当前位置:文档之家› 上海市同济中学2017届高三数学第二轮专题复习练习:复数向量矩阵行列式

上海市同济中学2017届高三数学第二轮专题复习练习:复数向量矩阵行列式

上海市同济中学2017届高三数学第二轮专题复习练习:复数向量矩阵行列式
上海市同济中学2017届高三数学第二轮专题复习练习:复数向量矩阵行列式

11. 复数,向量,矩阵,行列式

班级 姓名________________

1.已知

i i

z

+=-21,则复数z 的虚部为 . 2.若复数z 满足

1012i

i z

=-(i 为虚数单位)

,则z = . 3.若复数z

满足:i z i ?=(i 是虚数单位),则z =________. 4.已知复数z ,“0z z +=”是“z 为纯虚数”_______________条件. 5.复数1a i z i

-=

+(a R ∈, i

是虚数单位)在复平面上对应的点不可能位于第______象限. 6.已知互异的复数,a b 满足0ab ≠,集合{}{}

22

,,a b a b =,则a b +=__________.

7.已知方程()2

10x px p R -+=∈的两根为1x 、2x ,若121x x -=,则实数

p 的值为

____________.

8.设12,x x 是实系数一元二次方程2

0ax bx c ++=的两个根,若1x 是虚数,2

12

x x 是实数,

则2481632

1111112222221x x x x x x S x x x x x x ??????????

=++++++ ? ? ? ? ???????????

=_______________.

9.已知21,e e 是不平行的向量,设21e k e a +=,21e e k b

+=,则a 与b 共线的充要条件

是实数k 等于____________.

10.向量()()2,3,1,2a b ==- ,若ma b + 与2a b -

平行,则实数m =_________.

11.平面向量a 与b 的夹角为60?,1a = ,(3,0)b =

,则2a b += .

12.如图,在矩形OABC 中,点E 、F 分别在线段AB 、BC 上,

且满足AB=3AE ,BC=3CF ,若(,)OB OE OF R λμλμ=+∈

,则

=μ+λ____________.

13.如图所示,三个边长为2的等边三角形有一条边在同一直 线上,边33B C 上有10个不同的点1P 、2P 、…、10P ,记

2i i

M AB AP =?

(*i N ∈,[1,10]i ∈),则1210...M M M +++= .

14.已知,是单位向量,0=?b a ,且向量满足||b a c --=1,则||的取值范围是 ______________.

15.矩形ABCD 中,已知2AB =,1AD =,P 为矩形内部一点,且1AP =,若AP =

AB AD λμ+

(,R λμ∈

),则2λ的最大值是 .

16.三阶行列式351

2

36724

---中元素-5的代数余子式的值为____________. 17.如果由矩阵2222a x a a y a +??????

= ??? ???????

表示x 、y 的二元一次方程组无解,则实数a = .

18.若线性方程组的增广矩阵为???

?

??b a 1020,解为21x y =??=?,则=+b a ____________. 19.已知矩阵A =????

??421y ,B =???? ??876x ,AB =?

??

?

??50432219,则x+y = . 20.

已知()

m = ,2cos ,sin 2A n A ??

= ???

,A B C 、、是ABC △的内角.

(1)当2

A π

=

时,求n

的值;

(2)若23

C π

=,3AB =,当m n ? 取最大值时,求A 的大小及边BC 的长.

21.已知ABC ?的内角,,A B C 的对边分别为,,a b c .

(1)若,3

B b AB

C π

=

=?的面积S =

a c +值; (2)若()

22cos C BA BC AB AC c +=

,求角C .

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

矩阵论解题步骤-期末考试题

1. 广义逆(必考类型) 假设s x n 矩阵A 的广义逆为G ,且A 可以满秩分解为A = BC ,A 的秩r(A) = r ,则B 为s x r 矩阵,C 为r x n 矩阵。则G 可表示为: H 1 1 C (CC )(B B)B H H H G --= 例题: 步骤:显然,A 要分解为BC ,必须知道A 的秩,故先对A 进行行化简成最简式 ,r(A)=2,故A 满秩分解为A=(3x2) (2x4)=BC.根据A 的最简式来决定B 和C ,B 由A 最简式中只有1的原列组成,C 由A 的最简式的非零首元行组成。 B = , C = ,H 11C (CC )(B B)B H H H A --+=,通过计算即可 得到A 的广义逆。(若B 、C 中有单位矩阵,那么A 的广义逆表达式可去掉矩阵) 性质: 2. 证明r(ABC)r(B)r(AB)+r(BC)+>=

比较重要的性质 (1) ABX=0与BX=0同解 r(AB)=r(B) (2) r(A)=r(H A A ) (3) r(A+B)<=r(A)+r(B) (4) r(AB)<=min[r(A),r(B)] (5) r(AB)>=r(A)+r(B)-n ,其中A=s x n ,B=n x t 步骤: 设r(B)=r ,B 的满秩分解为B=HK ,所以ABC=AHKC , r(ABC)=r(AHKC)>=r(AH)+r(KC)-r (性质(5)) AB=AHK ,故r(AB)<=r(AH),同理得r(BC)<=r(KC),(性质(4)) 从而r(ABC)>=r(AB)+r(BC)-r(B),原式得证 知识点: A . 秩为r 的s x n 矩阵A 必可分解为A=BC ,其中B=s x r ,C=r x n 。该分解称为A 的 满秩分解。 3. nxn 2n n 2V {X |AX ,X C }n X ==∈,证明:12=V n C V ⊕ 证明包含两部分,1)证明12V V ⊕是直和 等价于 证明1 2V {0}V = 2)证明12V n C V ?⊕,12V n C V ?⊕ 步骤:

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

高中数学复习专题矩阵与行列式

专题八、矩阵与行列式 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A ΛM M ΛΛ212221211211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A -B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数 α的乘积矩阵,记作:αA.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)???=+=+222 1 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122 112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 2 1a a 2 1b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c ,则: ①当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式112 2 a b D a b =也为二元一次方程组解的判别式。

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

矩阵行列式(较难与困难)

第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题 1.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为() A.869 B.870 C.871 D.875

第II 卷(非选择题) 请点击修改第II 卷的文字说明 评卷人 得分 二、解答题 2.已知矩阵??????=121a A 的一个特征值3=λ所对应的一个特征向量?? ? ???=11e , 求矩阵A 的逆矩阵1-A . 3.已知矩阵 10120206A B -???? ==???? ???? ,,求矩阵1.A B - 4.选修4-2:矩阵与变换 已知直线:23l x y -=,若矩阵13a A b -?? = ??? ,a b R ∈所对应的变换σ把直线l 变换为它自身。 (Ⅰ)求矩阵A ; (Ⅱ)求矩阵A 的逆矩阵. 5.求曲线1x y +=在矩阵M 10103?? ??=?????? 对应的变换作用下得到的曲线所围成图形的面积. 6.(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量??? ? ??=321e 并有特征值 12-=λ及属于特征值-1的一个特征向量???? ??-=112e , ??? ? ??-=11α (Ⅰ )求矩阵M ;(Ⅱ )求5 M αr . 7.选修4—2:矩阵与变换 已知矩阵00a b ??=????M 满足:i i i l =M αα,其中(1,2)i i l =是互不相等的实常数,(1,2)i i =α,是非零的平面列向量,11l =,211?? =???? α,求矩阵M . 8.变换T 1是逆时针旋转 2 π 的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=. (1)求点P (2,1)在T 1作用下的点P ′的坐标; (2)求函数y =x 2 的图象依次在T 1,T 2变换的作用下所得曲线的方程. 9.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-

高二数学基本概念——第9章 矩阵和行列式初步

第9章 矩阵和行列式初步 一、 矩阵 9.1 矩阵的概念 矩阵及其相关的概念 1、矩形数表叫做矩阵 矩阵中的每个数叫做矩阵的元素 由个数排成的行列的数表 n m ?m n ()n j m i a ij ,,2,1;,,2,1 ==mn m m n n a a a a a a a a a 21 2222111211称为矩阵. n m ?记作?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2122221 11211n m ij a ?=)( 2、矩阵叫做方程组的系数矩阵。? ?? ? ??-1321它是2行2列的矩阵,记为 2 2?A ,矩阵 可简记为A n m A ?注意: 矩阵的符号,是“()”,不能是“| |”. 列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 。 等,或者必要时可记为n m ij n m n m a B A ???)(,

说明: 通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有 下列三种: (1)互换矩阵的两行 (2)把某一行同乘以(除以)一个非零常数 (3)某行乘以一个数加到另一行 通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算 矩阵 列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ?==?) ,,2,1;,2,1( 11 12121 2221 2 .....................n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 记为列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 ,()m n m n ij A B a ??必要时可记为等,或者A=。 0m n O O ?所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习 定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对 应的位置上的元素相等,则称矩阵A 与矩阵B 相等。记为:A=B n m ij n m ij b B a A ??==)(,)(即如果,(1,2,...,;1,2,...,) ij ij a b i m j n ===且则A=B 。 ...)3,2,1,...;3,2,1(===j i b a ij ij 二、矩阵的运算 (一)矩阵的加(减)法和数与矩阵的乘法 3(),()ij ij m n A a B b m n A B ==定义两个行列矩阵对应位置元素相加(或相减)得到的行列矩阵,称为矩阵与矩阵的和(差)。A-B A B +记为或()。 A B ±即 ()()ij m n ij m n a b ??=±()ij ij m n a b ?=± 定义4以实数乘矩阵A 中的每一个元素所得到的矩阵,称为实数与矩阵A 的乘积矩阵.记做A A α即 ()ij m n a α?=()ij m n a α?=的负矩阵的元素变号,称为的乘积使与A A A 1-A -记作n m ij a A ?-=-)(即 α)(ij a =αα1A 1A A 2A B A B αααααα=+=+注意:()矩阵与实数相乘满足如下交换率和分配律:()()()

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 111 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:1 1231232 ,,,2,,,D αααβαααβ= +- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 . 解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ )

三、行列式计算 (1)4 3 3 3 34333 3433 3 3 4 =n D 解:n D n c c c c c c +++13121 43313343133341333313 ++++n n n n 1 1312r r r r r r n --- 1 01000 0103 3313 +n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

沪教版(上海)高二第一学期新高考辅导与训练第9章矩阵和行列式初步9.4(1)三阶行列式

沪教版(上海)高二第一学期新高考辅导与训练第9章矩阵 和行列式初步9.4(1)三阶行列式 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.用对角线法则计算行列式:00x y z y x z x --. 2.把4 10 3224 1D -=--按第一行展开. 3.解方程:1 111 30002 x x --=. 4.计算:cos cos 0cos 0cos 0cos cos α βγ βγ α ---. 5.计算下列行列式的值: (1)10 29 41320-;(2)102101320 -;(3)102 840320. 根据计算结果,并观察行列式,你可以得到怎样更一般的结论? 二、双空题 6.行列式3 02 6 4 721 9 --中,7的余子式为_______,代数余子式为__________. 三、填空题 7.把5 10 2 413 2 ---按第二列展开为____________________. 8.用对角线法则计算行列式:1 02 312 4 5 -=-____________.

9.把221111 3 3 3 3 22 3 2 x y x y x y x y x y x y + -表示成一个三阶行列式为____________. 10.已知(1,1),(1,2),(2,4)A B C -,则ABC 的面积为___________.

参考答案 1.322x xz xy ++ 【分析】 直接利用三阶行列式运算法则计算得到答案. 【详解】 ()()322200()0()00 x y z y x x y z z y xz xy x z x -=+??-+??------?-322x xz xy =++. 【点睛】 本题考查了三阶行列式的计算,属于简单题. 2.3 2 0203 4(1)0412124??? +-?-+? ?----?? 【分析】 直接根据行列式运算法则计算得到答案. 【详解】 41032 02030324(1)04121242 4 1 -?? =?+-?-+? ?----?? --. 【点睛】 本题考查了行列式的展开式,属于简单题. 3.1x =或4x = 【分析】 根据三阶行列式的计算方法,先得到21 111 30540 2 x x x x --=-+-,再解一元二次方程, 即可得出结果. 【详解】 因为111 301013 1300220 02 x x x x x x ------= -+ 22(3)2(3)54x x x x x =-+--=-+-,

矩阵和行列式初步

第 九 章 矩阵和行列式初步 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP =,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ?- ? ?-??;若将常数项增加进去,则可简记为:2313242414m n ?? ?- ? ?-?? 。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ? -?? 这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ???称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

2016北京邮电大学《矩阵分析与应用》期末试题

北京邮电大学 《矩阵分析与应用》期末考试试题(A 卷) 2015/2016学年第一学期(2016年1月17日) 注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。 一、 已知22 R ?的两组基: 111000E ??=? ??? ,120100E ??=????,210010E ??=????,220001E ??=????; 11100 0F ??=? ???,121100F ??=????,211110F ??=????,221111F ??=????。 求由基1112212,,,E E E E 到11122122,,,F F F F 的过渡矩阵,并求矩阵 3542A -?? =?? ?? 在基11122122,,,F F F F 下的坐标。 二、 假定123x x x ,,是3 R 的一组基,试求由112323y x x x =-+, 2123232y x x x =++,312413y x x =+;生成的子空间()123,,L y y y 的基。 三、 求下列矩阵的Jordan 标准型 (1)1 0002 10013202 31 1A ???? ? ?=??????(2)310 0-4-1007121-7-6-10B ?? ????=?????? 四、 设()()123123,,,,,x y ξξξηηη==是3 R 的任意两个向量, 矩阵 210=120001A ?? ???????? ,定义(),T x y xAy = (1) 证明在该定义下n R 构成欧氏空间; (2) 求3 R 中由基向量()()()1231,0,0,1,1,0,1,1,1x x x ===的度量矩阵; 五、 设y 是欧氏空间V 中的单位向量,x V ∈,定义变换 2(,)Tx x y x y =- 证明:T 是正交变换。

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变.(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零. ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 2322 21 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

矩阵与行列式、算法初步知识点

矩阵与行列式 考试内容: 矩阵的意义. 行列式的意义以及对角线法则. 算法的含义以及逻辑结构. 考试要求: (1)会用矩阵的记号表示线性方程组. (2)掌握二阶、三阶行列式展开的对角线法则,以及三阶行列式按照某一行(列) 展开的方法.会利用计算器求行列式的值. (3)掌握二元、三元线性方程组的公式解法(行列式表示),会对含字母系数的 二元、三元线性方程组的解的情况进行讨论. (4)在具体问题的解决过程中,理解程序框图的逻辑结构:顺序,条件分支, 循环. 矩阵与行列式 知识要点 1、形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ?- ? ? -? ?这样的矩形数表叫 做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量; 垂直方向排列的数组成的向量12 n b b b ?? ? ? ???? ??? 称为列向量; 由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ??? 为21?阶矩阵,可记做21A ?;矩阵 5121283638362321 28 ?? ? ? ?? ?为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行 第j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。

矩阵与行列式

第9章 行列式与矩阵 学习目标 了解n 阶行列式定义,理解行列式性质. 掌握二阶、三阶、四阶行列式的计算. 理解矩阵的概念、逆矩阵的概念及其存在的充分必要条件,了解矩阵秩的概念. 掌握几种特殊矩阵,掌握矩阵的线性运算、乘法运算、转置及其运算规律、矩阵的初等行变换和用初等行变换求矩阵的秩和逆矩阵的方法. 在科学研究和实际生产中,碰到的许多问题都可以直接或近似地表示成一些变量之间的线性关系,因此,线性关系的研究就显得是非常重要了. 行列式与矩阵是研究线性关系的重要工具.本章将介绍行列式与矩阵的一些基本概念、性质和运算. §9.1 行列式的概念与计算 9.1.1二阶、三阶行列式 用消元法解二元线性方程组 ?? ?=+=+2 2221211 212111b x a x a b x a x a (9.1) 当021122211≠-a a a a 时,得 211222*********a a a a a b a b x --= ,21 1222111 212112a a a a b a b a x --= 为了便于记忆,我们引进二阶行列式的概念. 1.二阶行列式的定义 定义9.1 用2 2个数组成的记号 22 21 1211a a a a ,表示数值21122211a a a a -,称为二阶行 列式,22211211,,,a a a a 称为行列式的元素,横排称行,竖排称列. 利用二阶行列式的概念,当二元线性方程组(9.1)的系数组成的行列式0≠D 时,它的解可以用行列式表示为 1 12111 22221212121112111221222122 , b a a b b a a b D D x x a a a a D D a a a a ==== 其中1D 和2D 是以21,b b 分别替换系数行列式D 中第一列、第二列的元素所得到的两个

相关主题
文本预览
相关文档 最新文档