当前位置:文档之家› 三极管基本电路

三极管基本电路

三极管基本电路
三极管基本电路

三极管基本电路

一、三极管直流偏置电路:

1、定义:三极管周围的分压电阻组成的电路。

2、作用:利用电阻串联分压并联分流的特点,对一组大电源分压分流以满足三极管的

各极需要使其导通建立一个稳定的工作点。

3、三极管的直流工作点:规定三极管的集电极电流Ic 作为直流静态工作点。

4、直流偏置电路的种类:1)固定偏置电路 2)电压负反馈偏置电路 3)电流负反馈

偏置电路

1)固定偏置电路

工作过程:静态(直流)过程 BG1be :E+→R1→BG1b →BG1e →E- BG1ce :E+→R2→BG1c →BG1e →E-

电路特点:工作不稳定零点漂移也叫温漂↑→Ic ↑ Ic 电流在不断变化不稳定。 2)电压负反馈偏置电路

工作过程:静态(直流)过程 BG1be :E+→R2→R1→BG1b →BG1e →E- BG1ce :E+→R2→BG1c →BG1e →E- 电压E=UR2+Uce UR1+Ube=Uce

电路特点:利用电压负反馈稳定电路工作点。

零点↑→Ic ↑-IR2↑→VR2↑→VR1↓→IR1↓→Ib ↓→Ic ↓

相互干扰,工作环境复杂,不能通过大电流,放大功能受到限制。 3)电流负反馈偏置电路

工作过程:静态(直流)过程 BG1be :E+→R1→BG1b →BG1e →R4→E- BG1ce :E+→R3→BG1c →BG1e →R4→E- E+→R1→R2→E- 电路特点:利用电流负反馈稳定电流工作点。

0点↑→Ic ↑→Ie ↑→IR4↑→VR4→Ve ↑→VBGbe ↓→Ib ↓→Ic ↓ Ic ↑+Ib=Ie ↑

基极:信号输入极 发射极:信号输出输入极 集电极:信号输出极

5、静态工作点(Ic )与偏置电阻的关系。

1)与Rb 上成反比关系 Rb 上↑→Ic ↓ Ib 上↓→Ic ↑

1)与Rb下成正比关系Rb下↑→Ic↑ Ib下↓→Ic↓

1)与Re成反比关系Re↑→Ic↓ Ie↓→Ic↑

1)与Uc成反比关系Ic↑→Uc↓ Ic↓→Uc↑

二、三极管的放大电路:

1、作用:对输入三极管微弱信号进行放大,输出较强的电流或电压信号。

2、种类:1)共基极放大电路2)共发射极放大电路3)共集电极放大电路

1)共基极放大电路分析:

工作状态:静态(直流)状态BG1be:E+→R1→BG1b→BG1e→R4→E-

BG1ce:E+→R3→BG1c→BG1e→R4→E-

E+→R1→R2→E-

动态(交流)状态信号输入回路:Vs+→C1→BG1e→BG1b→C2→VS-

信号输出回路:BG1c→C3→RL→C2→BG1b→BG1c

信号流程:Vs→C1→BG1e→BG1c→C3→RL信号线

信号图中的三线:信号线、电源线、地线电路特点:1)需要放大信号由发射极输入,放大后由集电极输出基极共用且有旁路电容。

2)只有放大电压信号能力,没有放大电流信号能力。

3

Ic与偏置电阻关系:1)与基极上偏置电阻成反比。Rb上↑→Ic↓ Rb上↓→Ic ↑

2)与基极下偏置电阻成正比。Rb下↓→Ic↓ Rb下↑→Ic ↑

3)与基极直流负反馈电阻成反比。Re↑→Ic↓ Re↓→Ic ↑

4)与集电极电压成反比。Ic↑→Uc↓ Ie↓→Uc↑2)共发射极放大电路分析:

电路特点:1)需要放大的信号由基极输入,放大后由集电极输出,发射极共用且有旁路电容。

2)有电流放大作用也有电压放大能力。Ib↑→Ic↑ Vb↑→Ib↑→

Ic ↑→Uc ↓

3)输入输出反相。(电流放大是同相,电压放大是反相)

3)共集电极放大电路分析:

电路特点:1)放大电流信号由基极输入,放大后由发射极输出,集电极共用且有旁路电容。

2)只有放大电流能力不能放大电压。 3

三、三极管的反馈电路:

1、反馈:将放大器输出的信号(电流或电压)取出一部分或全部通过某个环节返回到

放大器的输入端这个过程称反馈。

2、反馈电路的组成:

3、作用:稳定电路的静态工作点。

4、反馈种类:

于放大)

流电反馈

流串联并联(用于振荡电路,缩短反馈时间)

5、概念:负反馈:返回的信号削弱了输入端的信号。 正反馈:返回的信号增强了输入

端的信号。

电流反馈:

返回的信号是电流信号。 电压反馈:返回的信号是电压信号。

并联反馈:反馈支路与信号源放大器为并联关系。 串联反馈:反馈支路与信号源放大器为串联关系。

6、负反馈电路的特征:

7、负反馈电路的种类:

例:电压串联负反馈:

电压串联负反馈:

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

第二章_半导体三极管及其基本电路(附答案)[1].

第二章半导体三极管及其基本电路 一、填空题 1、(2-1,中)当半导体三极管的正向偏置,反向偏置偏置时,三极管具有放大作用,即极电流能控制极电流。 2、(2-1,低)根据三极管的放大电路的输入回路与输出回路公共端的不同,可将三极管放大电路分为,,三种。 3、(2-1,低)三极管的特性曲线主要有曲线和曲线两种。 4、(2-1,中)三极管输入特性曲线指三极管集电极与发射极间所加电压V CE一定时,与之间的关系。 5、(2-1,低)为了使放大电路输出波形不失真,除需设置外,还需输入信号。 6、(2-1,中)为了保证不失真放大,放大电路必须设置静态工作点。对NPN管组成的基本共射放大电路,如果静态工作点太低,将会产生失真,应调R B,使其,则I B,这样可克服失真。 7、(2-1,低)共发射极放大电路电压放大倍数是与的比值。 8、(2-1,低)三极管的电流放大原理是电流的微小变化控制电流的较大变化。 9、(2-1,低)共射组态既有放大作用,又有放大作用。 10、(2-1,中)共基组态中,三极管的基极为公共端,极为输入端,极为输出端。 11、(2-1,难)某三极管3个电极电位分别为V E=1V,V B=1.7V,V C=1.2V。可判定该三极管是工作于 区的型的三极管。 12、(2-1,难)已知一放大电路中某三极管的三个管脚电位分别为①3.5V,②2.8 V,③5V,试判断: a.①脚是,②脚是,③脚是(e, b,c); b.管型是(NPN,PNP); c.材料是(硅,锗)。 13、(2-1,中)晶体三极管实现电流放大作用的外部条件是,电流分配关系是。 14、(2-1,低)温度升高对三极管各种参数的影响,最终将导致I C,静态工作点。 15、(2-1,低)一般情况下,晶体三极管的电流放大系数随温度的增加而,发射结的导通压降V BE 则随温度的增加而。 16、(2-1,低)画放大器交流通路时,和应作短路处理。 17、(2-2,低)在多级放大器里。前级是后级的,后级是前级的。 18、(2-2,低)多级放大器中每两个单级放大器之间的连接称为耦合。常用的耦合方式有:,,。 19、(2-2,中)输出端的零漂电压电压主要来自放大器静态电位的干扰变动,因此要抑制零漂,首先要抑制的零漂。目前抑制零漂比较有效的方法是采用。

三极管及放大电路基础教案..

第 2 章三极管及放大电路基础 课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。4.理解三极管的主要参数的含义。【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和 集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电 流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。

三极管三个电极的电流(基极电流1 B、集电极电流l C、发射极电流l E)之间的关系为: I E| |I C I C l B l C、 l B l B 2.1.3三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1.输入特性曲线 输入特性曲线是指当集-射极之间的电压V CE为定值时,输入回路中的基极电流I B与加在基-射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集-射极间的 电压V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区:I B 0曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管 没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1?性能参数:电流放大系数、,集电极-基极反向饱和电流I CBO,集电极-发射极反向饱和电流I CEO。 2.极限参数:集电极最大允许电流I CM、集电极-发射极反向击穿电压V(BR)CEO、集电 极最大允许耗散功率P CM 。 3.频率参数:共发射极截止频率 f 、特征频率f T 。 2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对 三极管的类型予以介绍。 三、课堂小结1.三极管的结构、类型和电路符号。2.三极管的电流放大作用。 3.三极管三种工作状态的特点。4.三极管的主要参数。 四、课堂思考 P37 思考与练习题1、2、3。

(整理)三极管应用电路和基本放大电路.

三极管应用电路和基本放大电路 2G 郭标2005-11-29 三极管应用电路和基本放大电路 (1) 一、三极管三种基本组态 (2) 二、应用电路 (3) A、偏置使用 (3) B、放大电路应用 (5) 三、射频FET小信号放大器设计 (7) 1、基本概念: (7) 2、基于S-参数和圆图的分析方法 (8) 四、集成中小功率放大器 (9) 附1:容易发生自激的电路形式 (11) 附2 电路分析实例 (11)

一、三极管三种基本组态 共发 共集 共基 特点:共发-对电压电流都有放大,适合制做放大器 共集-电压跟随器 共基-电流继随器 直流工作点选取 交流小信号混和PI 型等效模型 e

二、应用电路 A 、偏置使用 1、有源滤波电路: R1 R2 特点:直流全通,交流对地呈高容性。 使用时可在b 和e 对地接大电容,增强滤波。 2、有源负载电路: Vcc 特点:直流负载很小,交流负载大,提高放大器的Rc 3、恒流源电路 独立电流源 镜像电流源 特点:较大的偏置电压变化,有较小的电流变化

4、电平控制与告警电路 特点:利用导通截至特性,控制电平可调整 5、电流补偿偏置电路 特点:补偿偏置三极管能够补偿放大管因长期工作时,gm变低导致的Ic变低而改变工作点。

特点:适用于设计低噪声、高增益、高稳定性、较低频的放大电路。选择特定的材料可以做到高频。 1、共发放大的形式: ☆发射级接电阻的: 电压放大倍数接近为Rc/Re ☆接有源负载的: 共发有源负载的作用:直流负载很小,交流负载大 以此提高Rc,增大电压放大倍数 电压和电流同时放大的形式只有共发。 2、cb和cc的放大器一般只作为辅助。电流接续和电压接续或隔离作用。 3、级联考虑: 差分放大一般在组合放大的第一级,目的不在提供增益,而是良好的输入性能,如共模抑制比,温度漂移等;(互补型)共集电路(前置隔离级)做为最后一级,可兼容不同负载。而中间级一般是为了取得较高的增益,所以采用(有源偏置的)共发放大器。 放大电路中采用恒流偏置电路提高稳定性。 互补型共集电路 互补型共集电路特点:作为隔离级,提高动态范围

三极管及放大电路基础教案..

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

三极管基本电路原理和检修

三极管基本电路原理和检修 三极管是三端、电流控制器件。较低的输入阻抗(发射结可等效为一只电阻,需有实实在在的电流流通,三极管才能导通,因而要求信号源有电流输出能力),挑信号源;较高的输出阻抗(挑负载,要求负载阻抗>>电路本身输出阻抗,输出电压降才能落实到负载上)。在Ic受控于Ib的受控区内,工作于可变电阻区,为线性放大器(模拟电路);在Ic不受Ib控制的开关区,为开关电路(数字电路)。 上文中Ic指三极管集电极电流;Ib指三极管基极电流。 1三极管基本工作原理 三极管是个简称,全称为晶体三体管,早期以锗材料制作的为多,因其热稳定性差漏电流(电磁噪声)大而被淘汰,现在应用的都是硅材料晶体三体管。随着电子技术的进步,由三极管分立元件构成的放大器、逻辑电路已近于绝迹,但做为执行电路的末级驱动器件,如直流继电器线圈和风扇的驱动、IGBT的末级驱动(此处三极管仅仅作为开关来应用,如控制风扇的运转、继电器的动作等)等,大部分电路仍然继续采用三极管器件。所以由三极管构成的线性放大器,已经无须多加关注,仅需关注其开关应用即可以了。其原因为,当一片四运放集成电路的价格与单只小功率三极管的价格相接近时,恐怕已经没有人再愿意用数只甚至更加庞大数量的三极管来搭接线性放大器了,从性价比、电路性能、体积等任何一点考虑,三极管都貌似是永远失掉了它的优势。 2电路示例1——原理分析 虽然如此,为了更好地理解由三极管为核心构成的放大或开关电路,我带领大家设计一款最基本的三极管偏置电路,由对此简易电路的分析,找到分析三极管电路原理的关键所在。 已知:供电电源电压Vcc=10V;三极管β=100; 要求:静态Ic=1mA;静态Vc(三极管集电极电压)=5V。可知这是一款简易单电源供电 1

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

三极管的作用:三极管放大电路原理

三极管的作用:三极管放大电路原理 一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。 共射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。 三、构成放大电路的基本原则 放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如 ic=β*ib)应能有效地转变为负载上的输出电压信号。 电压传输特性和静态工作点 一、单管放大电路的电压传输特性

图解分析法:

输出回路方程: 输出特性曲线: AB段:截止区,对应于输出特性曲线中iB<0的部分。 BCDEFG段:放大区 GHI段:饱和区 作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。 用于开关控制场合:工作在截止区和饱和区上。 二、单管放大电路静态工作点(公式法计算)

半导体三极管及放大电路基础

半导体三极管及放大电 路基础 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体三极管及放大电路基础 第一节学习要求 第二节半导体三极管 第三节共射极放大电路 第四节图解分析法 第五节小信号模型分析法 第六节放大电路的工作点稳定问题 第七节共集电极电路 第八节放大电路的频率响应概述 第九节本章小结 第一节学习要求 (1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。 (2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。 (3)掌握频率响应的概念。了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。 第二节半导体三极管(BJT) BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同 于单个 PN结的特性而具有电流放大,从而使PN结的应 用发生了质的飞跃。本节将围绕BJT为什么具有电流放 大作用这个核心问题,讨论BJT的结构、内部载流子的 运动过程以及它的特性曲线和参数。 一、BJT的结构简介 BJT又常称为晶体管,它的种类很多。按照频率分,有高频管、低频管;按照功率分,有小、中、大功

率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。但从它们的外形来看,BJT都有三个电极,如图所示。 图是NPN型BJT的示意图。它是由两个 PN结的三层半导体制成的。中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。虽然发射区和集电区都是N 型半导体,但是发射区比集电区掺的杂质多。在几何尺寸上,集电区的面积比发射区的大,这从图也可看到,因此它们并不是对称的。 二、BJT的电流分配与放大作用 1、BJT内部载流子的传输过程 BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。 在外加电压的作用下, BJT内部载流子的传输过程为: (1)发射极注入电子 由于发射结外加正向电压V EE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射

实验二 三极管基本放大电路(指导书)

实验二三极管基本放大电路 一、实验目的 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 掌握放大器电压放大倍数、及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 共射放大电路既有电流放大,又有电压放大,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数来实现,负载电阻R L的变化不影响电路的静态工作点,只改变电路的电压放大倍数。该电路输入电阻居中,输出电阻高,适用于多级放大电路的中间级。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时V0的负半周将被削底;如工作点偏低易产生截止失真,即V0的正半周被缩顶(一般截止失真不如饱和失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一不定期的V i,检查输出电压V0的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。工作点偏高或偏低不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。 图2-1 基本放大电路实验图 三、实验内容与步骤 1.调整静态工作点:按图连线,然后接通12V电源,调节信号发生器的频率和幅值调切旋 钮,使之输出f=1000Hz,Ui=10mV的低频交流信号,然后调节电路图中Rp1和Rp2使放大器输出波形幅值最大,又不失真。 2.去掉输入信号(最好使输入端交流短路),测量静态工作点(Ic,U ce,U be) 3.测量电压放大倍数:重新输入信号,在波形不失真的条件下用交流毫伏表测量下述二种 情况下的U0值(加入信号和无信号),此时的U0和U i相位相反。 4.测量幅频频特性曲线:保持输入信号的幅度不变,改变信号源频率f,按照下面的的频率 要求逐点测出相应的输出电压U0,记入下表,并且画出幅频特性曲线。

三极管作为开关电路的设计及应用

第一节基本三极管开关基本电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一 些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极 管主电流的回路上, Vcc R ID R D 2 图1基本的三极管开关 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三 极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838 电子一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械 开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整 个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集 电极电流应该为:

三极管放大电路及其分析方法

三极管电路放大电路及其分析方法 一、教学要求 1.重点掌握的内容 (1)放大、静态与动态、直流通路与交流通路、静态工作点、负载线、放大倍数、输入电阻与输出电阻的概念; (2)用近似计算法估算共射放大电路的静态工作点; (3)用微变等效电路法分析计算共射电路、分压式工作点稳定电路的电压放大倍数A u和A us,输入电阻R i和输出电阻R0。 2.一般掌握的内容 (1)放大电路的频率响应的一般概念; (2)图解法确定共射放大电路的静态工作点,定性分析波形失真,观察电路参数对静态工作点的影响,估算最大不失真输出的动态范围; (3)三种不同组态(共射、共集、共基)放大电路的特点; (4)多级放大电路三种耦合方式的特点,放大倍数的计算规律。 3.一般了解的内容 (1)共射放大电路f L、f H与电路参数间的定性关系,波特图的一般知识。多级放大电路与共射放大电路频宽的定性分析; (2)用估算法估算场效应管放大电路静态工作点的方法。 二.内容提要 1.共射接法的两个基本电路 共射放大电路和分压式工作点稳定电路是模拟电路中最基本的单元电路。学习这两种基本电路的分析方法是学习比较复杂的模拟电路的基础。 2.两种基本分析方法——图解法和微变等效电路法 在“模拟电路”中,三极管是非线性元件,因此不能简单地采用“电路与磁路”课中线性电路地分析方法。图解法和微变等效电路法就是针对三极管非线性的特点而采用的分析方法。 3.放大电路的三种组态——共射组态、共集组态和共基组态 由于放大电路输入、输出端取自三极管三个不同的电极,放大电路有三种组态——共射组态、共集组态和共基组态。由于组态的不同,其放大电路反映出的特性是不同的。在实际中,可根据要求选择相应组态的电路。 4.两种放大元件组成的放大电路——双极型三极管放大电路和场效应管放大电路 一般来说,双极性三极管是一种电流控制元件,它通过基极电流i B的变化控制集电极电流I c的变化。而场效应管是一种电压控制元件,它通过改变栅源间的电压u GS来控制漏极电流i D的变化;其次,双极性三极管的输入电阻较小,而场效应管的输入电阻很高,静态时栅极几乎不取电流。由于它们性能和特点的不同,可根据要求选用不同元件组成的放大电路。 5.多级放大电路的三种耪合方式——阻容耦合、直接耦合和变压器耦合 将多级放大电辟连接起来的时候,就出现了级与级之间的耦合方式问题。通过电阻和电容将两级放大电路连接起来的方式称为阻容耦合。由于电容的作用,

三极管常用应用电路

三极管常用电路 1.三极管偏置电路_固定偏置电路 如上图为三极管常用电路中的固定偏置电路:Rb的作用是用来控制晶体管的基极电路Ib,Ib称为偏流,Rb称为偏流电阻或偏置电阻.改变Rb的值,就可以改变Ib的大小.图中Rb 固定,称为固定偏置电阻. 这种电路简单,使用元件少,但是由于晶体管的热稳定性差,尽管偏置电阻Rb固定,当温度升高时,晶体管的Iceo急剧增加,使Ie也增加,导致晶体管工作点发生变化.所以只有在温度变化不大,温度稳定性不高的场合才用固定偏置电路 2.三极管偏置电路_电压负反馈偏置电路 如上图为三极管常用电路中的电压负反馈偏置电路:晶体管的基极偏置电阻接于集电极. 这个电路好象与固定偏置电路在形式上没有多大差别,然而正是这一点,恰恰起到了自动补偿工作点漂移的效果.从图中可见,当温度升高时,Ic增大,那么Ic上的压降也要增大,使得Uce下降,通过Rb,必然Ib也随之减小,Ib的减小导致Ic的减小,从而稳定了Ic,保证了

Uce基本不变. 这个过程,称为负反馈过程,这个电路就是电压负反馈偏置电路. 2.三极管偏置电路_分压式电流负反馈偏置电路 如上图为三极管常用电路中的分压式电流负反馈偏置电路:这个电路通过发射极回路串入电阻Re和基极回路由电阻R1,R2的分压关系固定基极电位以稳定工作点,称为分压式电流负反馈偏置电路.下面分析工作点稳定过程. 当温度升高,Iceo增大使Ic增加.Ie也随之增加.这时发射极电阻Re上的压降Ue=Ie*Re 也随之升高.由于基极电位Ub是固定的,晶体管发射结Ube=Ub-Ue,所以Ube必然减小,从而使Ib减小,Ic和Ie也就减小了. 这个过程与电压负反馈类似,都能起到稳定工作点的目的.但是,这个电路的反馈是Ue=Ie*Re,取决于输出电流,与输出电压无关,所以称电流负反馈. 在这个电路中,上,下基极偏置电阻R1,R2的阻值适当小些,使基极电位Ub主要由它们的分压值决定.发射极上的反馈电阻Re越大,负反馈越深,稳定性越好.不过Re太大,在电源电压不变的情况下,会使Uce下降,影响放大,所以Re要选得适当. 如果输入交流信号,也会在Re上引起压降,降低了放大器的放大倍数,为了避免这一点,Re 两端并联了一个电容Ce,起交流旁路作用. 这种电路稳定性好,所以应用很广泛. 一、采用仪表放大器还是差分放大器 尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。

半导体三极管及其放大电路练习及答案

半导体三极管及其放大电路 一、选择题 1.晶体管能够放大的外部条件是_________ a 发射结正偏,集电结正偏 b 发射结反偏,集电结反偏 c 发射结正偏,集电结反偏 答案:c 2.当晶体管工作于饱和状态时,其_________ a 发射结正偏,集电结正偏 b 发射结反偏,集电结反偏 c 发射结正偏,集电结反偏 答案:a 3.对于硅晶体管来说其死区电压约为_________ a 0.1V b 0.5V c 0.7V 答案:b 4.锗晶体管的导通压降约|UBE|为_________ a 0.1V b 0.3V c 0.5V 答案:b 5. 测得晶体管三个电极的静态电流分别为 0.06mA,3.66mA 和 3.6mA 。则该管的β为_____ a 40 b 50 c 60 答案:c 6.反向饱和电流越小,晶体管的稳定性能_________ a 越好 b 越差 c 无变化 答案:a 7.与锗晶体管相比,硅晶体管的温度稳定性能_________ a 高 b 低 c 一样 答案:a 8.温度升高,晶体管的电流放大系数 ________ a 增大 b 减小 c 不变 答案:a 9.温度升高,晶体管的管压降|UBE|_________ a 升高 b 降低 c 不变 答案:b 10.对 PNP 型晶体管来说,当其工作于放大状态时,_________ 极的电位最低。 a 发射极 b 基极 c 集电极 答案:c 11.温度升高,晶体管输入特性曲线_________ a 右移 b 左移 c 不变 答案:b 12.温度升高,晶体管输出特性曲线_________ a 上移 b 下移 c 不变 答案:a 12.温度升高,晶体管输出特性曲线间隔_________ a 不变 b 减小 c 增大 答案:c 12.晶体管共射极电流放大系数β与集电极电流Ic的关系是_________ a 两者无关 b 有关 c 无法判断 答案:a 15. 当晶体管的集电极电流Icm>Ic时,下列说确的是________ a 晶体管一定被烧毁 b 晶体管的PC=PCM c 晶体管的β一定减小 答案:c

三极管放大电路基本原理

三极管放大电路基本原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。以NPN三极管的共发射极放大电路为例来说明三极管放大电路的基本原理。 以NPN型硅三极管为例,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。 三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因: 首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必 须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小

的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。 另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前。 但是在实际使用中要注意,在开关电路中,饱和状态若在深度饱和时会影响其开关速度,饱和电路在基极电流乘放大倍数等于或稍大于集电极电流时是浅度饱和,远大于集电极电流时是深度饱和。因此我们只需要控制其工作在浅度饱和工作状态就可以提高其转换速度。对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN 的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里

三极管基本电路总结

1.共射极电路:共射极的放大倍数较大,输入输出电阻也较大,适合作为多级放 大电路的输入级而不适合作为输出级.但是由于基极与集电极的结电容受密勒 效应的影响,高频特性较差,因此适用于低频功率放大. 2.共基极电路:由于共基极电路的输入电阻很小,且输出电阻较大,因此很少用 共基极电路进行放大.但是由于其基极接地,使得基极和集电极的结电容不受 密勒效应的影响,因此常用于高频放大或与集电极电路组成宽带放大电路,例 如用于视频信号放大等. 3.共集电极电路:共集电极电路的电压增益为1,常用作电压跟随器,此外,由于 其输入电阻很大,输出电阻很小,带负载能力很强,因此可用作阻抗变换及作为 多级放大电路的输出级.例如互补推挽输出级就是采用共集电极作为输出级. shuijian 发表于 2006-5-13 12:47:00 共集放大电路具有很多的优良特性,比如输入阻抗高,输出阻抗低,而且具有电压跟随特性,因此常用来作为多级放大电路的输出级,典型的应用就是在运放电路 里的互补推挽输出.下面我们来具体分析共集放大电路的中频区特性,见图: 由图可计算出电压放大倍数为:Au=(1+β)Rl'/[rbe+(1+β)Rl']≈1 其中,Rl'=R3//R4 ---------由此可以看出共集放大具有电压 跟随特性. 输入电阻ri=R1//[rbe+(1+β)Rl']

其中rbe为基-射电阻,计算方法为rbe=rbb'+(1+β)Vt/Ie (也可查手册得到,一般为1-2kohm) Vt常温取26mV ---------由上面的式子可以看出共集的输入阻抗很高 输出电阻ro=rce//[(R1+rbe)/(1+β)]≈(R1+rbe)/(1+β) --------由上面的式子可以看出共集的输出阻抗很低约几十欧到几k 这里由于采用的是固定偏置,因而比较大,如果采用分压偏置,输出阻抗会更小.另外为计算方便,这里没有考虑信号源内阻. 具体计算过程可根据中频区放大电路的微变等效电路计算. 下面是该电路的输入输出波形,从输入输出波形可以看出共集电路具有电压跟随特性. By shuijian shuijian 发表于 2006-5-12 23:36:00 三极管共基电路与共射的分析类似,只是输入输出的电压信号同相,对于参数 相同的电路,其电压增益相同.但是由于输入阻抗低,一般很少用.见图:

三极管与放大电路基础教案..

第 2 章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引 导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个 PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和 PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

1

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流( 基极电 流 I B、集电极电 流 I C、发射极电 流 I E ) 之间的关系 为: I E I B I C 、I C、I C I B I B 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安 特性曲线。 1.输入特性曲线 输入特性曲线是指当集- 射极之间的电压V CE为定值时,输入回路中的基极电流I B与加 在基 - 射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集 - 射极间的 电压 V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区: I B 0 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状 态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。 三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数、,集电极 - 基极反向饱和电流I CBO,集电极 - 发射极反向饱和电流I CEO。 2. 极限参数:集电极最大允许电流I CM、集电极 - 发射 极反向击穿电压V(BR ) CEO、集电

相关主题
文本预览
相关文档 最新文档