②∵O(0,0),B(1,),F为OB的中点,∴F(,).

过点F作FN⊥直线BD于点N,则FN=﹣=,BN=1﹣=.

在Rt△BNF中,由勾股定理得:BF==.

∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,

∴∠FBM=2∠BMF.

(I)当点M位于点B右侧时.

在直线BD上点B左侧取一点G,使BG=BF=,连接FG,则GN=BG﹣BN=1,在Rt△FNG中,由勾股定理得:FG==.

∵BG=BF,∴∠BGF=∠BFG.

x

y

A

O

C

B

(第26题图)

又∵∠FBM=∠BGF+∠BFG=2∠BMF , ∴∠BFG=∠BMF ,又∵∠MGF=∠MGF , ∴△GFB ∽△GMF , ∴

,即

∴BM=;

(II )当点M 位于点B 左侧时.

设BD 与y 轴交于点K ,连接FK ,则FK 为Rt △KOB 斜边上的中线, ∴KF=OB=FB=,

∴∠FKB=∠FBM=2∠BMF , 又∵∠FKB=∠BMF+∠MFK , ∴∠BMF=∠MFK , ∴MK=KF=,

∴BM=MK+BK=+1=.

综上所述,线段BM 的长为或.

点评: 本题是中考压轴题,考查了二次函数的图象与性质、待定系数法、解方程、相似三角形、等腰

三角形、平行四边形、勾股定理等知识点.难点在于第(3)②问,满足条件的点M 可能有两种情形,需要分类讨论,分别计算,避免漏解.

【例六】如图,抛物线经过5(1,0),(5,0),(0,)2

A B C --三点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A,C,M,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.

解析:解:(1)设抛物线的解析

式为

2y ax bx c =++,

(第26题图)

根据题意,得0,2550,5.2a b c a b c c ?

?-+=?

++=???=-?,

解得1,22,5.

2a b c ?

=??

=-???=-?

∴抛物线的解析式为:21

52.2

2

y x x =-- ………(3分) (2)由题意知,点A 关于抛物线对称轴的对称点为点B,连接BC 交抛物线的对称轴于点P ,则P 点 即为所求.

设直线BC 的解析式为y kx b =+,

由题意,得50,5

.2k b b +=???=-??解得 1,2

5.2

k b ?

=????=-?? ∴直线BC 的解析式为15.22

y x =- …………(6分)

∵抛物线21522

2y x x =--的对称轴是2x =,

∴当2x =时,153

.222y x =-=-

∴点P 的坐标是3

(2,)2

-. …………(7分)

(3)存在 …………………………(8分)

(i)当存在的点N 在x 轴的下方时,如图所示,∵四边形ACNM 是平行四边形,∴C N ∥x 轴,∴点C 与点N 关于对称轴x=2对称,∵C 点的坐标为5(0,)2

-,∴点N 的坐标为

5

(4,).2

- ………………………(11分)

(II )当存在的点'N 在x 轴上方时,如图所示,作'N H x ⊥轴于点H ,∵四边形''

ACM N 是平行四边形,∴'

'

'

'

,AC M N N M H CAO =∠=∠, ∴R t △CAO ≌R t △'

'

N M H ,∴'

N H OC =.

∵点C 的坐标为'

55(0,),2

2N H -∴=,即N 点的纵坐标为52

, ∴

2155

2,222

x x --=即24100x x --= 解得12214,214.x x =+=-

∴点'

N 的坐标为5

(214,)2-和5(214,)2

+. 综上所述,满足题目条件的点N 共有三个,

分别为5(4,).2-,5(214,)2+,5(214,)2

- ………………………(13分) 26.(2013山西,26,14分)(本题14分)综合与探究:如图,抛物线21

3

44

2

y x x =--与x 轴交于A,B 两点(点B 在点A 的右侧)与y 轴交于点C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),

过点P 作x 轴的垂线l 交抛物线于点Q

(1)求点A,B,C 的坐标。

(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M,N 。试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由。

(3)当点P 在线段EB 上运动时,是否存在点 Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由。 解析:(1)当y=0时,21

3

404

2

x x --=,解得,122,8x x =-= ∵点B 在点A 的右侧,

∴点A,B 的坐标分别为:(-2,0),(8,0)

当x=0时,y=-4

∴点C的坐标为(0,-4),

(2)由菱形的对称性可知,点D的坐标为(0,4).

设直线BD的解析式为y=kx+b,则

4

80

b

k b

ì=

?

í

+=

??

.解得,k=

1

2

-,b=4.

∴直线BD的解析式为

1

4

2

y x

=-+.

∵l⊥x轴,∴点M,Q的坐标分别是(m,

1

4

2

m

-+),(m,2

13

4

42

m m

--)

如图,当MQ=DC时,四边形CQMD是平行四边形.

∴(

1

4

2

m

-+)-(2

13

4

42

m m

--)=4-(-4)

化简得:240

m m

-=.解得,m1=0,(舍去)m2=4.

∴当m=4时,四边形CQMD是平行四边形.

此时,四边形CQBM是平行四边形.

解法一:∵m=4,∴点P是OB中点.∵l⊥x轴,∴l∥y轴.

∴△BPM∽△BOD.∴

1

2

BP BM

BO BD

==.∴BM=DM.

∵四边形CQMD是平行四边形,∴DM CQ∴BM CQ.∴四边形CQBM为平行四边形.

解法二:设直线BC的解析式为y=k

1x+b

1

,则1

11

4

80

b

k b

ì=-

?

í

+=

??

.解得,k

1

=

1

2

,b

1

=-4

∴直线BC的解析式为y=1

2

x-4

又∵l⊥x轴交BC于点N.∴x=4时,y=-2. ∴点N的坐标为(4,-2)由上面可知,点M,Q的坐标分别为:(4,2),Q(4,-6).

∴MN=2-(-2)=4,NQ=-2-(-6)=4.∴MN=QN.

又∵四边形CQMD是平行四边形.∴DB∥CQ,∴∠3=∠4,

又∠1=∠2,∴△BMN≌△CQN.∴BN=CN.

∴四边形CQBM为平行四边形.

(3)抛物线上存在两个这样的点Q,分别是Q

1(-2,0),Q

2

(6,-4).

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

八年级下册---平行四边形压轴题解析

八年级下册---平行四边形压轴题解析 八年级下册---平行四边形压轴题 一(选择题(共15小题) 1((2012?玉环县校级模拟)如图,菱形ABCD中,AB=3, DF=1,?DAB=60?,?EFG=15?,FG?BC,则AE=( ) A( B( C( D( 2((2015?泰安模拟)如图,已知直角梯形ABCD中,AD?BC,?BCD=90?, BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:?CP平分?BCD;?四边形ABED为平行四边形;?CQ将直角梯形ABCD分为面积相等的两部分;??ABF为等腰三角形,其中不正确的有( ) A( 1个 B( 2个 C( 3个 D(0 个 3((2014?武汉模拟)如图?A=?ABC=?C=45?,E、F分别是AB、BC的中点,则下列结论,?EF?BD,?EF=BD,??ADC=?BEF+?BFE,?AD=DC,其中正确的是( )

A( ???? B( ??? C( ??? D(??? 4((2014?市中区一模)在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC(下列结 论:?AB′=AD;??FCB′为等腰直角三角形;??ADB′=75?;??CB′D=135?(其中正确的是( ) 第1页(共23页) A(?? B( ??? C( ?? D(???? 5((2014?江阴市二模)在正方形ABCD中,P为AB的中点,BE?PD的延长线于点E,连接AE、BE、FA?AE交DP于点F,连接BF,FC(下列结 论:??ABE??ADF; ?FB=AB;?CF?DP;?FC=EF 其中正确的是( ) A(??? B( ??? C( ??? D(???? 6((2014?武汉模拟)如图,正方形ABCD的三边中点E、F、G(连ED交AF于M,GC交DE于N,下列结论:

中考数学——平行四边形的综合压轴题专题复习及答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒. (1)P点的坐标为多少(用含x的代数式表示); (2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值; (3)当x为何值时,△NPC是一个等腰三角形?简要说明理由. 【答案】(1)P点坐标为(x,3﹣x). (2)S的最大值为,此时x=2. (3)x=,或x=,或x=. 【解析】 试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求; ②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标. (2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式. (3)本题要分类讨论: ①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值; ②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值. ③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值. 试题解析:(1)过点P作PQ⊥BC于点Q, 有题意可得:PQ∥AB,

最新八年级下册---平行四边形压轴题解析

八年级下册---平行四边形压轴题 一.选择题(共15小题) 1.(2012?玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=() B 2.(2015?泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有() 3.(2014?武汉模拟)如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结 论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是() 4.(2014?市中区一模)在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()

5.(2014?江阴市二模)在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF; ②FB=AB;③CF⊥DP;④FC=EF 其中正确的是() 6.(2014?武汉模拟)如图,正方形ABCD的三边中点E、F、G.连ED交AF于M,GC 交DE于N,下列结论: ①GM⊥CM; ②CD=CM; ③四边形MFCG为等腰梯形; ④∠CMD=∠AGM.其中正确的有() 7.(2013?绍兴模拟)如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线; ④BF+CE=DF+DE.

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

2020-2021中考数学平行四边形-经典压轴题及答案

2020-2021 中考数学平行四边形-经典压轴题及答案 、平行四边形 运动. 2)如图2,当b>2a时,点M 在运动的过程中,是否存在∠BMC=9°0 ,若存在,请给与证明;若不存在,请说明理由; 3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.答案】(1)见解析; 2)存在,理由见解析; 3)不成立.理由如下见解析 解析】试题分析:(1)由b=2a,点M 是AD 的中点,可得AB=AM=MD=DC=a,又由四边形ABCD 是矩形,即可求得∠AMB=∠ DMC=4°5 ,则可求得∠BMC=9°0 ;(2)由∠BMC=9°0,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣ bx+a2=0,由b>2a,a>0,b>0,即可判定△> 0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意; (3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0 的根的情况,即可求得答案. 试题解析:(1)∵b=2a,点M 是AD 的中点,∴AB=AM=MD=DC=a, 又∵在矩形ABCD中,∠A=∠D=90°,∴∠ AMB=∠ DMC=45 °,∴∠ BMC=90 °. (2)存在,理由:若∠BMC=9°0 ,则∠ AMB+∠ DMC=9°0 ,又∵ ∠AMB+∠ABM=9°0 ,∴∠ ABM=∠ DMC,又∵ ∠A=∠D=90°,∴△ ABM∽△DMC,AM AB ∴CD DM , x 设AM=x ,则 a a bx 1.已知,在矩形ABCD中,AB=a,BC=b,动点M 从点 A 出发沿边AD向点D 1)如图1,当b=2a,点M 运动到边AD 的中点时,请证明 ∠BMC=9°0 ;

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

《二次函数热点压轴题》

第一部分:以“增减性”为主导的综合问题 【典型例题1】 在平面直角坐标系xOy 中.已知抛物线22y ax bx a =++-的对称轴是直线x =1. (1)用含a 的式子表示b ,并求抛物线的顶点坐标; (2)已知点()0,4A -,()2,3B -,若抛物线与线段AB 没有公共点,结合函数图象, 求a 的取值范围; (3)若抛物线与x 轴的一个交点为C (3,0),且当m ≤x ≤n 时,y 的取值范围是 m ≤y ≤6,结合函数图象,直接写出满足条件的m ,n 的值 . 二次函数热点压轴题

【变式与拓展】 1.在平面直角坐标系xOy 中,已知抛物线222++-=a ax x y 2的顶点C ,过点B (0,t )作与y 轴垂直的直线l ,分别交抛物线于E ,F 两点,设点E (x 1,y 1),点F (x 2,y 2)(x 1<x 2). (1)求抛物线顶点C 的坐标; (2)当点C 到直线l 的距离为2时,求线段EF 的长; (3)若存在实数m ,使得x 1≥m -1且x 2≤m +5成立,直接写出t 的取值范围.

2.在平面直角坐标系xOy中,抛物线223 y x bx =-+-的对称轴为直线x=2. (1)求b的值; (2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2), 其中 12 x x<. ①当 213 x x-=时,结合函数图象,求出m的值; ②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,44 y -≤≤,求m的取值范围.

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

2020-2021中考数学平行四边形-经典压轴题附详细答案

2020-2021中考数学平行四边形-经典压轴题附详细答案 一、平行四边形 1.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F. 探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数. 归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论; 猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论. 【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析. 【解析】 试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG 度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设 ∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可. 试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣ 30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:

经典平行四边形压轴题

1. 如图,已知以厶 ABC 的三边为边在 BC 的同侧作等边△ ABD △ BCE △ ACF 请回答下列问题: (1) 四边形ADEF 是什么四边形?写出理由。 (2) 当厶ABC 满足什么条件时,四边形 ADEF 是菱形? (3) 当厶ABC 满足什么条件时,以 A 、D E 、F 为顶点的四边形不存在? 2. ( 2009临沂)数学课上,张老师出示了问题:如图 1,四边形ABCD 是正方形,点 E 是边BC 的中点. AEF 90°,且 EF 交正方形外角 DCG 的平行线CF 于点F ,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路:取 AB 的中点 M 连接 ME 贝U AM =EC 易证 △ AME ECF ,所以 AE EF . 在此基础上,同学们作了进一步的研究: (1 )小颖提出:如图2,如果把“点 E 是边BC 的中点”改为“点 E 是边BC 上 (除B , C 外)的任意一点”,其它条件 不变,那么结论“ AE =EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图 3,点E 是BC 的延长线上(除 C 点外)的任意一点,其他条件不变,结论“ AE=EF'仍然成 立?你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 图2 图3 图1

3. (2009年铁岭市)△ ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ ADE是以AD 为边的等边三角形,过点E作BC的平行线,分别交射线AB AC于点F、G,连接BE . (1)如图(a)所示,当点D在线段BC上时. ①求证:△ AEB ADC ; ②探究四边形BCGE是怎样特殊的四边形?并说明理由; (2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立? (3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由. 4. (2009年日照 市) 已知正方形ABCD中, E为对角线BD上一点,过E点作EF丄BD交BC于F,连接DF G为DF中点, 连接EG CG (1)求证:EGCG (2)将图①中厶BEF绕B点逆时针旋转450,如图②所示,取DF中点G连接EG CG问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中厶BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观 察你还能得出什么结论?(均不要求证明) 图 第24题图①第24题图② A D 第24题图③

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

A B 初二平行四边形所有知识点总结和常考题 知识点: 1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。 3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。 4、矩形的定义:有一个角是直角的平行四边形。 5、矩形的性质:⑴矩形的四个角都是直角; ⑵矩形的对角线相等。 6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形; ⑵对角线相等的平行四边形是矩形。 7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第 三边的一半。 直角三角形斜边上的中线等于斜边的一半。 (连接三角形两边中点的线段叫做三角形的中位线。) 8、菱形的定义 :有一组邻边相等的平行四边形。 9、菱形的性质:⑴菱形的四条边都相等; ⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 S 菱形=1/2×ab (a 、b 为两条对角线长) 10、菱形的判定定理:⑴四条边相等的四边形是菱形。 ⑵对角线互相垂直的平行四边形是菱形。 11、正方形定义:一个角是直角的菱形或邻边相等的矩形。 12正方形判定定理:⑴ 邻边相等的矩形是正方形。 ⑵有一个角是直角的菱形是正方形。 (矩形+菱形=正方形) 常考题: 一.选择题(共14小题) 1.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分 D .两组对角分别相等 2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )

2019年中考二次函数压轴题整理

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 平行四边形类 3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由. 4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质. 5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上. (1)求抛物线顶点A的坐标; (2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;

苏教版初二八下期中复习平行四边形压轴题含答案(非常好)

教学主题 平行四边形压轴题教学目标 重要知识点1. 2. 3. 易错点 教学过程 一.选择题(共15小题) 1.(2012?玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=() A.B.C.D. 考点:菱形的性质;解直角三角形. 专题:压轴题. 分析:首先过FH⊥AB,垂足为H.由四边形ABCD是菱形,可得AD=AB=3,即可求得 AF的长,又由∠DAB=60°,即可求得AH与FH的长,然后由∠EFG=15°,证得△FHE 是等腰直角三角形,继而求得答案. 解答:解:过FH⊥AB,垂足为H. ∵四边形ABCD是菱形, ∴AD=AB=3, ∵DF=1, ∴AF=AD﹣FD=2, ∵∠DAB=60°, ∴∠AFH=30°, ∴AH=1,FH=, 又∵∠EFG=15°, ∴∠EFH=∠AFG﹣∠AFH﹣∠EFG=90°﹣30°﹣15°=45°, ∴△FHE是等腰直角三角形, ∴HE=FH=, ∴AE=AH+HE=1+. 故选D.

点评:此题考查了菱形的性质、直角三角形的性质、勾股定理以及等腰直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用. 2.(2015?泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD; ②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有() A.1个B.2个C.3个D.0个 考点:直角梯形;全等三角形的判定与性质;等腰三角形的判定;平行四边形的判定. 专题:证明题;压轴题. 分析: 解答:解:∵BC=CD=2AD,E、F分别是BC、CD边的中点, ∴CF=CE,BE=DF, 在△BCF和△DCE中, ∵, ∴△BCF≌△DCE(SAS), ∴∠FBC=∠EDC,BF=ED, 在△BPE和△DPF中, ∵, ∴△BPE≌△DPF(AAS), ∴BP=DP, 在△BPC和△DPC中, ∵, ∴△BPC≌△DPC(SSS), ∴∠BCP=∠DCP,即CP平分∠BCD, 故选项①正确; 又∵AD=BE且AD∥BE,

全国中考二次函数压轴题集锦(附详细答案)

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4, 抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于 点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+b x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点 C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+b x+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2) 三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+b x+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.

初二数学:平行四边形知识点总结及压轴题练习(附答案解析)

B 初二平行四边形所有知识点总结和常考题 知识点: 1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的 对角相等:⑶平行四边形的对角线互相平分。 3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四 边形是平行四边形;⑷一组对边平行且相等的四边形是平行四边形。 4、矩形的定义:有一个角是直角的平行四边形。 5、矩形的性质:⑴矩形的四个角都是直角; ⑵矩形的对角线相等。 6、矩形判定定理:⑴有三个角是直角的四边形是矩形; ⑵对角线相等的平行四边形是矩形。 7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第 三边的一半。 直角三角形斜边上的中线等于斜边的一半。 (连接三角形两边中点的线段叫做三角形的中位线。) 8、菱形的定义:有一组邻边相等的平行四边形。 9、菱形的性质:⑴菱形的四条边都相等; ⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 S菱形=1/2×ab(a、b为两条对角线长) 10、菱形的判定定理:⑴四条边相等的四边形是菱形。 ⑵对角线互相垂直的平行四边形是菱形。 11、正方形定义:一个角是直角的菱形或邻边相等的矩形。 12正方形判定定理:⑴邻边相等的矩形是正方形。⑵有一个角是 直角的菱形是正方形。(矩形+菱形=正方形) 常考题: 一.选择题(共14小题) 1.矩形具有而菱形不具有的性质是() A.两组对边分别平行B.对角线相等 C.对角线互相平分 D.两组对角分别相等 2.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出 平行四边形ABCD是矩形,那么这个条件是() A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

2019中考二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 图2

2.(2010绵阳)如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积. 3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由. 题型二:构造直角三角形 【例2】(2010山东聊城)如图,已知抛物线y =ax 2 +bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式; (2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,C E D G A x y O B F

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

相关主题
文本预览
相关文档 最新文档