当前位置:文档之家› 发酵工业分析

发酵工业分析

发酵工业分析
发酵工业分析

生物碱的提取与分离纯化

摘要:生物碱是广泛存在于自然界天然植物中的碱性含氮有机化合物。大多数生物碱具有显著的生理活性,是许多药用植物的有效成分。利用现代分离技术把生物碱从天然产物中分离出来并对其进行纯化,对于开发其药用价值,以满足天然药物和天然保健品日益高涨的社会需求,促进中药走向世界提高天然产物的经济和会效益均具有非常重要的意义。主要对生物碱的提取、分离纯化及分析检测技术研究进展进行综述。

关键词:生物碱;药用植物;有效成分;提取;分离纯化技术

生物碱是自然界中广泛存在的一类含氮碱性有机化合物,大多均具有显著的生理活性,是许多药用植物的有效成分。目前临床应用主要表现为抗癌、抗肿瘤[1] 、抗病毒[2] 、抗菌[3] 、抗炎作用[4] , 同时生物碱还可以作用于神经系统[5~7] 和心血管系统[8,9] 等。随着人们对生物碱药用价值的认识不断提高,其应用和需求正日益增长。利用现代分离技术把生物碱从天然产物中分离出来并对其进行纯化,对于开发其药用价值,以满足天然药物和天然保健品日益高涨的社会需求,促进中药走向世界,提高天然产物的经济和社会效益均具有非常重要的意义。本文主要对生物碱的提取、分离纯化及其分析检测技术研究进展进行综述。

1生物碱的提取技术

生物碱的传统提取技术主要有:浸渍、煎煮、溶剂回流、渗漉等方法。近年来一些在化工、食品等领域开发出的新技术,如超临界流体萃取技术、双水相萃取技术等也在生物碱的提取中获得了广泛的应用。

1.1超临界流体萃取技术

超临界流体萃取技术是20世纪70年代末才兴起的一种新型生物分离精制技术,90年代后开始应用于药用植物中有效成分的提取。其原理是利用压力和温度对超临界流体溶解能力的影响而实现对极性大小、沸点高低和分子量大小不同的组分间的选择性分离。LiuB等以延胡索乙素提取率为指标,通过正交试验设计,探索出了元胡中延胡索乙素SFE2CO2的最佳工艺条件,与其它提取方法相比,提取率有了显著的提高;赵宋亮等利用超临界CO2流体萃取菊三七中的总生物碱,提取率为索氏提取法的1.5倍,耗时却仅为常规法的1/2。

1.2微波辅助提取技术

微波辅助提取技术是利用微波与介质的离子和偶极子分子的相互作用,促使介质转动能力跃迁,加剧热运动,使细胞壁破裂,胞外溶剂易于进入细胞内,溶解并释放胞内产物,具有强力、瞬时、高效等特点,是目前颇具发展潜力的一种新型提

取技术[12] 。自1986年Ganzler等首次报道了微波用于天然产物中化学成分的提取以来,该技术已在食品、环境、制药和天然产物等领域得到了广泛的应用。XiaoGQ等将微波辅助提取技术应用于荷叶中生物碱的提取,与传统提取方法相比,总生物碱提取率获得明显提高。FulzeleDP等考察了不同提取方式对喜树中喜树碱提取效果的影响,为达到一定的提取率,采用热回流、索氏提取法分别需要30min、120min,而采用MAE技术则仅需3min,提取时间大大缩短。

1.3超声辅助提取技术

超声辅助提取技术主要是靠超声波空化产生的极大压力造成被破碎物细胞壁及整个生物体瞬间破裂,同时超声波产生振动作用加强了细胞内物质的释放、扩散及溶解,加速植物中的有效成分渗透进入溶剂而使提取效率获得提高。代宏哲以苦豆子生物碱的浸取过程为研究对象,研究了超声场介入对固液扩散的影响,并与常规浸提法的动力学方程进行了比较,发现超声条件下的平衡常数是常规条件下的27.4倍,其传质系数也高出将近2个数量级。郭孝武等研究了超声和热回流浸泡法提取益母草中生物碱的过程,发现超声提取可损伤益母草茎内组织细胞,提取40min比回流法提取2h的产率还高出42.86%。超声辅助提取大大缩短了提取周期,有效成分的收率明显提高,同时全过程无需加温,减少了杂质的进入和能源的消耗。

1.4双水相萃取技术

双水相萃取技术是由2种聚合物或聚合物与无机盐在水中在适当的浓度等条件下形成互不相溶的两相体系,利用待分离物在两水相中分配系数的不同而实现提取分离的方法。目前最常用的双水相体系有聚乙二醇(PEG)/葡聚糖体系、PEG/无机盐体系、表面活性剂/表面活性剂体系、普通有机溶剂/无机盐体系、双水相胶束体系、温敏性双水相体系、热分离双水相体系、离子液体/无机盐体系等。LiS等采用双水相萃取技术从甘草根中提取分离出吗啡、从罂粟中提取罂粟碱的研究, 均取得了很好的提取效果。双水相萃取技术具有分离条件温和、能耗较小、传质和平衡速度快、回收效率高、且设备简单、易于放大和实现连续化操作等特点。所以,尽管目前该技术在生物碱的提取方面报道不多,但应用前景十分良好。

2生物碱分离与纯化技术

生物碱分离与纯化的经典方法主要有:有机溶剂萃取、沉淀法、蒸馏法、结

晶法、树脂吸附及层析分离等技术。近年来,在生物碱分离与纯化应用中较受人们关注的新技术主要有:膜分离技术、分子蒸馏技术、高速逆流色谱技术、分子印迹技术等。

2.1膜分离技术

膜分离技术是20世纪60年代后迅速崛起的一项新兴的高效分离技术,它采用半透膜作为选择障碍层,以膜两侧的能量差为推动力,根据各组分透过膜的迁移率不同,而允许某些组分透过而保留混合物中其他组分,从而实现混合物中各组分的分离。该技术具有操作条件温和、不存在相转移、分离效率高、不必添加化学试剂、不损坏热敏性物质、可极大的减少纯化工序实现连续和自动化操作、使用范围广等优点,有着传统法无可比拟的优势。近年来,膜分离技术在生物碱的分离与纯化过程中的应用研究十分活跃。例如BoyadzhievL等采用膜法分离长春花提取物中吲哚类生物碱;梁锋等用W/O型乳状液膜分离技术成功分离出荷叶粗提物中3种生物碱:荷叶碱、N2去甲基荷叶碱、O2去甲基荷叶碱,萃取率分别达到了95.6%、100%和97.9%,充分显示出了该技术良好的应用前景。

2.2分子蒸馏技术

分子蒸馏技术是我国于20世纪80年代末从国外引进的一种新型液-液分离精制技术。与许多常规蒸馏技术相比,分子蒸馏可在远离沸点下操作、蒸馏压强低、受热时间短、浓缩效率高、无沸腾和鼓泡现象、能节省大量溶剂减少环境污染等特点,现已广泛应用于天然产物中高沸点、热敏性、易氧化物质的分离。分子蒸馏的核心是分子蒸发器,其种类主要有3种:即降膜式、刮膜式及离心式。应安国等应用刮膜式分子蒸馏设备对帕罗西汀碱原料进行分离提纯试验,通过对该生产过程技术经济的初步分析,以年产1000kg帕罗西汀计算,可产生直接经济效益约7000万元,具有巨大的利润空间。但目前该技术在我国尚处于起步阶段,随着分子蒸馏设备的国产化,必将加快其推广和应用。

2.3高速逆流色谱技术

高速逆流色谱技术是由美国国家医学院Yio2chiroIto博士于1982年首先发明的一种新型色谱分离技术,它根据互不相溶的两相溶剂在旋转螺旋管内具有单向性流体动力平衡特性利用样品中各组分在两相间分配能力差异而实现各组分间的分离。由于其固定相是液体避免了样品与固定相之间发生不可逆吸附、污染、变性等缺点,特别适用于分离极性和具有生物活性的物质;并且该技术不需升温加

热,也不需要精密的恒流泵,操作十分方便,特别适于制备性分离。YangF等利用高速逆流色谱对传统中药黄连中的生物碱类活性成分进行了分离,得到巴马亭、小檗碱、表小檗碱、黄连碱4种生物碱。YangF等从穿心莲提取物中分离得到拉杷乌头碱、毛莨花乌头碱、去乙酰刺乌头碱、去乙酰冉乌头碱等组分,取的了非常良好的分离效果。

2.4分子印迹技术

分子印迹技术利用具有高度分子识别功能的聚合物材料为固定相,对目标分子进行分离、筛选、纯化的一种高选择性仿生技术,其技术核心是制备分子印迹聚合物(molecularlyimprintedpoly2 mers,MIPs)。HwangCC等分别以(+)2n2去甲麻黄碱和(-)2n2去甲麻黄碱为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸为交联剂制成MIPs,对n2去甲黄碱的对映体进行色谱分离,分离度可分别达到1.8~3.8和2.1~3.6,取得了很好的分离效果;XieJ等用以harman为模板制备的液相色谱-质谱联用系统的固定相,从骆驼蓬种籽甲醇提取物中成功分离出了两个和harman结构类似的抗癌组分:哈尔明(harmine)和哈马林(harmaline)碱。目前,分子印迹技术在生物碱分离纯化方面的研究日趋活跃,但实现工业化应用还需假以时日。

3生物碱的检测与分析

生物碱的检测与分析,目前普遍采用的有分光光度法、红外光谱法、色谱法、核磁共振法、质谱法、薄层层析法色差仪等分析检测技术,它们或单独采用,或相互配合使用,以达到相应的分析目的。对于不同结构类型生物碱的研究,应充分灵活地运用各种分析手段,相互补充,研究结果才能真实可靠。

4研究与展望

生物碱作为中草药中具有生理和药理活性的重要组分,极有可能成为我国将来具有自主知识产权的新药,其提取与分离纯化技术的研究将日趋活跃。目前,大多数提取过程所得到的生物碱均为多种生物碱的混合物,而各种不同的生物碱药效相差甚大,这对其药用价值的开发带来了十分不利的影响和限制。所以,开发出具有工业应用价值的生物碱提取与分离纯化新技术,对推动我国中药产业的发展,促进中药走向世界,提高天然产物的经济和社会效益均具有非常重要的意义。

参考文献:

[1]刘丽敏,刘华钢,毛俐,等.苦参碱和氧化苦参碱体外对肿瘤细胞增殖的影响[J].中国实验方剂学杂志,2008,14(11):35-36.

[2]

WangR,YangXI,MaCM,etal.AbioactivealkaloidfromtheflowersofTrolliuschinensis[J]. Heterocy

2cles,2004,63(6):1443-1448.

[3] 张韶瑜,孟林,高文远,等.东北鹤虱中一个具有抗菌活性的新喹酮类生物碱[J].中草药,2005,36(4):490-492.

[4]KoHC,WangYH,LiouKT,etal.Anti-inflammato2ryeffectsandmechanismsoftheethan olextractofEvodiarutaecarpaanditsbioactivecomponentsonneutrophilsandmicroglialcel ls[J].EurJPharmaco,l200,555(2-3):211-217.

[5]黄韶清,周玉淑,刘仁树.现代急性中毒诊治疗学[M].北京:人民军医出版社,2002.

[6] 朱燕娜,常宇明,鲍梦周,等.马钱子碱对小白鼠的中枢作用[J].河南医科大学学报,1992,27(2):140-142.

[7] 吴志平,陈雨,冯煦,等.石蒜科药用植物生物碱的药理学研究[J].中国野生植物资源,2008,27(5):26-31.

[8] 赵玉兰.环常绿黄杨碱D对室性期前收缩及QT间期离散度的影响[J].中国新药与临床杂志,2002,21(3):140-142.

[9] 许超千,董德利,杜智敏,等.苦参碱、小檗胺与胺碘酮、RP58866抗心律失常作用的比较[J].药学学报,2004,39(9):691-694.

(推荐)发酵类制药废水处理工艺及相关案例分析摘取简要

发酵类制药废水处理工艺及相关案例分析 摘取简要 一、发酵类制药废水来源 近年来,我国发酵类制药产业发展快速,产生了大量的废水。发酵类药物产品主要有抗生素、氨基酸、维生素和其他几大类型。发酵类药品的生产过程一般都需要经过菌种的筛选、种子制备、微生物发酵、发酵液预处理和固液分离、提炼纯化、精制、干燥、包装等步骤,生产过程中将会有产生大量的高浓度的有机废水,如图1.1所示,由此对环境造成严重的污染。 此废水主要可分为四类:(1)主生产过程排水;(2)辅助过程排水;(3)冲洗水;(4)生活污水。 从图中可以看出发酵类制药废水在生产过程中排水点很多,高、低浓度废水的单独排放,有利于清污分流,高浓度废水间歇排放,酸碱度和温度变化比较大,污染物浓度高,如废滤液、废母液等的COD一般在10 000 mg/L以上。 二、发酵类制药废水水质特征及典型处理技术

1.水质特征 制药废水作为最难处理的工业废水之一,废水中的污染主要来源于菌渣的分离,溶剂萃取,精制,药品回收设备,地面冲洗水处理等生产过程。高浓度的发酵类废水的COD含量一般在10000mg/L以上,BOD5/COD值差异较大,废水带有较重的颜色和气味,容易产生泡沫,废水的pH值、水质、水量的波动大等。 2.发酵类制药废水有以下几个较为明显的共同点: (1)污染物的种类繁多,成分复杂; (2)冲击负荷大,废水的水质和水量随时间变化很大; (3)含抗生素,对微生物的生长有抑制和阻碍的作用; (4)氮的浓度高,碳氮比低; (5)悬浮物浓度高; (6)色度高; (7)硫酸盐浓度高; (8)BOD5/COD比值低,可生化性极差,难生物降解的有机物成分高3.典型处理技术 1)铁碳微电解法:以Fe-C作为制药废水的预处理工艺,可大大提高出水的可生化性。采用铁炭-微电解-厌氧-好氧-气浮联合工艺处理医药中间体生产废水,COD的去除率可达20%。 2)臭氧氧化法:不但能提高抗生素废水的BOD5/COD,同时能较好去除废水中COD。应用臭氧氧化技术对抗生素制药废水进行处理。结果表明,在废水pH 值不变的条件下,臭氧氧化过程COD去除率均可达到75%以上。 3)Fenton试剂法:是亚铁盐和H2O2的组合,在处理青霉素废水的方面有较好开发前景。Fenton氧化不但能有效的去除废水中有害有机物质,它同样也

微生物发酵工业废水探讨

本页面为作品封面,下载文档后可自由编辑删除! 环境保护 行 业 污 水 单位: 姓名: 时间:

微生物发酵工业废水探讨 一、工业废水的营养特点 适合微生物生长积累油脂的工业废水含有可作为碳源的丰富有机物、糖类,如淀粉废水、味精废水、啤酒废水等。这类废水属高浓度有机废水,COD、BOD浓度高,主要含有碳水化合物、蛋白质、油脂、纤维素等有机物,极易造成水体富营养化污染环境。 二、利用工业废水发酵生产微生物油脂的研究现状 工业废水尤其是食品工业废水中含有大量的还原性糖,可以被微生物利用作为碳源积累油脂。由于微生物的生长代谢分解利用了废水中的有机物,降低了废水的污染程度实现了资源合理化应用。 (一)利用淀粉废水发酵钟娜等[3]利用淀粉废水对高产油粘红酵母进行了驯化和筛选,使其对淀粉废水COD的耐受程度达到了75000 mg/L,400L发酵罐实验表明,经33h的培养后,生物量达25.3g/L,菌体油脂含量为29.5%,COD降解率为92.5%。杜娟[4]等利用甘薯淀粉废水,采用添加营养因子的方法研究了产油菌株FR的生长、产油及COD去除,发现经淀粉酶液化处理后的产油率可达45.3%,淀粉酶和糖化酶先后处理后的COD去除率可达66.3%。 (二)利用味精废水发酵邢旭[5]等研究了粘红酵母RH8在味精废水中的生长、产油及COD去除率,发现调节废水pH至5.5后,添加废葡萄糖母液、酵母粉、KH2PO4、MgSO4、MnSO4均能够促进茵体的

生长、产油和COD去除。生物量最高可达15.6g/L,干茵体中油脂质量分数达到29.61%,COD去除率达到45.1%。 (三)利用啤酒废水发酵郭淑贤等[6]用斯达油脂酵母发酵啤酒生产废水,发酵条件经优化后菌体生物量、油脂产量、油脂含量、COD 降解率和油脂不饱和脂肪酸指数分别达到13.83g/L、5.25g/L、37.9 2%、79.08%和65.46%,较优化前分别提高了12.62%,19.32%,5.92%, 57.15%和2.36%,优化效果显著。 三、存在问题及展望 目前微生物发酵废水生产油脂还处于实验阶段,要实现工业化发展还有亟待解决的几个问题:工业废水成分复杂,如味精废水和啤酒废水,由于废水中含有生产菌株产生的代谢废物和各工序产生的其他废水,有可能含有影响产油微生物正常生长的微量元素,但其组成较复杂难于分析;在微生物发酵前需对废水进行稀释调pH值等前处理,增加了生产成本和工序;以废水为培养基培养的微生物,其生物量、油脂积累量仍然较低,目前尚不能满足工业化需求。 结合国内外研究现状,可以从以下几方面展开相关研究:深入研究产油微生物在发酵中油脂的合成代谢途径;加强产油微生物对原料的适应性,通过基因重组、定向进化等手段筛选、驯化,获得具有更强适应性和更高产油能力的菌株;进一步优化发酵条件,减少发酵前处理工序、获得成本低、产油高的发酵模式。

发酵工业存在地主要问题及解决要求措施

发酵工业存在的主要问题及解决措施 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1 我国发酵工业的现状 我国发酵工业是将传统的发酵工艺和现代生物工程技术相结合的基础产业,也是现代工业生物工程技术的具体应用产业。我国发酵工业目前已发展形成了具有一定规模和技术水平的门类比较齐全的独立工业体系。其中,一部分产品的发酵生产工艺及技术已接近或达到世界先进水平,并且掌握了核心工艺技术拥有知识产权。目前,我国已经是味精、柠檬酸的世界第一大生产国。2013年我国发酵行业主要产品产量、出口量及同比增长率。 2013年我国生物发酵工业全年生产值约2780亿人民币,全年的产品总产量为2429万吨,比2012年略有增长。其中,味精、淀粉糖由于价格等原因导致产量下降,而氨基酸、酵母、酶制剂行业保持了持续增长。2013年,氨基酸产品年产量为400万吨,有机酸产品年产量为158万吨,功能发酵制品年产量为310万吨。2013年我国发酵工业主要产品出口总量为万吨,比2012年增长了%。

近年来,随着食品发酵工业的迅速发展和人口不断增长,工业用粮也在不断增加,工业大量使用粮食造成了与人类争粮的局面。与此同时,这些企业排放的废水、废渣也极污染了环境,不仅消耗了大量粮食、能源和水资源,而且也严重制约了自身的发展。发酵工业耗能多、排污大,采用新技术,优化发酵生产工艺,减少废水、废渣的排放量,提高发酵原料的综合利用率,把耗能降到最低水平,以期获得最佳产品和获得最好的效益,这一直以来都是发酵工业努力的目标。 2 我国发酵工业存在的主要问题 粮食短缺问题 我国用占世界耕地面积总量7%左右的耕地,养育了占世界人口总额21%的人口,而且我国的可耕地面积还在不断减少,人口在不断增长。2013年我国粮食国总消费量为60 133万吨,而发酵主要工业耗粮约为16 970万吨,我国人均粮食占有量约为420千克,但人均粮食消费量约500千克,尤其是近几年全国各地都有旱情,导致粮食减产,有的地方甚至颗粒无收,所以降低粮耗是目前我国发酵工业所面临的重要问题。因此,发酵工业首先要面临的问题就是优化发酵生产工艺、节约粮食。

发酵废水

发酵工业是以粮食和农副产品为主要原料的加工工业。它主要包括酒精、味精、淀粉、白酒、柠檬酸、淀粉糖等行业。就我国国情而言,农作物和经济作物的深加工与产业化是促进农业经济可持续发展,提高农民收入,改善城乡差距,实现国家经济均衡发展的核心手段。但由于发酵行业耗水量大,排放废水污染严重等问题制约着发酵行业的可持续发展。因此,开发高效、节能并适合我国发酵行业实际的废水处理与资源化工艺技术是解决上述问题的关键环节之一。 发酵行业所排放的废水主要包括以下三类: ①分离与提取产品后的废母液与废糟液:占废水排放量的90%,属高浓度有机废液,其中含有丰富的蛋白质、氨基酸、维生素、糖类及多种微量元素,具有高浓度、高悬浮物、高粘度、疏水性差、难降解的特性,使得该类废水处理难度很大。 ②加工和生产工程中各种冲洗水、洗涤剂:其为中浓度有机水。 ③冷却水可直接冷却后利用。 2、发酵行业高浓度废水基本水质特点: 废水中CODcr为5~12万mg/l(包括悬浮固体SS,溶解性CODcr和胶体);BOD5 约为2~6万mg/l;SS可达3~4万mg/l;纤维素:1~1.5万mg/l;废水温度高,达到85~100℃---无法直接进行处理;呈强酸性pH值:3~5---对管道和设备具有腐蚀性。废水中有机物占90%以上,主要是碳水化合物及含氮化合物、生物菌体及产品如丁醇、乙醇等。 从上述水质可以看出,发酵行业废水水质具有高浓度、高粘度、高温度、难降解等特点。 二、酒精废水处理工艺技术说明(以木薯酒精糟液为主的处理工艺) 发酵废水处理1、工艺说明 根据废糟液的水质特点,并结合我公司多年来从事水处理工程的设计、运行管理经验,污水处理工艺为:物化+厌氧+好氧的综合处理工艺。 污水中含有大量的细小悬浮物,粘度高,浓度高达3万mg/L,呈酸性PH值3~5,主要为一些有机酸,均不利于后续生化反应的正常运行,所以,预处理效果的好坏直接影响后继生化处理的正常运行。目前国内许多废糟液处理厂的出水水质不达标就是源于预处理系统处理效果欠佳。因此固液分离即预处理段是处理站工艺的保障。 废水温度高达100℃以上,而本处理系统的温度要求为50~60℃,为充分利用热资源,在进入处理系统之前需考虑热交换。 发酵废水处理1) 预处理系统

发酵类制药废水治理方案

山东正大菱花生物科技有限公司 赖氨酸工业废水处理工程设计方案 郑州大学环境与水利学院 河南金谷实业发展有限公司 2004年10月

目录 ~I~ 目录 第一章概论 (1) 1.1项目概况 (1) 1.2处理目标 (1) 1.3设计依据 (1) 1.4设计原则 (1) 第二章废水处理方案 (2) 2.1处理工艺 (2) 2.2工艺说明 (2) 2.3处理效果 (3) 第三章处理工程设计 (4) 3.1工艺设计 (4) 3.2 主要构筑物及设备 (7) 第四章平面布置和高程布置 (8) 4.1平面布置 (8) 4.2 高程布置 (8) 第五章工程投资估算 (9) 5.1投资估算 (9) 5.2 投资估算编制依据 (10) 第六章工程实施进度计划 (11) 第七章生产组织和安全保护 (12) 7.1 劳动定员 (12) 7.2 职工培训 (12) 7.3 安全保护 (12) 第八章环境经济分析 (13) 8.1环境效益分析 (13) 8.2 运行费用分析 (13) 第九章结论和建议 (15) 9.1 结论 (15) 9.2 建议 (15) 附图1 赖氨酸工业废水处理工程工艺流程图 附图2 赖氨酸工业废水处理工程平面布置图

第一章概论 1.1项目概况 山东正大菱花生物科技有限公司在山东济宁新建年产25000吨的饲料级赖氨酸盐酸盐生产厂,其生产工艺为: 淀粉—葡萄糖—工业发酵—离子交换提取—浓缩—结晶—干燥—产品 生产废水大部分在离子交换提取过程中产生,公司生产废水的排放量为1200吨/日,根据已建成生产运行的赖氨酸企业生产废水的类比,其废水水质指标见表1-1。 表1-1赖氨酸工业废水水质指标 1.2处理目标 本公司设计处理水量为1200吨/日,废水经处理后要求出水水质达到国家《发酵类制药工业水污染物排放标准》GB21903—2008表2中的排放标准,具体指标见表1-2。 表1-2赖氨酸工业废水排放标准 1.3设计依据 1.3.1有关国家环境保护技术的政策。 1.3.2有关赖氨酸工业废水的调研资料。 1.3.3有关处理发酵工业有机废水和类似工业有机废水的经验。 1.4设计原则 1.4.1处理出水水质确保达到规定的国家排放标准。 1.4.2采用先进实用,高效低耗的废水处理技术,尽量节省基建投资和工程运行费用。 1.4.3采用合理可靠的处理工艺,达到运行稳定,抗冲击能力强,管理维护方便的工程目标。

发酵工业存在的主要问题及解决措

发酵工业存在的主要问题及解决措施 作者:2015-07-09 16:02阅读:385 次文章来源:未知 1 我国发酵工业的现状 我国发酵工业是将传统的发酵工艺和现代生物工程技术相结合的基础产业,也是现代工业生物工程技术的具体应用产业。我国发酵工业目前已发展形成了具有一定规模和技术水平的门类比较齐全的独立工业体系。其中,一部分产品的发酵生产工艺及技术已接近或达到世界先进水平,并且掌握了核心工艺技术拥有知识产权。目前,我国已经是味精、柠檬酸的世界第一大生产国。2013年我国发酵行业主要产品产量、出口量及同比增长率。 2013年我国生物发酵工业全年生产值约2780亿人民币,全年的产品总产量为2429万吨,比2012年略有增长。其中,味精、淀粉糖由于价格等原因导致产量下降,而氨基酸、酵母、酶制剂行业保持了持续增长。2013年,氨基酸产品年产量为400万吨,有机酸产品年产量为158万吨,功能发酵制品年产量为310万吨。2013年我国发酵工业主要产品出口总量为327.9万吨,比2012年增长了13.2%。 近年来,随着食品发酵工业的迅速发展和人口不断增长,工业用粮也在不断增加,工业大量使用粮食造成了与人类争粮的局面。与此同时,这些企业排放的废水、废渣也极大地污染了环境,不仅消耗了大量粮食、能源和水资源,而且也严重制约了自身的发展。发酵工业耗能多、排污大,采用新技术,优化发酵生产工艺,减少废水、废渣的排放量,提高发酵原料的综合利用率,把耗能降到最低水平,以期获得最佳产品和获得最好的效益,这一直以来都是发酵工业努力的目标。 2 我国发酵工业存在的主要问题 2.1 粮食短缺问题 我国用占世界耕地面积总量7%左右的耕地,养育了占世界人口总额21%的人口,而且我国的可耕地面积还在不断减少,人口在不断增长。2013年我国粮食国内总消费量为60 133万吨,而发酵主要工业耗粮约为16 970万吨,我国人均粮食占有量约为420千克,但人均粮食消费量约500千克,尤其是近几年全国各地都有旱情,导致粮食减产,有的地方甚至颗粒无收,所以降低粮耗是目前我国发酵工业所面临的重要问题。因此,发酵工业首先要面临的问题就是优化发酵生产工艺、节约粮食。 2.2 水资源匮乏问题 2012年我国味精行业年耗水量1.25亿吨,柠檬酸行业年耗水量4000万吨,而且废水排放量每年都在增加。众所周知,我国是一个严重缺水的国家,尽管我国的淡水资源总量很大,约占全球水资源的7%,但因我国人口众多,人均水资源量却很少,2012年人均水资源量为2186立方米,是全球人均水资源贫乏的国家之一,而且水资源分布很不均匀[3]。我国有11个省份属于“水稀缺”,还有许多地区在为生活饮用水发愁,所以要降低发酵工业的用水量,减少废水的排放量,加大对废水的处理,争取早日实现废水零排放。 2.3 环境污染问题 发酵工业产品是原料先经过发酵,再经提取、精制得到的,生产过程必然会产生大量的一定浓度的有机废水和废渣。2012年我国味精行业排放废水1.2亿吨,柠檬酸行业排放废水3500万吨,这些废水和废渣是发酵工业的主要污染物,不经严格处理就排入江河,将会对人类的生活环境造成严重污染,甚至危害人类的身体健康。 3 我国发酵工业主要问题的解决措施 近年来,为了提高发酵原料综合利用率和工业副产品的转化率,加大对产品生产工艺的优化,减少污染物的排放,促进发酵生产过程中所产生的废水、废渣、废气和工业废弃物等

发酵废水处理方法

发酵废水处理方法- 污水处理 发酵工业是以粮食和农副产品为主要原料的加工工业。它主要包括酒精、味精、淀粉、白酒、柠檬酸、淀粉糖等行业。就我国国情而言,农作物和经济作物的深加工与产业化是促进农业经济可持续发展,提高农民收入,改善城乡差距,实现国家经济均衡发展的核心手段。但由于发酵行业耗水量大,排放废水污染严重等问题制约着发酵行业的可持续发展。因此,开发高效、节能并适合我国发酵行业实际的废水处理与资源化工艺技术是解决上述问题的关键环节之一。 发酵行业所排放的废水主要包括以下三类: ①分离与提取产品后的废母液与废糟液:占废水排放量的90%,属高浓度有机废液,其中含有丰富的蛋白质、氨基酸、维生素、糖类及多种微量元素,具有高浓度、高悬浮物、高粘度、疏水性差、难降解的特性,使得该类废水处理难度很大。 ②加工和生产工程中各种冲洗水、洗涤剂:其为中浓度有机水。 ③冷却水可直接冷却后利用。 2、发酵行业高浓度废水基本水质特点: 废水中CODcr为5~12万mg/l(包括悬浮固体SS,溶解性CODcr 和胶体);BOD5 约为2~6万mg/l;SS可达3~4万mg/l;纤维素:1~1.5万mg/l;废水温度高,达到85~100℃---无法直接进行处理;呈强酸性pH值:

3~5---对管道和设备具有腐蚀性。废水中有机物占90%以上,主要是碳水化合物及含氮化合物、生物菌体及产品如丁醇、乙醇等。 从上述水质可以看出,发酵行业废水水质具有高浓度、高粘度、高温度、难降解等特点。 二、酒精废水处理工艺技术说明(以木薯酒精糟液为主的处理工艺)发酵废水处理 1、工艺说明 根据废糟液的水质特点,并结合我公司多年来从事水处理工程的设计、运行管理经验,污水处理工艺为:物化+厌氧+好氧的综合处理工艺。 污水中含有大量的细小悬浮物,粘度高,浓度高达3万mg/L,呈酸性PH值3~5,主要为一些有机酸,均不利于后续生化反应的正常运行,所以,预处理效果的好坏直接影响后继生化处理的正常运行。目前国内许多废糟液处理厂的出水水质不达标就是源于预处理系统处理效果欠佳。因此固液分离即预处理段是处理站工艺的保障。 废水温度高达100℃以上,而本处理系统的温度要求为50~60℃,为

发酵工业废水零排放与盐资源化循环利用集成技术及应用示范申报指南

发酵工业废水零排放与盐资源化循环利用集成技术及 应用示范申报指南 一、项目目标 针对发酵工业废水零排放与盐资源化循环利用难题,研究分析影响废水实现零排放、回用水高质化利用及盐资源化过程抗性屏障及调控机制,突破废水零排放和盐资源化关键共性技术,实现废水中盐回用于生产系统而不推向社会,有效防范环境水体盐碱化,进一步改善区域流域水环境生态质量,节约一次水资源,助推发酵工业高质量绿色发展。 二、项目任务 任务1:典型发酵工业废水深度处理与盐资源化循环利用的抗性屏障及调控机制 针对发酵工业废水浓度高,水量大、盐分高,成分复杂等特点,开展典型发酵工业废水深度处理及盐资源化循环利用抗性屏障的特征污染组分解析研究,建立典型发酵工业废水深度处理与盐资源化循环利用全过程工艺路线与调控机制。 任务2:废水零排放及回用水高质化利用集成技术研究 通过分析废水零排放和回用水高质化利用协同处理过程的影响机理,研究开发废水零排放及回用水高质化利用关键共性技术,实现企业废水经处理后全部回用于生产过程,实现污染防治和节水减排。提出并确定合理、可行的废水零排放及回用水高质化利用工艺路线和关键技术参数,建立废水深度处理及回用水高

质化利用技术标准。 任务3:废水中盐资源化循环回用于生产系统集成技术研究针对发酵工业生产废水中大量盐分进入环境水体导致区域流域水体、土壤盐碱化,分离回收后难以满足生产要求和资源化利用等问题,研究开发废水中盐资源化循环回用于生产系统的关键共性技术,研究确定合理、可行的废水中盐资源化循环利用工艺路线和技术参数,建立盐资源化循环回用技术标准。 任务4:废水零排放及盐资源化循环回用生产系统工程建设及应用示范 开发配套发酵工业5000吨/天规模以上废水零排放、回用水高质化利用与盐资源化循环回用生产系统关键装置,形成工程示范及应用推广。 三、考核指标 约束性指标: 1.建立废水零排放、回用水高质化利用与盐资源化循环回用于生产系统关键技术标准体系1套; 2.确定5000吨/天及以上废水零排放、回用水高质化利用与盐资源化循环回用于生产系统集成处理工艺技术路线,形成工艺技术包1项; 3.开发配套废水零排放、回用水高质化利用与盐资源化循环回用生产系统关键装置,申报专利5项以上; 4.回用水高质化利用指标COD≤20mg/L、TDS≤100mg/L、NH3-N≤1mg/L,废水中盐资源化循环利用率大于80%;

浅论发酵工程制药的废水处理方法

浅论发酵工程制药的废 水处理方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

浅论发酵工程制药的废水处理方法制药工业生产工序繁多,使用原料种类多、数量大,原材料利用率低,产生的“三废”量大,排放物成分复杂。在制药过程中会排放大量有毒有害废水,废水中污染物组分繁杂,污染物含量高、COD值高、有毒有害物质多、生物难降解物质多,因此,制药废水已逐渐成为重要的污染源之一,如何治理制药废水,已成为现阶段国内外环境保护领域亟待解决的一个难题。而发酵工程是制药工艺中极为重要的一环节,发酵工程制药的废水因其成份复杂以及污染物含量高而使得该类废水的治理尤为重要。本文将着重论述发酵工程制药的废水处理问题。 一、发酵制药废水的种类和特点 经文献1显示,在发酵类药物中,抗生素类占发酵类药物产量的26.6%,其生产过程产生的废水污染物浓度高、水量大,废水中所含成份主要为发酵残余物、破乳剂和残留抗生素及其降解物,还有抗生素提取过程中残留的各种有机溶剂和一些无机盐类等。废水带有较重的颜色和气昧,悬浮物含量高,易产生泡沫,含有难降解物质和有抑菌作用的抗生素,并且有毒性等,这类废水难生化降解。 维生素类药物占发酵药物产量的72.1%。维生素生产废水主要来自洗罐水、母液及釜残。其特点是:①排放量大,污染物浓度高;②高浓度有机废水多为间歇排放,造成排水水质不均匀;③废水中主要含有有机污染物,水质偏酸性。另外还含有氮、磷及无机盐。废水可生化性好。 氨基酸产量仅占发酵药的1.1%,主要排放的废水为发酵罐中对气体产物的洗涤水、消毒系统中蒸发气的洗涤水和树脂洗涤水,水中含有蛋白、糖等。某

相关主题
文本预览
相关文档 最新文档