当前位置:文档之家› 异步电动机仿真模型设计

异步电动机仿真模型设计

异步电动机仿真模型设计
异步电动机仿真模型设计

控制系统仿真技术课

程设计

题目异步电动机仿真模型设计

学院计算机科学与信息工程学院

专业10自动化

班级二班

学生姓名

指导教师吴思贤

2013 年12 月20 日

摘要

对异步电机的数学模型进行综合分析,分析了异步电机按两相静止和转子磁场定向分解的数学模型。运用异步电动机坐标变换的基本思想在正交坐标系上的状态方程及正交坐标系上的动态结构图。然后用MATLAB/SIMULINK仿真软件包建立异步电动机仿真模型,并给出仿真果。

关键字:异步电动机、数学模型、MATLAB/SIMULINK、仿真

一、设计任务

已知电动机参数如下:Rs=1.8Ω,Rr=2.Ω,Ls=0.3H,Lr=0.3H,Lm=0.25H,J=0.1Nm2S2,n p=2,U N=380V,f N=50Hz。基于MATLAB/SIMULINK软件包构建异步电机的仿真模型,并进行仿真。

(1)建立异步电动机在正交坐标系上的状态方程(含建立过程);

(2)建立异步电动机在正交坐标系上的动态结构图;

(3)利用Simulink建立仿真模型(须有较为详细的建模过程说明)及仿真;

二、设计背景

1985年,由Depenbrock教授提出的直接转距控制理论将运动控制的发展向前推进了一大步。接着1987年把它又推广到弱磁调速范围。不同于矢量控制技术,它无需将交流电动机与直流电动机作比较、等效和转化,不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型[1]。它只是在定子坐标系下分析交流电机的数学模型,强调对电机的转距进行直接控制,省掉了矢量旋转变换等复杂的变换与计算。直接转距控制从一诞生,就以新颖的控制思想,简洁明了的系统结构,优良的静、动态性能受到人们的普遍关注。

系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。显然,为达到理想的目的,在这一过程中编制与修改仿真程序十分耗费时间和精力,这也大大阻碍了仿真技术的发展和应用。近年来逐渐被大家认识的Matlab语言则很好的解决了这个问题。

三、异步电动机动态数学模型

3.1异步电动机动态数学模型的性质

直流电动机的磁通由励磁绕组产生,可以在电枢合上电源以前建立起来而不参与系统的动态。

过程(弱磁调速时除外)。因此,它的动态数学模型只有一个输入变量——电枢电压和一个输入变量——转速,在控制对象中含有机电时间常数

T和电枢

m

回路电磁时间常数

T,如果电力电子变换装置也计入控制对象,则还有滞后的时

l

间常数

T。在工程上能够允许的一些假定条件下,可以描述成单变量(单输入单

s

输出)的三阶线性系统[2],完全可以应用经典的线性控制理论和由它发展出来的工程设计方法进行分析与设计。

但是,同样的理论和方法用来分析与设计交流调速系统时,就不那么方便了,因为交流电机的数学模型和直流电机模型相比有着本质上的区别。

1)异步电机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。在输出变量中,除转速外,磁通也得算一个独立的输出变量。因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。

由于这些原因,异步电机是一个多变量(多输入多输出)系统,而电压(电流)、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用下图来定性地表示。

2)在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项。这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的。

3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性[3],再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置[4]的滞后因素,也是一个八阶系统。

总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。

3.2三相异步电动机的多变量非线性数学模型

在研究异步电动机的多变量非线性数学模型时,常作如下的假设:

(1)忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布。

(2)忽略磁路饱和,各绕组的自感和互感都是恒定的。

(3)忽略铁心损耗。

(4)不考虑频率变化和温度变化对绕组电阻的影响。

异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。

3.2.1 电压方程

三相定子绕组的电压平衡方程为

与此相应,三相转子绕组折算到定子侧后的电压方程为

式中 A u , B u , C u , a u , b u ,c u —定子和转子相电压的瞬时值;

A i ,

B i ,

C i , a i , b i ,c i —定子和转子相电流的瞬时值;

A ψ,

B ψ,

C ψ, a ψ, b ψ,c ψ—各相绕组的全磁链;

Rs, Rr —定子和转子绕组电阻

上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“ ’”均省略,以下同此。

电压方程的矩阵形式

将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt

或改写成ψp Ri u +=

t

R i u d d A

s A A ψ+

=t

R i u d d B

s B B ψ+

=t

R i u d d C

s C C ψ+

=t

R i u d d a

r a a ψ+

=t

R i u d d b

r b b ψ+

=t

R i u d d c

r c c ψ+

=?????????

?

??????????+????????????????????????????????????????=????????????????????c b a C B A c b a C B A r r r s s s c b a C B

A 0

000000

00000000000000000000

ψψψψψψp i i i i i i R R R R R R u u u u u u (2-1)

3.2.2 磁链方程

每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为

或改写成Li =ψ

(2-2)式中,L 是636电感矩阵,其中对角线元素 AA L ,BB L ,CC L ,aa L ,

bb L ,cc L 是各有关绕组的自感,其余各项则是绕组间的互感。

实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的。

电感的种类和计算如下。

定子漏感ls L ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;

转子漏感lr L ——转子各相漏磁通所对应的电感; 定子互感ms L ——与定子一相绕组交链的最大互感磁通; 转子互感mr L ——与转子一相绕组交链的最大互感磁通。

由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为ms L =mr L 。

自感表达式对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为

转子各相自感为 两相绕组之间只有互感。互感又分为两类:

(1)定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;

(2)定子任一相与转子任一相之间的位置是变化的,互感是角位移θ的函数。

第一类固定位置绕组的互感,三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为

?????????

?

??????????????????????????????=????????????????????c b a C B A cC cb

ca

cC

cB

cA

bc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB CA Bc Bb Ba BC BB BA

Ac Ab Aa AC AB AA

c b a C B A i i i i i i L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ψψψψψψs ms CC BB A A l L L L L L +===r

ms cc bb aa l L L L L L +===(2-2)

于是

第二类变化位置绕组的互感,定、转子绕组间的互感,由于相互间位置的变

化,可分别表示为

当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互

感ms L 。

整理以上各式,即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式

式中

ms

ms ms 21

)120cos(120cos L L L -=?-=?ms AC

CB BA CA BC AB 2

1

L L L L L L L -======ms

ac cb ba ca bc ab 2

1

L L L L L L L -======θ

cos ms cC Cc bB Bb aA A a L L L L L L L ======)120cos(ms bC Cb aB Ba cA A c

?-======θL L L L L L L )120cos(ms aC Ca cB Bc bA A b ?+======θL L L L L L L ?????????

?

??????????????????????????????=????????????????????c b a C B A cC cb

ca

cC

cB

cA bc bb ba bC bB bA ac ab aa aC aB aA Cc Cb Ca CC CB

CA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AA c b a C B A i i i i i i L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ψψψψψψ??

?

?????????=??????r s rr rs sr ss

r s i i L L L L ΨΨ[]T

C B A ψψψ=s Ψ[]T

i i i C B A =s i []

T

c b a r ψψψ=Ψ[]

T

i i i c b a

r =i ??

??????

????????

+---+---+=r ms ms ms ms r ms ms

ms ms r ms 212121

212

121

l l l L L L L

L L L L L L L L rr L ??

?????

?

????????

+---+---+=r ms ms ms ms r ms ms

ms ms r ms 2

12

121

212

121l l l L L L L

L L L L L L L L rr L (2-3)

(2-5)

(2-6)

(2-7)

(2-4)

值得注意的是, 和 两个分块矩阵互为转置,且均与转子位置θ有关,

它们的元素都是变参数,这是系统非线性的一个根源。为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题。

如果把磁链方程代入电压方程中,即得展开后的电压方程

式中,Ldi /dt 项属于电磁感应电动势中的脉变电动势(或称变压器电动势),(dL / d θ)ωi 项属于电磁感应电动势中与转速成正比的旋转电动势。

3.2.3 转矩方程

根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为

而电磁转矩等于机械角位移变化时磁共能的变化率 (电流约束为常值),

且机械角位移 θm = θ / np ,于是

整理上式可得

又由于

sr L rs L i L

i L Ri i

L i L Ri Li Ri u ωθ?++=++=+=d d d d d d d d )(t t

t p m

m

W θ??']

[][c b a C B A

r s i i i i i i T T T ==i i i ??

??

??????

?+?-?-?+?+?-==θθθθθθθθθcos )120cos()120cos()120cos(cos )120cos()120cos()120cos(cos ms L T

sr

rs L L Li i ψi T T W W 2

1

21'm m ==

=.

const 'm

p

.const m

'

m

e ==??=??=

i i W n W T θ

θi

L L i i L i ????

?

?????

????=??=002121rs

sr p p e θθθT T n n T ??

???????+???=

r sr s s rs r p e 21i L i i L i θθT T n T

转矩方程的三相坐标系形式

应该指出,上述公式是在线性磁路、磁动势在空间按正弦分布的假定条件下得出来的,但对定、转子电流对时间的波形未作任何假定,式中的i 都是瞬时值。

因此,上述电磁转矩公式完全适用于变压变频器供电的含有电流谐波的三相异步电机调速系统。

3.2.4 电力拖动系统运动方程

在一般情况下,电力拖动系统的运动方程式是

TL —— 负载阻转矩; J —— 机组的转动惯量;

D —— 与转速成正比的阻转矩阻尼系数; K —— 扭转弹性转矩系数。 对于恒转矩负载,D = 0 ,K = 0 ,则

??

??

??????

?+?-?-?+?+?-==θθθθθθθθθcos )120cos()120cos()120cos(cos )120cos()120cos()120cos(cos ms L T

sr rs L L ??

???????+???=r sr s s rs

r p e 21i L i i L i θθT T n T )]

120sin()()120sin()(sin )[(b C a B c A a C c B b A c C b B a A ms p e ?-+++?++++++=θθθi i i i i i i i i i i i i i i i i i L n T θωωp p p L

e n K n D dt d n J T T +++=t

n J T T d d p L e ω+=(2-8)

(2-9)

3.2.5 三相异步电机的数学模型

以上各式便构成在恒转矩负载下三相异步电机的多变量非线性数学模型,用结构图表示出来如下图所示。

(R +L p )-1

L

Φ1( ?)

Φ2( ?)

ω

ω1

e r

u

i

T e

T L

ω

ψ

n p

Jp

θ

图1 异步电动机的多变量非线性动态结构图

由图可知异步电机数学模型的下列具体性质:

(1)异步电机可以看作一个双输入双输出的系统,输入量是电压向量和定子输入角频率,输出量是磁链向量[5]和转子角速度。

(2)非线性因素存在于Φ1(?)和Φ2(?)中,即存在于产生旋转电动势 er 和电磁转矩 Te 两个环节上,还包含在电感矩阵L 中,旋转电动势和电磁转矩的非线性关系和直流电机弱磁控制的情况相似,只是关系更复杂一些。

(3)多变量之间的耦合关系主要也体现在 Φ1(?)和Φ2(?)两个环节上,特别是产生旋转电动势的Φ1对系统内部的影响最大。

t

d d θω=

??

?

?????????=??????r s rr rs sr ss r s i i L L

L L ΨΨi L i L

Ri u ωθ

?++=d d d d t )]

120sin()()120sin()(sin )[(b C a B c A a C c B b A c C b B a A ms p e ?-+++?++++++=θθθi i i i i i i i i i i i i i i i i i L n T t

n J T T d d p L e ω+

=

四、坐标变化和变换矩阵

异步电机数学模型之所以复杂,关键是因为有一个复杂的 6?6 电感矩阵,它体现了影响磁链和受磁链影响的复杂关系。因此,要简化数学模型,须从简化磁链关系入手。

4.1三相--两相变换(3/2变换)

现在先考虑上述的第一种坐标变换——在三相静止绕组A 、B 、C 和两相静止绕组α、β 之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换。

图2中绘出了 A 、B 、C 和 α、β 两个坐标系,为方便起见,取 A 轴和 α 轴重合。设三相绕组每相有效匝数为N3,两相绕组每相有效匝数为N2,各相磁动势为有效匝数与电流的乘积,其空间矢量均位于有关相的坐标轴上。由于交流磁动势的大小随时间在变化着,图中磁动势矢量的长度是随意的。

图2 三相和两相坐标系与绕组磁动势的空间矢量

设磁动势波形是正弦分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在 α、β 轴上的投影都应相等,因此

写成矩阵形式,得

A

N 2i

α

N 3i A

α

β

N 3i C

N 3i

B

N 2i β

60o

60o

C

B )2

121(60cos 60cos C B A 3C 3B 3A 3α2i i i N i N i N i N i N --=?-?-=)

(2360sin 60sin C B 3C 3B 3β2i i N i N i N i N -=?-?=

考虑变换前后总功率不变,在此前提下,可以证明,匝数比应为 由此可得

令 C3/2 表示从三相坐标系变换到两相坐标系的变换矩阵,则

如果三相绕组是Y 形联结不带零线,则有 iA + iB + iC = 0,或 iC = - iA - iB 。代入上式并整理后可得

按照所采用的条件,电流变换阵也就是电压变换阵,同时还可证明,它们也是磁链的变换阵。

4.2三相异步电动机在两相坐标系上的数学模型

异步电机的数学模型比较复杂,坐标变换的目的就是要简化数学模型。异步电机数学模型是建立在三相静止的ABC 坐标系上的,如果把它变换到两相坐标系上,由于两相坐标轴互相垂直,两相绕组之间没有磁的耦合,仅此一点,就会使数学模型简单了许多。

?????

?????????????????--

-

=??????C B A 23β23230212

11i i i N N i i α3

223

=N N ?????

??????????????

??

?--

-=??????C B A

β232302121132i i i i i α??????

???

??

?

--

-=2323021211322

/3C ???

????????

???

????

=??????B A β22

1023i i i i α???????????

???????

-

=??????βB A α216

1032

i i i i (3-1)

(3-2)

4.2.1三相异步电动机在两相坐标系上的状态方程

作为异步电机控制系统研究和分析基础的数学模型,过去经常使用矩阵方程,近来越来越多地采用状态方程的形式,因此有必要再介绍一下状态方程。这里讨论两相静止αβ坐标系上的状态方程。

在两相坐标系上的电压源型变频器—异步电机具有4阶电压方程和1阶运动方程,因此其状态方程也应该是5阶的,须选取5个状态变量,而可选的变量共有9个,即转速ω ,4个电流变量βαβαr r s s i i i i ,,,和4个磁链变量αs ψ,

βs ψ,αr ψ,βr ψ。转子电流是不可测的,不宜用作状态变量,因此只能选定子电

流αs i 、βs i 和转子磁链αr ψ、βr ψ;定子电流αs i 、βs i 和定子磁链αs ψ、βs ψ。也就是说,可以有s r i --ψω和s s i --ψω两组状态方程。

由(2-5)式可得αβ坐标系上的磁链方程 由(2-1)式可得αβ坐标系电压方程 4.2.2两相静止坐标系中按定子磁链定向的状态方程

本设计内容为以异步电动机在静止坐标系中s s i ψω--为状态变量的状态方程结构为核心,构建异步电动机仿真模型。

两相静止,将(3-4)式磁链方程代入(3-3)式电压方程可得静止坐标系βα,中状态方程为

L p s s s s p

T J

n i i J n dt d --=)(2

αββαψψω ββα

μψs s s s i R dt

d +-= ααβμψs s s s i R dt

d +-=

???

???

?+=+=+=+=βββ

αααβββαααr r s m r r r s m r r m s s s r m s s s i L i L i L i L i L i L i L i L ψ

ψψψβ

αβαββσωσωψσψσs s s s r

s s r r s s s s r s s 1

11d d u L i i L L L R L R L T L t i +-+-+=

(3-3)

(3-5)

???

??

??-+=++=++=-+=α

βββαααββββαααr r r r r r r r s 1s s s s s 1s s s s 00ωψψωψψψωψψωψp i R p i R p i R u p i R u (3-4)

s

s s s r s s r r s s s s r s s L i i L L L R L R L T L dt di σμωσωψσψσαβαβαα+++--=1

1

五、软件介绍及模型实现

5.1 Matlab/Simulink简介

Matlab语言是Mathworks公司推出的当今国际上最为流行的软件之一。它自问世起,就以数值计算称雄,它的图形可视能力在所有数学软件中也是首屈一指的。Matlab提供了众多的工具箱,动态系统仿真工具Simulink是其主要工具箱之一,其主要功能是对动态系统做适当分析,从而在可以作出实际系统之前,预先对系统进行仿真和分析,并可以做适当地实时修正,提高系统的性能,减少系统修改时间,实现高效开发系统的目的。

在Matlab中,Simulink是一个比较特别的工具箱,它是一个进行动态系统建模、仿真和综合分析的集成软件包。它的出现可以使仿真工作以结构图的形式加以进行,且采用分层结构。从建模角度讲,这既适合于Top-down的设计流程,又适合于Bottum-up逆程设计。从仿真角度讲,Simulink模型不仅能让用户知道具体环节的动态细节,而且能够让用户清晰地了解各种器件、各子系统、各系统间的信息交换,掌握各部分之间的交互影响,同时可以借助模拟示波器将仿真动态结果加以显示,因而仿真结果过程十分直观。更为可贵的是

Matlab/Simulink的开放性,用户可以根据自己的需要开发自己的模型,并通过封装扩充现有的模型库。

众所周知,现代运动控制系统中的交流异步电动机本身就是一个高阶、非线性、强耦合的多变量系统。这里从静止两相坐标系下的鼠笼异步电动机模型出发,推导出基于定子磁链磁场定向的电动机模型,并采用Matlab/Simulink实现之。

5.2模型实现

模型建立以后,所要做的就是从Simulink丰富的模型库中调用合适的模块来表示该模型。随着系统规模的扩大和复杂性的增加,模型也在不断增大,这就使得模型窗中由于过多的模块而凌乱不堪。为了避免这种情况,采用自上而下或自下而上的分级方法建立模型,即把功能相同或者相近的模块分组封装成子系统Subsystem,建立递阶结构框图。

5.3 Simulink模型设计

三相异步电机的仿真模型分别由定子模型、转子模型、磁链以及转矩模型组成。

(1)定子模型

根据dq0系统下电机的定子电压方程即可建立电机的定子仿真模型,如实例图所示。

三相异步电机定子仿真模型(2)转子电压模型

三相异步电机转子电压模型(3)磁链模型

三相异步电机磁链模型

(4)转矩模型

二相异步电机转矩模型

(5)电机模型

将上述各模块按照数学模型的要求进行正确连接,既可以得到三相异步电机的合成模型,如图所示。经封装后,得到其封装模型如实例图所示。

基于MATLAB/SIMULINK的异步电动机仿真模型分析

基于MATLAB/SIMULINK的异步电动机仿真模型分析 作者:尚敬 作者单位:西南交通大学,610031 刊名: 电机技术 英文刊名:ELECTRICAL MACHINERY TECHNOLOGY 年,卷(期):2002(2) 被引用次数:17次 参考文献(4条) 1.沈本荫现代交流传动及其控制系统 1997 2.陈坚交流电机数学模型及调速系统 1989 3.阮毅异步电机非线性解耦控制与矢量控制系统的解耦性质 1996 4.陈桂明应用MATLB建模与仿真 2001 本文读者也读过(3条) 1.郑修艳.曹立莉.杜冠华新型弹性蛋白酶抑制剂西维来司钠临床前药理及机制研究[期刊论文]-中国新药杂志2004,13(4) 2.贺超英.黄美成基于MATLAB/SIMULINK的鼠笼异步电动机仿真[期刊论文]-微电机2004,37(6) 3.周立求.沈记全基于MATLAB/SIMULINK的异步电动机建模与仿真[期刊论文]-电机电器技术2003(4) 引证文献(12条) 1.陈四连,林瑞全,丁旭玮异步电动机变频调速系统的MATLAB建模与仿真[期刊论文]-电工电气 2009(11) 2.李建华基于S函数的异步电机SPWM调速系统建模与仿真[期刊论文]-机电技术 2007(04) 3.韩林,赵荣祥,柳鹏基于Saber Sketch/Scope的无刷直流电机仿真分析[期刊论文]-微电机 2004(05) 4.勇娅询,刘维亭,魏海峰,陈源船舶电力推进感应电机矢量控制系统仿真研究[期刊论文]-电气自动化 2015(5) 5.朱元玉,杨先海,董敏基于MATLAB的大型动态雕塑交流调速系统建模与仿真[期刊论文]-山东理工大学学报(自然科学版) 2009(06) 6.祝敏泵用电动机技术改进研究[期刊论文]-贵州师范大学学报(自然科学版) 2013(06) 7.赵射带指针指示的数字式显示记录仪[学位论文]硕士 2004 8.刘红星异步电机自适应矢量控制系统的研究[学位论文]硕士 2007 9.姜辉电动汽车传动系统的匹配及优化[学位论文]硕士 2006 10.王宏亮纯电动汽车整车建模与仿真[学位论文]硕士 2005 11.徐鲁辉绕线式异步电动机转子变频调速性能研究[学位论文]硕士 2011 12.郭爽静止进相器的仿真研究[学位论文]硕士 2006 引用本文格式:尚敬基于MATLAB/SIMULINK的异步电动机仿真模型分析[期刊论文]-电机技术 2002(2)

三相异步交流电机的设计_毕业设计

学生毕业设计(毕业论文) 系别:机电工程 专业:数控技术 设计(论文)题目:三相异步交流电机

毕业设计(论文)任务书 一、课题名称:三相异步电机的设计 二、主要技术指标: 1.内部由定子和转子构成。 2. 外壳有机座、端盖、轴承盖、接线盒、吊环等组成。 3. 技术要求:采用电压AC380,可以实现正反转。 三、工作内容和要求: 1.设计磁路部分:定子铁心和转子铁心。 2 设计电路部分:定子绕组和转子绕组以及电路图。 3 设计机械部分:机座、端子、轴和轴承等。 4.设计电路的正反转和安全控制部分。 5.按照“毕业设计规格”设计毕业报告。 四、主要参考文献: 1.[1]王世琨.《图解电工入门》[M].中国电力出版社.2008.

2.[2]满永奎.《电工学》[M].清华大学出版社.2008. 3.[3]乔长君.《电机绕组接线图册》[M].化学工业出版社.2012. 4.百度文库 学生(签名)年月日 指导教师(签名)年月日 教研室主任(签名)年月日 系主任(签名)年月日

毕业设计(论文)开题报告

摘要

在费拉里斯和特斯拉发明多相交流系统后,19世纪80年代中期,多沃罗沃尔斯基发明了三相异步电机,异步电机无需电刷和换向器三相异步电机(Triple-phase asynchronous motor)是靠同时接入380V三相交流电源(相位差120度)供电的一类电动机,由于三相异步电机的转子与定子旋转磁场以相同的方向、不同的转速成旋转,存在转差率,所以叫三相异步电机。 作电动机运行的三相异步电机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用。 Reese and Tesla invented in AC system. At the mid of 1880s, 多沃罗沃尔Chomsky invented the three-phase asynchronous motors, asynchronous motors without brushes and commutate. Three-phase asynchronous motors (Triple-phase asynchronous motor) is by simultaneously accessing 380V three-phase AC power supply of a class of motors, three-phase asynchronous motor as the rotor and the stator rotating in the same direction, to rotate at different speeds, there turn slip, so called three-phase asynchronous motors. For three-phase asynchronous motors motor is running. Three-phase asynchronous motor rotor speed is lower than the speed of the rotating magnetic field, the magnetic field due to the rotor windings relative motion exists between the induced electromotive force and current, and the magnetic field generated by the interaction with the electromagnetic torque and achieve energy conversion. Compared with single-phase induction motor, Three- phase asynchronous motor running properties, and save a variety of materials. According to the different structure of the rotor, three-phase cage induction motor and the winding can be divided into two kinds. Cage rotor induction motor, simple structure, reliable operation, light weight, cheap, has been widely used

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

三相异步电动机Matlab仿真

中国石油大学胜利学院综合课程设计总结报告 题目:三相异步电机直接启动特性实验模型 学生姓名:潘伟鹏 系别:机械与电气工程系 专业年级: 2012级电气工程专业专升本2班 指导教师:王铭

2013年 6 月 27日

一、设计任务与要求 普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。 参考: 电力系统matlab仿真类书籍 电机类教材 二、方案设计与论证 三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。 由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。三相异步电机电磁转矩的表达式为: (1-1)式中——转矩常数 ——每级下磁通 ——转子功率因数 式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。 从三相异步电动机的转子等值电路可知, (1-2) (1-3)将式(1-2)、(1-3)代入(1-1)得:

Y2-160M1-2三相异步电动机电磁设计解读

目录 摘要 ..................................................................... I Abstract................................................................. II 第一章绪论........................................................ - 4 - 1.1 工程背景...................................................... - 4 - 1.2 该课题设计的主要内容.......................................... - 4 - 第二章三相异步电动机................................................ - 6 - 2.1 三相异步电动机结构............................................ - 6 - 2.1.1 异步电动机的定子结构..................................... - 7 - 2.1.2 异步电动机的转子结构..................................... - 8 - 2.1.3 三相异步电动机接线图..................................... - 8 - 2.2 三相异步电动机工作原理........................................ - 9 - 2.3 三相异步电动机的机械特性和工作特性........................... - 12 - 第三章三相异步电机电磁设计......................................... - 14 - 3.1 主要尺寸和空气隙的确定....................................... - 14 - 3.2 定子绕组与铁芯设计........................................... - 14 - 3.2.1 定子绕组型式和节距的选择................................ - 15 - 3.2.2 定子冲片的设计.......................................... - 16 - 3.3 额定数据及主要尺寸........................................... - 17 - 3.4 磁路计算..................................................... - 19 - 3.5 性能计算..................................................... - 22 - 3.5.1 工作性能计算............................................ - 22 - 3.5.2 起动性能计算............................................ - 26 - 第四章电机转动轴的工艺分析......................................... - 28 - 4.1 转动轴的加工工艺分析......................................... - 28 - 4.2 选择设备和加工工序........................................... - 30 - 4.3 成品的最后工序............................................... - 31 - 小结与致谢........................................................... - 32 - 参考文献............................................................. - 33 -

三相异步电动机的七种调速方法及特点

三相异步电动机分类特点以及调速方法 三相异步电动机分类: 1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。不改变同步转速的调速方法在生产机械中广泛使用。 2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 我们清楚三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。 一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 特点如下:1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、 调速范围大,特性硬,精度高;4、 技术复杂,造价高,维护检修困难。 三、串级调速方法 :串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为

基于多Agent复杂系统仿真平台研究

基金项目:河海大学常州校区博士启动基金项目(05B001-03)收稿日期:2006-11-11 修回日期:2006-11-18 第24卷 第12期 计 算 机 仿 真 2007年12月 文章编号:1006-9348(2007)12-0283-04 基于多Agen t 复杂系统仿真平台研究 倪建军,李建,范新南 (河海大学计算机及信息工程学院,江苏常州213022) 摘要:复杂性科学是研究复杂系统和复杂性的一门新兴的交叉学科。基于多主体(Agent )复杂系统仿真技术是研究复杂系统复杂性产生机制的有效手段之一,在众多领域得到广泛应用。为了使研究者从复杂的软件编程中解放出来,集中精力进行科学研究,开发高效的、易用的仿真平台成为推动基于多Agent 复杂系统仿真技术进步的关键。针对目前多Agent 仿真平台存在的局限性,进行仿真平台的结构设计,并开发了原型系统。最后,利用热虫(Heatbug )模型验证仿真平台的有效性。关键词:基于多主体仿真;复杂系统;仿真平台;热虫模型中图分类号:TP311152 文献标识码:B A Com plex System S im ula tion Pla tform Ba sed on M ulti -Agen t N I J ian -jun,L I J ian,FAN X in -nan (College of Computer &Infor mation Engineering,Hohai University,Changzhou J iangsu 213022,China )ABSTRACT:The comp lexity science is a rising interdiscip line which studies the comp lex system and comp lexity . The comp lex system si mulation based on multi -Agent is one of the very useful methods for researching the comp lexity p roducing mechanis m of comp lex system.This method is used in many fields w idely .In order to make the researchers released from the soft p rogramm ing and fix attention on their study,an effective and convenient si mulation p latfor m must be developed,which is a key job to i mp rove the comp lex system si mulation method based on multi -Agent .A i med at the li m itations existing in the si mulation p latfor m at p resent,a frame of si m ulation p latfor m is given out,and the p rototype system is developed .A t last a Heatbug model is used to confir m the validity of the si m ulation p latfor m. KEYWO RD S:Si mulation based on multi -Agent;Comp lex system;Si mulation p latfor m;Heatbug model 1 引言 复杂性科学是研究复杂系统和复杂性的一门新兴的交 叉学科。虽然它还处于萌芽时期,但已被有些科学家誉为是“21世纪的科学”。如何对各类复杂系统的复杂性产生机制的研究成为复杂性科学的关键问题之一。国内外研究表明,传统的建模方法(诸如还原论方法、归纳推理方法等)已经不能很好地刻画复杂系统,需要采用新的建模理论与仿真方法。而基于多Agent 的建模理论和仿真技术是最具活力、最有影响的方法之一,适合于复杂系统的研究[1][2]。目前这种技术在人工生命、经济系统、自然现象、社会科学、人文科学等众多领域都得到了广泛的应用。 仿真平台是进行计算机仿真的软件环境,可以使研究者 从复杂的软件编程中解放出来,集中精力进行科学研究。目前,有较多的关于Agent 系统开发平台的研究,这些平台一般都能用于复杂系统多Agent 仿真,如Cly mer 等人利用仿真平台OPE MCSS 进行复杂交通系统的多Agent 仿真,Pathak 等人利用仿真平台MADKIT 进行复杂供应链的多Agent 仿真,Uhr macher 等人利用仿真平台JAM ES 进行多个协商Agent 的分布式并行仿真。其他有代表性的仿真平台还有美国圣菲研究所的仿真平台S war m 、美国B rookings 研究所的A scape 仿真系统、芝加哥大学的Repast 仿真平台、美国I O WA 州立大 学的T NG -L ab 软件系统[3]-[5] 等等,这些平台为研究者进行研究提供了很大的帮助,然而,由于开发者的局限性和计算机技术的发展,目前许多基于Agent 的仿真平台都存在着一定的局限性,如支持复杂适应系统理论研究的工具和环境———S war m,虽然应用的人很多,为研究者提供了很大的便利,但是它还只是一个简单的系统,对一些复杂问题的仿真

最新异步电机数学模型

异步电机的数学模型是一个高阶、非线性、强耦合的多变量系统[1]。在研究异步电机的多变量数学模型时,常作如下假设: (1)三相绕组在空间对称互差ο120,磁势在空间按正弦分布; (2)忽略铁芯损耗; (3)不考虑磁路饱和,即认为各绕组间互感和自感都是线性的; (4)不考虑温度和频率变化对电机参数的影响。 异步电机在两相静止坐标系上的数学模型: 仿真的基本思想是利用物理的或数学的模型来类比模仿现实过程,以寻求过程和规律。在实际过程中,系统可能太复杂,无法求得其解析解,可以通过仿真求得其数值解。计算机仿真是利用计算机对所研究系统的结构、功能和行为以及参与系统控制的主动者——人的思维过程和行为,进行动态性的比较和模仿,利用建立的仿真模型对系统进行研究和分析,并可将系统过程演示出来。 系统仿真软件MATLAB 不但在数值计算和符号计算方面具有强大的功能,而且在计算结果的分析和数据可视化方面有着其他类似软件难以匹敌的优势。界面友好,编程效率高,扩展性强。MATLAB 提供的SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。SIMULINK 的目的是让用户能够把更多的精力投入到模型设计本身。它提供了一些基本的模块,这些模块放在浏览器里面,用户可以随时调用。当模型构造之后,用户可以进行仿真,等待结果,或者改变参数,再进行仿真。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,其动态和静态特性都相当复杂。以下将介绍用SIMULINK 如何来建立三相异步电机的计算机仿真模型,为以后的系统仿真做好准备。 经过三相静止/两相静止坐标变换及两相旋转/两相静止坐标变换,可得异步电机在两相静止坐标系上的数学模型。 电压方程: ?????? ? ???????????????????+--+++=??????????????βαβαβαβαωωωωr r s s r r r m m r r r r m r m m S m S r r s s i i i i P L R L P L L L P L R L P L P L P L R P L P L R u u u u 22110000

三相异步电动机的使用、维护和检修教案

教案(首页) 授课班级机电高职1002 授课日期 课题序号 3.5 授课形式讲授授课时数 2 课题名称三相异步电动机的使用、维护和检修 教学目标1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 3.熟悉三相异步电动机的定期检修内容。 4.了解三相异步电动机的常见故障以及处理方法。 教学重点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教学难点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教材内容更 新、补 充及删减 无 课外作业补充 教学后记无 送审记录 课堂时间安排和板书设计

复习5 导 入 5 新 授 60 练 习 15 小 结 5 一、电机选择原则 1、电源的原则 2、防护形式的选择 3、功率的选择 4、起动情况选择 5、转速的选择 二、电机的安装原则 三、电机的接地装置 四、电机的定期检查和保养 五、三相异步电机的常见故障及处理方法 课堂教学安排

课题序号课题名称第页共页教学过程主要教学内容及步骤 导入新授三相异步电动机在生产设备中长期不间断地工作,是目前工矿企业的主要动力装置,电动机的使用寿命是有限的,因为电动机轴承的逐渐磨损、绝缘材料的逐渐老化等等,这些现象是不可避免的。但一般来说,只要选用正确、安装良好、维修保养完善,电动机的使用寿命还是比较长的。在使用中如何尽量避免对电动机的损害,及时发现电动机运行中的故障隐患,对电动机的安全运行意义重大。因此,电动机在运行中的监视和维护,定期的检查维修,是消灭故障隐患,延长电动机使用寿命,减小不必要损失的重要手段。 一、电动机的选择原则 合理选择电动机是正确使用电动机的前提。电动机品种繁多,性能各异,选择时要全面考虑电源、负载、使用环境等诸多因素。对于与电动机使用相配套的控制电器和保护电器的选择也是同样重要的。 1.电源的选择 在三相异步电动机中,中小功率电动机大多采用三相380V电压,但也有使用三相22OV电压的。在电源频率方面,我国自行生产的电动机采用50Hz的频率,而世界上有些国家采用60Hz的交流电源。虽然频率不同不至于烧毁电动机,但其工作性能将大不一样。因此,在选择电动机时应根据电源的情况和电动机的铭牌正确选用。 2.防护型式的选择 由于工作环境不尽相同,有的生产场所温度较高、有的生产场所有大量的粉尘、有的场所空气中含有爆炸性气体或腐蚀性气体等等。这些环境都会使电动机的绝缘状况恶化,从而缩短电动机的使用寿命,甚至危及生命和财产的安全。因此,使用时有必要选择各种不同结构形式的电动机,以保证在各种不同的工作环境中能安全可靠地运行。电动机的外壳一般有如下型式: (1)开启型外壳有通风孔,借助和转轴连成一体的通风风扇使周围的空气与电动机内部的空气流通。此型电动机冷却效果好,适用于干燥无尘的场所。 (2)防护型机壳内部的转动部分及带电部分有必要的机械保护,以防止意外的接触。若电动机通风口用带网孔的遮盖物盖起来,叫网罩式;通风口可防止垂直下落的液体或固体直接进入电动机内部的叫防漏式;通风口可防止与垂直成100o范围内任何方向的液体或固体进入电动机内部的叫防溅式。(3)封闭式机壳严密密封,靠自身或外部风扇冷却,外壳带有散热片。适用于潮湿、多尘或含酸性气体的场合。 (4)防水式外壳结构能阻止一定压力的水进入电动机内部。 (5)水密式当电动机浸没在水中时,外壳结构能防止水进入电动机内部。 (6)潜水式电动机能长期在规定的水压下运行。 (7)防爆式电动机外壳能阻止电动机内部的气体爆炸传递到电动机外部,从而引起外部燃烧气体的爆炸。 3.功率的选择 课堂教学安排 课题序号课题名称第页共页

单相异步电动机控制电路

电气控制技术项目教程——项目11 河北省科技工程学校 姚锦卫

学习目标 知识目标: 了解单相异步电动机的结构及原理。 掌握单相异步电动机正反转控制电路的组成和原理。 掌握单相异步电动机调速控制电路的组成和原理。 技能目标: 能正确安装单相电动机正反转控制电路。 能正确安装检修单相电动机调速控制电路。项目十一单相异步电动机控制电路

课程导入 单相异步电动机控制电路 单相异步电动机是利用单相交流电源供电的小容量交流电动机,由于它结构简单、成本低廉、运行可靠、移动安装方便,并可以直接在单相220V交流电源上使用,因此广泛应用于工业、农业、医疗、家用电器以及办公场所等。 a) b) c) d) 图11-1 几种常见的单相异步电动机 a)单相电阻起动电动机b) 单相电容起动电动机 c) 单相电容运转电动机d) 排气扇电动机

项目十一单相异步电动机控制电路 任务一单相异步电动机正反转控制电路 任务二单相异步电动机调速控制电路任务总览 知识拓展电动机基本知识总结 练习题

任务一单相异步电动机正反转控制电路 单相异步电动机按其定子结构和起动机构的不同,可分为电容式、分相式、罩极式等几种。本任务中以广泛应用于洗衣机的单相电容起动与运转电动机为例进行讲解。 一、单相电容起动与运转异步电动机 单相异步电动机有两个定子绕组,一个是工作绕组(主绕组),用以产生主磁场;另一个是辅助绕组(副绕组),用来与主绕组共同作用,产生合成的旋转磁场,使电动机得到起动转矩。这两个绕组在空间相差90°,起动绕组串联一个适当容量的电容器。如图11-2所示。

任务一单相异步电动机正反转控制电路 二、单相异步电动机的正反转控制 单相异步电动机的正反转控制多用于对电容式电动机的控制,特 别广泛地用于洗衣机电动机,因为这种电动机的主、副绕组可以交替 使用。 当开关S置于触头“1”时为正转,此时 是以绕组A为工作绕组,B为起动绕 组,起动绕组在整个时间都工作。 选择合适的电容,可使B电流超前 于A 90°。 当开关S置于触头“2”时,A做为起动 绕组,B做为工作绕组,A电流超 前于B 90°,电动机发生反转。 图11-2 单相电容式电动机正反转控制电路

三相异步电动机的设计说明书

三相异步电动机的设 计说明书 一.三相异步电动机的基本结构 三相异步电动机由两个基本部分构成:固定部分—定子和转子,转子 按其结构可分为鼠笼型和绕线型两种。 1-1.定子的结构组成 定子由定子铁心、机座、定子绕组等部分组成,定子铁心是异步电动机磁路的一部分,一般由0.5毫米厚的硅钢片叠压而成,用压圈及扣片固紧,各片之间相互绝缘,以减少涡流损耗。 定子绕组是由带有绝缘的铝导线或铜导线绕制而成的,小型电机采用散下线圈或称软绕组,大中型电机采用成型线圈,又称为硬绕组。 1-2.转子的结构组成 转子由转子铁心、转子绕组、转子支架、转轴和风扇等部分组成,转子铁心和定子铁心一样,也是由0.5毫米硅钢片叠压而成。鼠笼型转子的绕组是由安放在转子铁心槽的裸导条和两端的环形端环连接而成,如果去掉转子铁心,绕组的形状象一个笼子;绕线型转子的绕组与定子绕组相似,做成三相绕组,在部星型或三角型。 1-3.工作原理 当定子绕组接至三相对称电源时,流入定子绕组的三相对称电流,在气隙产生一个以同步转速n 1 旋转的定子旋转磁场,设旋转磁场的转向为逆 时针,当旋转磁场的磁力线切割转子导体时,将在导体产生感应电动势e 2 ,电动势的方向根据右手定则确定。N极下的电动势方向用?表示,S极下的 电动势用Θ表示,转子电流的有功分量i 2a 与e 2 同相位,所以Θ ?和既表示 电动势的方向,又表示电流有功分量的方向。转子电流有功分量与气隙旋转磁场相互作用产生电磁力f em ,根据左手定则,在N极下的所有电流方向为

?的导体和在S极下所有电流流向为Θ的导体均产生沿着逆时针方向的切 向电磁力f em ,在该电磁力作用下,使转子受到了逆时针方向的电磁转矩M em 的驱动作用,转子将沿着旋转磁场相同的方向转动。驱动转子的电磁转矩与转子轴端拖动的生产机械的制动转矩相平衡,转子将以恒速n拖动生产机械稳定运行,从而实现了电能与机械能之间的能量转换,这就是异步电动机的基本工作原理。 二.异步电动机存在的缺点 2-1.笼型感应电动机存在下列三个主要缺点。 (1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。 (2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。 (3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。 2-2.绕线型感应电动机 绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改变外串电阻调速。绕线型电动机

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

异步电动机设计文献综述

本科毕业设计(论文) 文献综述 院(系):电气信息学院 专业:电气工程与自动化 班级:2010级 学生姓名:学号: 2013 年12 月18 日本科生毕业设计(论文)文献综述评价表

75KW三相鼠笼异步电动机设计1前言: 现在社会中,电能是使用最广泛的一种能源,在电能的生产、输送和使用等方面,作为动力设备的电机是不可缺少的一部分。电机是各个行业生产过程及日常生活中普遍使用的基础设备,它是进行电能量和机械能量转换的主要器件。它在现代工业、现代农业、现代国防、交通运输、科学技术、信息传输和日常生活中都得到最广泛的应用。 三相异步电动机在生产和交通运输中得到广泛使用,例如,在工业方面,它被广泛用于拖动各种机床、水泵、压缩机、搅拌机、起重机械等。在农业方面,他被广泛用于拖动排灌机械、脱粒机及各种农产品的加工机械。在家用电器和医疗器械和国防设施中,异步电动机也应用十分广泛,作为拖动各种机械的动力设备。随着电气化和自动化程度的不断提高,异步电动机将占有越来越重要的地位。而随着电力电子技术的不断发展,由异步电动机构成的电力拖动系统也将得到越来越广泛的应用。异步电动机与其它类型电机相比,之所以能得到广泛的应用是因为它具有结构简单、制造容易、运行可靠、效率较高、成本较低和坚固耐用等优点。 电动机是把电能转化为机械能,电动机作为各种用途的生产机械的动力元件,功率从几瓦到几万千瓦,每分钟转速从几十到几千转,应用十分广泛。电动机主要分为同步电动机、异步电动机与直流电动机三种,分别应用于不同的场合,而其中以三相异步电动机的使用最为广泛。 2 主题: 提高国内电机的可靠性和经济性指标被列为“十五”计划基本任务的两项重要内容。国内电机质量和技术水平差距的其中两个体现方面就可靠性差,经济指标落后。对电机进行细微的失效机理分析,采用新的设计方案、新的原材料及加工工艺是提高电机可靠性和经济指标的根本途径。 国外公司注重新产品开发,在电机的安全、噪声、电磁兼容等方面很重视。国外的先进水平主要体现在电机的可靠性高,寿命长,通用化程度高,电机效率不断提高,噪声低,重量轻,电机外形美观,绝缘等级采用F级和H级。国内市场供大于求,只能去发展特殊、专用电机,开发新产品,满足配套主机行业的特殊需要;国外市场由于普通中小型电机特别是小型电机是传统工业产品,耗用原材料及工时多而获利少,是劳动密集型产品,工业发达国家普遍不愿意生产,纷纷

异步电动机动态数学模型的建模与仿真.docx

目录 1 设计意义及要求 (3) 1.1设计意义 (3) 1.2设计要求 (3) 2 异步电动机动态数学模型 (4) 2. 1 异步电动机动态数学模型的性质 (4) 2. 2 异步电动机的三相数学模型 (5) 2.3坐标变换 (7) 2. 3.1坐标变换的基本思路 (7) 2. 3.2三相 - 两相变换( 3 / 2 变换) (7) 2. 3.3静止两相 - 旋转正交变换( 2 s / 2 r 变换) ...................................... 2.4状态方程 (10) 3 模型建立 (12) 3. 1 ACMo t o r 模块 (12) 3.2坐标变换模块 (13) 3. 2.1 3/ 2 t r a n s f o r m 模块 (13) 3. 2.22s/2rtransform 模块 (13) 3. 2.32r / 2s t r an s f or m 模块 (14) 3. 2.4 2/ 3 t r a n s f o r m 模块 (15) 3. 2.5 3/ 2 r t r a ns f o r m 模块 (16) 3.3仿真原理图 (17) 4 仿真结果及分析 (20) 5 结论 ........................................................ 参考文献..................................................... 摘要 对一个物理对象的数学模型,在不改变控制对象物理特性的前提下采用一定的变换手段,可以获得相对简单的数学描述,以简化对控制对象的控制。对异步电机的数学分析也不例外,在分析异步电机的数学模型时主要用到的是坐标变换。

相关主题
文本预览
相关文档 最新文档