当前位置:文档之家› 传感器物体检测电路设计

传感器物体检测电路设计

传感器物体检测电路设计
传感器物体检测电路设计

目录

1.课程设计任务书 (2)

2.电路原理图 (4)

3.设计思路 (4)

4.元件清单 (6)

5.主要元件介绍 (7)

5.1 超声波传感器 (7)

5.2 NE555 (7)

5.3 LM393 (9)

5.4 LM2907芯片 (10)

6.电路调试 (12)

6.1电路调试结果(实物) (12)

6.2 电路调试电压及波形 (13)

7.个人体会 (15)

8.参考文献 (16)

1.课程设计任务书

《传感器原理与检测技术》课程设计任务书

题目:物体检测电路的制作

一、课程设计任务

超声波传感器是利用超声波作为信息传递媒介的传感器,本课题是利用超声波传感器来检测物体的存在。电路由三部分组成:以555振荡电路作为超声波传感器的驱动电路,以LM393芯片作为超声波传感器的接受电路,以LM2907N芯片把传感器接受到的频率信号转化成电压信号并是发光二极管发光。

二、课程设计目的

通过本次课程设计使学生掌握:1)了解超声波传感器的结构和工作原理;2)利用超声波传感器监测物体的存在;3)掌握电子电路实际调试技巧。从而提高学生系统的设计和调试能力。

三、课程设计要求

1、当有物体存在时,发光二极管熄灭;

2、当没有物体存在时,发光二极管发光。

四、课程设计内容

1、发射电路、接受电路、转化电路的设计;

2、电路的调试;

3、电路原理图中元件清单。

五、课程设计报告要求

报告中提供如下内容:

1、目录

2、正文

(1)课程设计任务书;

(2)总体设计方案;

(3)原理图(可手画也可用protel软件);

(4)调试、运行及其结果;

3、收获、体会

4、参考文献

六、课程设计进度安排

七、课程设计考核办法

本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%。

2.电路原理图

图一超声波传感器物体检测电路3.设计思路

图一所示的是使用直接检测方式检测物体的电路。

⑴用NE55作为发射用超声波传感器的驱动电路

⑵用LM393制作接收电路

⑶用LM2907进行信号处理

LM393的输出端连接在了转速计用的集成电路LM2907N上。由于在LM2907N 的内部有F-V(频率-电压)转换电路和比较器电路,所以就变成了频率输入。这么一来,LM393的矩形波输出就变得非常方便了。

图五所示是LM2907N的内部电路,表是它的电学特性。在LM393的输出电压为“L”电平时,LM2907N的输入就不足。这时,在LM2907N的第11号引脚Vin-上就只有约为0.6V的二极管正向电压降作为偏执电压,这正好与LM393的电压振幅相吻合。LM2907N的F-V(频率-电压)转换电压Vout为

Vout=Vcc*fin*C4R1

该电压与集成电路LM2907N内部的电压比较器进行比较后输出。在图一所示的电路参数的情况下,当Fin=40KHz时,输出满刻度电压(12V)。那么,如果在比较器的第10号脚OP-输入比较电压Vcc/2=6V,在20KHz以上时,比较器就会导通,发光二极管发光。也就是说,通常在没有物体遮挡超声波的情况下,接收用的超声

波传感器MA40A3R中会有40KHz的频率输入。

4.元件清单

5.主要元件介绍

5.1 超声波传感器

超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。

超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。

图二超声波传感器

5.2 NE555

NE555是属于555系列的计时IC的其中的一种型号,555系列IC的接脚功能及运用都是相容的,只是型号不同的因其价格不同其稳定度、省电、可产生的振荡频率也不大相同;而555是一个用途很广且相当普遍的计时IC,只需少数的电阻和电容,便可产生数位电路所需的各种不同频率之脉波讯号。

a. NE555的特点有:

(1)只需简单的电阻器、电容器,即可完成特定的振荡延时作用。其延时范

围极广,可由几微秒至几小时之久。

(2)它的操作电源范围极大,可与TTL,CMOS等逻辑闸配合,也就是它的输出准位及输入触发准位,均能与这些逻辑系列的高、低态组合。

(3)其输出端的供给电流大,可直接推动多种自动控制的负载。

(4)它的计时精确度高、温度稳定度佳,且价格便宜。

b.NE555引脚位配置说明如下:

NE555接脚图:

图三NE555的结构图

Pin 1 (接地)——地线(或共同接地) ,通常被连接到电路共同接地。

Pin 2 (触发点)——这个脚位是触发NE555使其启动它的时间周期。触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。

Pin 3 (输出)——当时间周期开始555的输出输出脚位,移至比电源电压少1.7伏的高电位。周期的结束输出回到O伏左右的低电位。于高电位时的最大输出电流大约200 mA 。

Pin 4 (重置)——一个低逻辑电位送至这个脚位时会重置定时器和使输出回到一个低电位。它通常被接到正电源或忽略不用。

Pin 5 (控制)——这个接脚准许由外部电压改变触发和闸限电压。当计数器经营在稳定或振荡的运作方式下,这输入能用来改变或调整输出频率。

Pin 6 (重置锁定)——Pin 6重置锁定并使输出呈低态。当这个接脚的电压从1/3 VCC电压以下移至2/3 VCC以上时启动这个动作。

Pin 7 (放电)——这个接脚和主要的输出接脚有相同的电流输出能力,当输出为ON时为LOW,对地为低阻抗,当输出为OFF时为HIGH,对地为高阻抗。

Pin 8 (V +)——这是555个计时器IC的正电源电压端。供应电压的范围是+4.5伏特(最小值)至+16伏特(最大值)。

参数功能特性:

(1)供应电压4.5-18V

(2)供应电流3-6mA

(3)输出电流225mA(max)

(4)上升/下降时间100ns

c.NE555的相关应用:

NE555的作用范围很广,但一般多应用于单稳态多谐振荡器(Monostable Mutlivibrator)及无稳态多谐振荡器(Astable Multivibrator)。

5.3 LM393

LM393 是双电压比较器集成电路。

比较器数:2 ;工作温度范围:0°C to +70°C;

工作电源电压范围宽,单电源、双电源均可工作,单电源: 2~36V,双电源:±1~±18V;

消耗电流小:ICC=0.8mA;

输入失调电压小:VIO=±2mV;

共模输入电压范围宽:VIC=0~VCC-1.5V;

输出与TTL,DTL,MOS,CMOS 等兼容;

输出可以用开路集电极连接“或”门;

采用双列直插8 脚塑料封装(DIP8)和微形的双列8 脚塑料封装(SOP8)。

(a)LM393芯片 (b)LM393的内部结构

图四 LM393芯片及内部结构

5.4 LM2907芯片

LM2907为集成式频率/电压转换器,芯片中包含了比较器、充电泵、高增益运算放大器,能将频率信号转换为直流电压信号。LM2917与LM2907基本相同,区别是:LM2917内部有一只稳压管,用于提高电源的稳定性。

LM2917进行频率倍增时只需使用一个RC网络;以地为参考点的转速计(频率)输入可直接从输入管脚接入;运算放大器/比较器采用浮动三极管输出;最大50mA 的输出电流可驱动开关管、发光二极管等;内含的转速计使用充电泵技术,对低纹波有频率倍增功能;比较器的滞后电压为30mV利用这个特性可以抑制外界干扰;输出电压与输入频率成正比,线性度典型值为±0.3%;具有保护电路,不会受高于Vcc值或低于地参考点输入信号的损伤;在零频率输入时,LM2907的输出电压可根据外围电路自行调节;当输入频率达到或超过某一给定值时,可将输出用于驱动继电器、指示灯等负载。LM2907的主要电性能参数如表一所列。

图五LM2907N的原理框图

表一 LM2907的主要电性能参数(Vcc=12VDC,TA=25)

6.电路调试

6.1电路调试结果(实物)

⑴没有检测到物体时发光二极管点亮

⑵检测到物体时发光二极管熄灭

6.2 电路调试电压及波形

⑴没有物体存在时,LED1点亮,NE555定时器3号引脚的输出波形

⑵超声波传感器发射端的波形

⑶当没有物体存在时,超声波传感器接收端的波形

⑷当没有物体存在时,LM393输出端的波形

⑸当有物体存在时,超声波传感器接收端的波形

⑹当有物体存在时,LM393输出端的波形

7.个人体会

一周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,与同学分工设计,和同学们相互探讨,相互学习,相互监督。学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世。

课程设计是我们专业课程知识综合应用的实践训练,这是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.通过这次传感器技术课程设计,本人在多方面都有所提高。通过这次传感器技术课程设计,综合运用本专业所学课程的理论和生产实际知识进行一次基于超声波传感器检测的设计工作的实际训练从而培养和提高学生独立工作能力,巩固与扩充了传感器技术等课程所学的内容,掌握超声波传感器测具体设计的方法和步骤,掌握了超声波传感器的工作原理和使用方法,提高了分析能力,综合运用能力,熟悉了规范和标准,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

在这次设计过程中,体现出自己单独设计硬件接线图的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。

在此感谢我们的张水平老师,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的每个实验细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。

同时感谢对我帮助过的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。

由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。

8.参考文献

[1]、贾伯年,俞朴编著.传感器技术.南京:东南大学出版社,2007;

[2]、阎石.数字电子技术基础.北京:高等教育出版社.2006;

[3]、王莹莹.Protel DXP电路设计实例教程.北京:清华大学出版社.2008;

[4]、阮一辉.基于超声波定位技术的障碍物探测[D].苏州:苏州大学, 2007.

传感器课程设计--电涡流位移传感器设计

传感器课程设计--电涡流位移传感器设计目录 摘要 电涡流位移传感器设计一、设计要求 二、总体设计方案 三、电涡流传感器的基本原理 3-1电涡流效应和传感器等效电路 3-2电涡流形成的范围 四、传感器的结构形式 五、测量电路及分析 5-1 测量电路 5-2 电路各单元分解 六、实验数据及误差分析 参考文献 摘要 随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。传感器技术的应用在许多个发达国家中,已经得到普遍重视。在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。关键词:电涡流式传感器传感器技术电量非电量电涡流位移传感器设计一、设计技术要求

1、线性范围(mm):1 2、分辨率(um):1 3、线性误差:《3% 4、使用温度范围:-15~+80 二、总体方案设计 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点。根据下面的组成框图,构成传感器。 根据组成框图,具体说明各个组成部分的材料: (1)敏感元件:传感器探头线圈是通过与被测导体之间的相互作用,从而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在框架上构成,耗小,电性能好,热膨胀系数小。线圈框架的材料是聚四氟乙烯,其损 (2)传感元件: 前置器是一个能屏蔽外界干扰信号的金属盒子,测量电路完全装在前置器中,并用环氧树脂灌封。 (3)测量电路:本电路拟采用变频调幅式测量电路。 三、电涡流传感器的基本原理 3?1、电涡流效应和传感器等效电路 电涡流式传感器是利用电涡流效应,将位移、温度等非电量转化为阻抗的变化(或电感的变化,或Q值的变化)从而进行非电量电测的。

位移传感器的主要分类

位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫

传感器电路设计毕业论文范文

毕业设计 设计题目:传感器电路设计

目录 1. 引言 1 2. 溶解氧传感器简介 1 3.信号输入部分电路 4 3.1 电源滤波电路图 4 3.2 信号放大电路 5 3.2.1信号放大电路图 5 3.3 AD623放大器简介 6 3.3.1AD623放大器的特点 6 3.3.2AD623放大器的工作原理 6 4 单片机电路7 4.1 单片机电源电路图8 4.2 89LPC925芯片简介8 4.2.1 P89PLC925芯片主要功能8 4.2.2 P89PLC925的低功耗选择11 4.2.3 P89PLC925的极限参数11 4.2.4 P89PLC925芯片管脚图11 5.MiniICP下载线的电路连接13 6.PCB板的绘制13 7.程序流程14 8. 总结16 参考文献16

传感器电路设计 摘要:溶解氧数字化传感器是应用单片机控制的智能化传感器,它可以对液体中溶解氧 的含量进行准确的测量。本设计从总体上介绍了溶解氧数字化传感器的工作原理,着重介 绍了电路元器件的选取以及输入信号的放大和P89LPC925芯片的工作原理,利用P89LPC925 芯片实现对溶解氧浓度的准确测量。 关键词:溶解氧传感器;P89LPC925;AD623 The design of the dissolved oxygen sensor (College of Physics and Electronic Engineering, Electrical Engineering and Its Automation, Class2 Grade2003, 0323110235) Abstract:Dissolved oxygen digital sensor is a king of intelligent sensor which use single-chip computer to control, it could measure the oxygen dissolved in liquid accurately. This design introduces the work principle of dissolved oxygen digital sensor, it introduces the selection of the circuit components and amplification of input signals and the work principle of P89LPC925 chip, P89LPC925 chip using the dissolved oxygen concentration on the measurement accuracy. Key Words: dissolved oxygen sensor; P89LPC925; AD623 1 引言 氧是维持人类生命活动必不可少的物质,它与人类的生存息息相关。氧也是与化学、生化反应、物理现象最密切的一种化学元素,无论是在工业、农业、能源、交通、医疗、生态环境等各个方面都有重要作用。特别是在水产养殖中,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响。缺溶氧(溶解氧低于4mg/L)时将导致水生物窒息死亡;低溶氧导致水生物生长缓慢,增重率低而饵料系数高,对疾病的抵抗能力发病率高,生物的生长受到限制;高溶氧时某些鱼类幼体可能会出现气泡病。因此溶解氧浓度的精确测量显得尤为重要。 2 溶解氧传感器简介 溶解氧是溶解在水中的分子态氧,该定义是可查资料[1]-[4],随着科技和经济的发展,溶解氧测量已从水介质延伸到了非水液体介质,如丙酮、苯、氯苯、环乙烷、甲醇、正辛烷。分布方式有水平分布和垂直分布两种.溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。

液位传感器课程设计

目录 摘要 (2) 1绪论 (3) 引言 (3) 电容式液位测量技术的发展 (4) 电容式液位测量现状 (4) 电容式液位测量存在的问题 (5) 电容式液位传感器的发展趋势 (5) 2本设计的电容式液位测量方法 (6) 测量原理及实现思路 (6) 液体的物理参数对液位测量的影响 (8) 极板设计 (9) 液位测量系统的基本构成 (11) 3硬件设计 (12) 电源电路设计 (12) 电容测量电路设计 (13)

放大调零电路设计 (14) A/D转换电路设计 (16) 4误差分析 (17) 电容测量误差对精度的影响 (17) 影响液位测量的主要因素 (18) 5总结 (19) 参考文献 (20) 摘要 在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。

本设计采用一种与介质无关的电容式液位测量方法,解决了传统电容测量与被测介质有关的技术难题。它可以应用于动态液位测量,尤其是在被测液体本身介质常数和液位,随时间和环境等因素容易发生变化的场合,如车用燃油油位的计量,从而向当今高精度、数字化、集成化、智能化的科学技术全面发展更迈进了一步,对满足石油化工等液位检测领域的迫切需求具有重大的理论和应用价值,前景十分广阔。 消除电容式液位测量方法中介质介电常数的因素是关键,设计符合测量方法的电容极板,通过电容电压转换电路处理为直流电压信号,由数据采集卡采集后送入单片机或计算机,最终实现算法的设计。其中电容极板设计时需注意消除和减小边缘效应和寄生电容的影响,同时要保证平板电容良好的绝缘性能和抗外界干扰性。 最后在整体设计和理论分析的基础之上,从硬件各部分进行具体的设计,包括硬件电路和各环节的信号量匹配等。通过理论计算和数据分析,验证了此液位仪具有良好的性能,达到了要求的技术指标,同时指出了需要改进和完善的地方。 1绪论

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

传感器课程设计 电感式位移传感器

东北石油大学 课程设计 2015年7 月 8日

任务书 课程传感器课程设计 题目电感式位移传感器应用电路设计 专业测控技术与仪器姓名祖景瑞学号 主要内容: 本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。 基本要求: 1、能够检测 0~20cm 的位移; 2、电压输出为 1~5V; 3、电流输出为 4~20mA; 主要参考资料: [1] 贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006:68-69. [2]王煜东. 传感器及应用[M].北京:机械工业出版社,2005:5-9. [3] 唐文彦.传感器[M].北京:机械工业出版社,2007: 48-50. [4] 谢志萍.传感器与检测技术[M].北京:高等教育出版社,2002:80-90.完成期限—

指导教师 专业负责人 2015年 7 月 1 日

摘要 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。 关键词:电感式传感器;自感式传感器;测量位移;位移传感器

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

基于单片机的温度传感器的设计说明

基于单片机的温度传感器 的设计 目录 第一章绪论-------------------------------------------------------- ---2 1.1 课题简介 ----------------------------------------------------------------- 2 1.2 设计目的 ----------------------------------------------------------------- 3 1.3 设计任务 ----------------------------------------------------------------- 3 第二章设计容与所用器件 --------------------------------------------- 4第三章硬件系统设计 -------------------------------------------------- 4 3.1单片机的选择------------------------------------------------------------- 4 3.2温度传感器介绍 ---------------------------------------------------------- 5 3.3温度传感器与单片机的连接---------------------------------------------- 8 3.4单片机与报警电路-------------------------------------------------------- 9 3.5电源电路----------------------------------------------------------------- 10 3.6显示电路----------------------------------------------------------------- 10 3.7复位电路----------------------------------------------------------------- 11 第四章软件设计 ----------------------------------------------------- 12 4.1 读取数据流程图--------------------------------------------------------- 12 4.2 温度数据处理程序的流程图 -------------------------------------------- 13 4.3程序源代码 -------------------------------------------------------------- 14

激光位移传感器

随着21 世纪的到来,人们开始进入了以知识经济为特征的信息时代, 微电子技术、计算机技术、通讯网络技术及自动化技术高速发展的同时, 作为工业自动化技术工具的自动化仪表及装置也向数字化、智能化、网络化发展。传感器技术、计算机技术和通讯技术一起构成了现代信息的三大基石。 而非接触检测可以克服接触式检测的不足,对于各种测量目标都可以 提供高灵敏度、高精度、高效率的数据采集,从而实现对被测物各种参 数的非接触测量。它不会造成被测表面的划伤和损坏,对各种材料制成 的工件皆可实现测量。非接触检测的最大优点是在被检测物体加工过程 中便可实现测量。非接触检测的最大优点是在被测物体加工过程中便可 对其进行测量,即在线实时检测,从而实现对加工过程的控制,降低废 品率,可大大节省检测时间,提高生产效率,这是接触式检测方式所无 法比拟的。 目前,非接触检测主要以激光检测和红外探测为为代表,而激光检 测技术是最先进应用最广泛的检测技术之一。可实现高精度、高效率、 非接触在线检测。对于解决国防及民用工业生产中的产品零件检测难题 起到了及其重要的作用。 传感器是利用某种转换原理, 将物理的、化学的、生物的等外界信号变成可以直接测量的电信号的装置。在实现生产自动化的过程中,采用适当的传感器(能满足系统要求的长期稳定性、可靠性、精确度 等性能指标) 是十分重要的。传感器是现代检测与控制系统中必不可少的组成部分,它的好坏直接关系到整个系统的成败。在传感器测量技术中, 越来越广泛地运用了超声、微波、激光等声、光、电技术来解决不同工业领域中遇到的特殊测量问题和提高性能的要求。激光器作为一种新型光源, 与普通光源有显著的不同。他利用受激发射原理和激光腔的滤波效应,使所发光波具有一系列新的特点。激光检测技

传感器与测控电路设计说明书

传感器与测控电路课程设计 说明书 设计题目电感式(螺管型)位移传感器的设计 学校湖南科技大学学院机电工程学院 班级 07级测控一班学号 0703030116 设计人李广 指导教师余以道杨书仪 完成日期 2010 年 6 月 22 日

目录 一、设计题目与要求 (2) 二、基本原理简述 (2) 三、设计总体方案拟定 (7) 四、传感器的结构设计 (8) 五、结构设计CAD图 (12) 六、测控电路的设计与计算 (12) 七、电路框图及电路CAD图 (14) 八、精度误差分析 (14) 九、参考文献 (16)

一、设计题目与要求 1、设计题目:电感式(螺管型)位移传感器的设计 2、设计要求: 采用差动变压器原理设计一个测量位移的传感器,并设计一测控电路对传感器的输出量进行处理,使信号能输入到A/D 转换器,进行一系列的测量与控制。 二、基本原理简述 电感式传感器是利用被测量的变化引起线圈自感或互感系数的变化,从而导致线圈电感量改变这一物理现象来实现测量的。因此根据转换原理,电感式传感器可以分为自感式和互感式两大类。 自感式电感传感器可分为变间隙型、变面积型和螺管型三种类型。 一、 螺管型自感传感器 有单线圈和差动式两种结构形式。 单线圈螺管型传感器的主要元件为一只螺管线圈和一根圆柱形铁芯。传感器工作时,因铁芯在线圈中伸入长度的变化,引起螺管线圈自感值的变化。当用恒流源激励时,则线圈的输出电压与铁芯的位移量有关。 铁芯在开始插入(x =0)或几乎离开线圈时的灵敏度,比铁芯插入线圈的1/2长度时的灵敏度小得多。这说明只有在线圈中段才有可能获得较高的灵敏度,并且有较好的线性特性。 1、工作原理 设线圈长度为l 、线圈的平均半径为r 、线圈的匝数为N 、衔铁进入线圈的长度la 、衔铁的半径为ra 、铁心的有效磁导率为μm ,则线圈的电感量L 与衔铁进入线圈的长度la 的关系可表示为 [] 2222 2)1(4a a m r l lr l N L -+=μπ

位移传感器

位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型和结构型两种。 位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地

板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;

传感器设计和计算题

设计题(20分,每个10分) 1.依据已学知识设计一光纤位移传感器(要求画出框架图,并解释位移与输出信号的关系) 2.依据已学知识设计一种加速度传感器(要求画出结构图并注明所用的敏感元件) 3.用所学知识设计出一种压力传感器,说明他的工作原理? P103 图4.10 光纤测压传感器或者P151 图6.26 对中套管 光纤 厚的膜片 0.254 mm 膜片管 2 . 7 6 9 3 . 9 3 7 4 . 8 2 6 4.光纤干涉仪有较高的灵敏度,具有非常大的动态范围等优势。利用集成

电路技术和目前的电光技术起来,请画出集成的迈克尔逊(Michelson)干涉仪,并写出具体部件。 激光器光探测器3 dB耦合器 反射的光纤端面 换能器 5.依据已学知识设计一硒蒸发膜湿度传感器(标明电极) 图见书本P187 页 6.用热释电传感器设计一个热释电报警器? 7.CCD图像传感器的工作原理? 8.依据已学知识设计一容器内液体重量传感器 9.依据已学知识设计一种热释电传感器(要求画出结构图并注明所用的敏感元件)

10. 画出你所认知的一种光电式传感器,要求注明结构 如图是光电管 11. 设计微弯光纤传感器104页 12. 依据已学知识设计一种筒式压力传感器(要求画出结构图并注明所用的敏感元件) 13. 依据已学知识设计一应变式感器(要求画出结构图并注明所用的敏感元件) 补偿片 工作片

应变电阻1和4沉积在杆的凹面处 应变电阻2和3沉积在杆的凸面处 14.依据已学知识,设计一个用差动变压式加速度传感器来测量某测试台平台振动的加速度(只画出原理图) 15.依据所学知识,设计一种实现自相关检测传感器(只画出原理图) 16.依据已学知识设计一种零差法检测的光纤相位传感器(要求只画出框架图)

计算机控制技术课程设计

计算机控制技术课程设 计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

目录 1 引言 (1) 2 课程设计任务和要求 (2) 3 直流伺服电机控制系统概述 (2) 直流伺服系统的构成 (2) 伺服系统的定义 (2) 伺服系统的组成 (2) 伺服系统的控制器的分类 (3) 直流伺服系统的工作过程 (4) 4 直流伺服电机控制系统的设计 (5) 方案设计步骤 (5) 总体方案的设计 (5) 控制系统的建模和数字控制器设计 (7) 数字PID工作原理 (8) 数字PID算法的simulink仿真 (8) 5 硬件的设计和实现 (9) 选择计算机机型(采用51内核的单片机) (9) 80C51电源 (10) 80C51时钟 (10) 80C51 控制线 (10) 80C51 I/O接口 (11) 设计支持计算机工作的外围电路(键盘、显示接口电路等) (11) 数据锁存器 (11) 键盘 (11) 显示器 (12) 数模转换器ADC0808 (12) 其它相关电路的设计或方案 (13) 供电电源设计 (13) 检测电路设计 (13)

功率驱动电路 (14) 仿真原理图 (14) 6软件设计 (14) 程序设计思想 (14) 主程序模块框图 (15) 编写主程序 (15) 7 总结 (16) 附录1 ADC0808程序 (17) 附录2 数字控制算法程序 (18) 参考文献 (19)

1 引言 半个世纪来,直流伺服控制系统己经得到了广泛的应用。随着伺服电动机技术、电力电子技术、计算机控制技术的发展,使得伺服控制系统朝着控制电路数字化和功率器件的模块化的方向发展。 本文介绍直流伺服电机实验台的硬件、软件设计方案。通过传感器对电机位移进行测量,控制器将实际位移量与给定位移量进行比较,控制信号驱动伺服电机控制电源工作,实现伺服电机的位置控制。其电机位置随动系统硬件设计主要包括:总体方案设计、单片机应用系统设计、驱动电路设计和测量电路设计。软件编制采用模块化的设计方式,通过系统的整体设计,完成了系统的基本要求,系统可以稳定的运行。 本次设计说明书主要包括主要包括主程序设计、模数转换器ADC0809程序及数字控制算法程序的设计等内容。 通过本次设计,加深在计算机控制系统课程中所学的知识的理解,提高电气设计与分析的能力,为今后的工作打下基础。

光电传感器电路

光电传感器电路设计 1、设计要求 利用光电传感器(光电对管)将机械旋转转化为电脉冲,光电对管实物如图1所示。 图1 光电对管实物图 2、电路设计 电路原理图如图2所示。 图2 光电传感器电路原理图 电路由四部分组成。 光电对管U1、电阻R1、电阻R2构成发射接收电路;比较器U2A、电阻R3、电阻R4、电阻R5、电阻R6构成反相输入的滞回比较器;比较器U2B、电阻R7、电阻R8构成反相器;发光二极管D1、电阻R9构成输出电路。 3、电路测试 测试电路如图3所示。 由变频器带动电机工作,将光电对管对准旋转的电机(电机上贴有反光带),处理电路由12V直流电源供电。

图3 测试电路 测试波形如图4所示(测试距离为4cm)。 (a)发射接收电路的输出信号(b)滞回比较器比较电压波形 (c)滞回比较器输出波形(d)反相器输出波形 图4 测试波形 4、PCB板绘制(板子大小限定为62mm*18mm) PCB图如图5所示。其中电阻采用0805封装,LM358采用DIP8封装。

图5 光电传感器电路PCB图 5、完成实物图 实物图如图6所示。 (a)未焊接的PCB板 (b)焊接好的PCB板 (c)板子的外加塑料壳 图6 实物图 6、小结 在本次电路设计中,主要的难点有两个。 一是参数的整定,主要是滞回比较器上下门限的选择。滞回比较器上下门限的选择跟发射接收电路的输出波形有关,而光电对管与旋转面的距离、旋转面的反光度、反光带所在位置、可能遇到的干扰等都会影响输出波形。 二是PCB板的绘制。本次绘制采用的是Altium Designer Summer 09软件(Protel99SE的升级版)。首先画好原理图,然后再导入到PCB中,没有的元件

基于线性霍尔元件的位移传感器设计

基于线性霍尔元件的位移传感器设计

————————————————————————————————作者:————————————————————————————————日期: ?

郑州轻工业学院 传感器及应用系统课程设计说明书 基于线性霍尔元件的位移传感器 姓名: 吴富昌 专业班级: 电子信息工程13-01 学号:541301030139 指导老师:陆立平 时间:2016.6.27 -2016.7.1

郑州轻工业学院 课程设计任务书 题目基于线性霍尔元件的位移传感器设计 专业、班级电子信息工程13-01学号39 姓名吴富昌主要内容、基本要求、主要参考资料等: 一、主要内容: 利用线性霍尔元件设计一个位移传感器。 二、基本要求: (1)设计一个位移传感器,并设计相关的信号处理电路。 (2)为达到误差控制要求,需要对霍尔元件的误差进行补偿校正,主要包含霍尔元件的零位误差及补偿和温度误差及补偿。 (3)完成系统框图和电路原理图的设计和绘制,系统理论分析和设计详细明确,有理有据。 (4)信号处理电路应包含激励信号电路、消除不等位电势补偿电路、放大电路、相敏检波电路和低通滤波电路等。 (5)利用软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性。 (6)根据模拟结果计算位移传感器的迟滞误差、线性度和灵敏度等参数。 (7)写出3000~5000字的设计报告,主体文本字号为小四号,标题章节字号依照美观合理原则选择,并合理加黑,字体均为宋体。 三、主要参考资料: (1)何金田,张斌主编,传感器原理与应用课程设计指南。哈尔滨:哈尔滨工业大学出版社,2009.01. (2)周继明,刘先任、江世明等,传感器技术与应用实验指导及实验报告。长沙:中南大学出版社,2006.08. (3)陈育中,霍尔传感器测速系统的设计,科学技术与工程,2010,10:7529-7532. 完成期限:2016年 6月27 日-2016年 7月1日 指导教师签章: 专业负责人签章: 2016年6月 27 日

(完整版)基于FPGA的温度传感器课程设计

FPGA课程设计论文 学生姓名周悦 学号20091321018 院系电子与信息工程学院 专业电子科学与技术 指导教师李敏 二O一二年5月28 日

基于FPGA的温度传感器系统设计 1引言 温度是一种最基本的环境参数,人们的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:传统的分立式温度传感器;模拟集成温度传感器;智能集成温度传感器。目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。本文将介绍采用智能集成温度传感器DS18B20,并以FPGA为控制器的温度测量装置的硬件组成和软件设计,用液晶来实现温度显示。 2电路分析 系统框图如下: 第一部分:DS18B20温度传感器 美国 Dallas 半导体公司的数字化温度传感器 DS1820 是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的 DS18B20 体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。 DS18B20 的主要特性:(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电(2)独特的单线接口方式,DS18B20 在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20 的双向通讯(3)DS18B20 支持多点组网功能,多个DS18B20 可以并联在唯一的三线上,实现组网多点测(4)DS18B20 在使用中不需要任何外

《传感器与检测技术》课程设计

课程设计任务书及指导书 一.设计题目 《压力测量仪的设计》 二.设计目的 (1)使同学们掌握金属箔应变片组成的称重传感器的正确使用方法;了解压力测量仪的工作原理及其在电子天平中的应用。 (2)通过设计、安装、调试电路等实践环节,提高学生的动手能力,提高分析问题、解决问题的能力。 三.设计任务 (1)学生根据设计要求完成设计与测试。 (2)在完成设计后书写课程设计报告。 四.时间安排2005年12月5日至2005年12月30日 五.设计内容 压力测量仪由以下五个部分组成:传感器、传感器专用电源、信号放大系统、模数转换系统及 显示器等组成。其原理框图如图1所示: 图1 压力测量仪组成框图 (1) 传感器测量电路 称重传感器的测量电路通常使用电桥测量电路,它将应变电阻值的变化转换为电压的变化,这就是可用的输出信号。 电桥电路由四个电阻组成,如图2所示:桥臂电阻R 1,R 2 ,R 3 和R 4 ,其中两对角点AC接电源电 压U SL =E(+10V),另两个对角点BD为桥路的输出U SC ,桥臂电阻为应变电阻。 R 1R 4 =R 2 R 3 时,电桥平衡,则测量对角线上的输出U SC 为零。当传感器受到外界物体重量影响时, 电桥的桥臂阻值发生变化,电桥失去平衡,则测量对角线上有输出,U SC ≠0。

图2 传感器电桥测量电路 (2) 放大系统 压力测量仪的放大系统是把传感器输出的微弱信号进行放大,放大的信号应能满足模数转换的要求。该系统使用的模数转换是3位半A/D转换,所以放大器的输出应为0V ~ 1.999V。 为了准确测量,放大系统设计时应保证输入级是高阻,输出级是低阻,系统应具有很高的抑制共模干扰的能力。 (3) 模数转换及显示系统 传感器的输出信号放大后,通过模数转换器把模拟量转换成数字量,该数字量由显示器显示。显示器可以选用数码管或液晶显示器 (4) 传感器供电电源 有恒压源与恒流源 对于恒压源供电:参考图2,设四个桥臂的初始电阻相等且均为R,当有重力作用时,两个桥臂电阻增加△R,而另外两个桥臂的电阻减少,减小量也为△R。由于温度变化影响使每个桥臂电阻均变化△R T 。这里假设△R远小于R,并且电桥负载电阻为无穷大,则电桥的输出为: U SC = E*( R+△R+△R T )/( R-△R+△R T +R+△R+△R T )- E*( R-△R+△R T )/( R+△R+△R T +R-△R+△ R T )= E*△R/(R+△R T ) 即 U SC = E*△R/(R+△R T )式(1) 说明电桥的输出与电桥的电源电压E的大小和精度有关,还与温度有关。 如果△R T =0,则电桥的电源电压E恒定时,电桥的输出与△R/R成正比。 当△R T ≠0时,即使电桥的电源电压E恒定,电桥的输出与△R/R也不成正比。这说明 恒压源供电不能消除温度影响。 对于恒流源供电:供电电流为I,设四个桥臂的电阻相等,则 I ABC =I ADC =0.5I 有重力作用时,仍有 I ABC =I ADC = 0.5I 则电桥的输出为: U SC = 0.5I*(R+△R+△R T )- 0.5I*(R-△R+△R T )=I*△R 即 U SC = I*△R 式(2) 因此,采用恒流源供电,电桥的输出与温度无关。因此,一般采用恒流源供电为好。 由于工艺过程不能使每个桥臂电阻完全相等,因此,在零压力时,仍有电压输出,用恒流源供电仍有一定的温度误差。 四、设计提示 (1) 放大电路设计 首先,由于传感器测量范围是0 ~ 2Kg,灵敏度为1mV/V,其输出信号只有0 ~10mV左右;而A/D转换的输入应为0V ~ 1.999V,对应显示0 ~ 1.999Kg,当量为1mV/g,因此要求放大器的放大倍数约为200倍,一般采用二级放大器组成。 其次,在电路设计过程中应考虑电路抗干扰环节、稳定性。选择低失调电压,低漂移,高稳定

相关主题
文本预览
相关文档 最新文档