当前位置:文档之家› 基于ARIMA模型对中国1953~2015年GDP的分析建模及预测

基于ARIMA模型对中国1953~2015年GDP的分析建模及预测

基于ARIMA模型对中国1953~2015年GDP的分析建模及预测
基于ARIMA模型对中国1953~2015年GDP的分析建模及预测

基于ARIMA模型下的时间序列分析与预测

龙源期刊网 https://www.doczj.com/doc/7c14181795.html, 基于ARIMA模型下的时间序列分析与预测 作者:万艳苹 来源:《金融经济·学术版》2008年第09期 摘要:大多数的时间序列存在着惯性,或者说具有迟缓性。通过对这种惯性的分析,可以由时间序列的当前值对其未来值进行估计。本文以1949年到2004年江苏省社会消费品零售总额数据为研究对象,将这些数据平稳化并做分析,发现ARIMA(1,1,2)模型能比较好的对江苏省社会消费品零售总额进行市时间序列分析和预测,。 关键词:ARIMA;江苏省消费品零售总额;时间序列分析 一、引言 江苏省是一个经济大省,经济一直保持平稳较快增长,城乡居民收入都位于全国前茅,消费品需求旺盛,人们生活水平比较高。其中社会消费品零售总额是反映人民生活水平提高的一个很好的指标。所以对社会消费品零售总额做分析就比较重要。但是影响社会消费品零售总额的因素有很多,包括收入、住房、医疗、教育以及人们的预期等很多因素,而且这些因素之间又保持着错综复杂的联系。因此运用数理经济模型来分析和预测较为困难。所以本文采用ARIMA模型对江苏省的社会消费品零售总额进行分析,得出其规律性,并预测其未来值。 二、ARIMA模型的说明和构建 ARIMA模型又称为博克斯-詹金斯模型。ARIMA模型是由三个过程组成:自回归过程(AR(p));单整(I(d));移动平均过程(MA(q))。AR(p)即自回归过程,是指一个过程的当前值是过去值的线性函数。如:如果当前观测值仅与上期(滞后一期)的观测值有显著的线性函数关系,则我们就说这是一阶自回归过程,记作AR(1)。推广之,如果当前值与滞后p期的观测值都有线性关系则称p阶自回归过程,记作AR(p)。MA(q),即移动平均过程,是指模型值可以表示为过去残差项(即过去的模型拟合值与过去观测值的差)的线性函数。如:MA(1)过程,说明时间序列受到滞后一期残差项的影响。推广之,MA(q)是指时间序列受到滞后q期残差项的

实验三:ARIMA模型建模与预测实验报告

课程论文 (2016 / 2017学年第 1 学期) 课程名称应用时间序列分析 指导单位经济学院 指导教师易莹莹 学生姓名班级学号 学院(系) 经济学院专业经济统计学

实验三ARIMA 模型建模与预测实验指导 一、实验目的: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念: 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验任务: 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验要求: 实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。 实验题:对经过平稳化后的1950年到2005年中国进出口贸易总额数据建立合适的(,,)ARIMA p d q 模型,并能够利用此模型进行进出口贸易总额的预测。

ARIMA时间序列建模过程——原理及python实现

ARIMA时间序列建模过程——原理及python实现 ARIMA模型的全称叫做自回归查分移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model),是统计模型(statistic model)中最常见的一种用来进行时间序列预测的模型,AR、MA、ARMA模型都可以看作它的特殊形式。 1. ARIMA的优缺点 优点:模型十分简单,只需要内生变量而不需要借助其他外生变量。 缺点:要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的;本质上只能捕捉线性关系,而不能捕捉非线性关系。 2. ARIMA的参数与数学形式 ARIMA模型有三个参数:p,d,q。 p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做 AR/Auto-Regressive项; d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项; q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项。 差分:假设y表示t时刻的Y的差分。 if d=0, yt=Yt, if d=1, yt=Yt?Yt?1, if d=2, yt=(Yt?Yt?1)?(Yt?1?Yt ?2)=Yt?2Yt?1+Yt?2 ARIMA的预测模型可以表示为: Y的预测值= 白噪音+1个或多个时刻的加权+一个或多个时刻的预测误差。 假设p,q,d已知,

ARIMA用数学形式表示为: yt?=μ+?1?yt?1+...+?p?yt?p+θ1?et?1+...+θq?et?q 其中,?表示AR的系数,θ表示MA的系数 3.Python建模 ##构建初始序列 import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.tsaplots import acf,pacf,plot_acf,plot_pacf from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.arima_model import ARIMA #序列化 time_series_ = pd.Series([151.0, 188.46, 199.38, 219.75, 241.55, 262.58, 328.22, 396.26, 442.04, 517.77, 626.52, 717.08, 824.38, 913.38, 1088.39, 1325.83, 1700.92, 2109.38, 2499.77, 2856.47, 3114.02, 3229.29, 3545.39, 3880.53, 4212.82, 4757.45, 5633.24, 6590.19, 7617.47, 9333.4, 11328.92, 12961.1, 15967.61]) time_series_.index = pd.Index(sm.tsa.datetools.dates_from_range('1978','2010')) time_series_.plot(figsize=(12,8)) plt.show() 3.1 异常值及缺失值处理 异常值一般采用移动中位数方法: frompandasimportrolling_median threshold =3#指的是判定一个点为异常的阈值 df['pandas'] = rolling_median(df['u'], window=3, center=True).fillna(method='bfill').fillna(method='ffill') #df['u']是原始数据,df['pandas'] 是求移动中位数后的结果,window指的 是移动平均的窗口宽度 difference = np.abs(df['u'] - df['pandas']) outlier_idx = difference > threshold 缺失值一般是用均值代替(若连续缺失,且序列不平稳,求查分时可能出现nan) 或直接删除。

季节ARIMA模型建模与预测实验指导

季节ARIMA模型建模与预测实验指导

————————————————————————————————作者: ————————————————————————————————日期: ?

实验六季节ARIMA模型建模与预测实验指导 学号:20131363038 姓名:阙丹凤班级:金融工程1班 一、实验目的 学会识别时间序列的季节变动,能看出其季节波动趋势。学会剔除季节因素的方法,了解ARIMA模型的特点和建模过程,掌握利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、实验内容及要求 1、实验内容: 根据美国国家安全委员会统计的1973-1978年美国月度事故死亡率数据,请选择适当模型拟合该序列的发展。 2、实验要求: (1)深刻理解季节非平稳时间序列的概念和季节ARIMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 三、实验步骤 第一步:导入数据 第二步:画出时序图

6,000 7,000 8,000 9,000 10,000 11,000 12,000 510152025303540455055 606570 SIWANGRENSHU 由时序图可知,死亡人数虽然没有上升或者下降趋势,但由季节变动因素影响。 第三步:季节差分法消除季节变动 由时序图可知,波动的周期大约为12,所以对原序列作12步差分,得到新序列如下图所示。

股票预测模型【运用ARIMA模型预测股票价格】

股票预测模型【运用ARIMA模型预测股票价格】 [摘要]ARIMA模型是时间序列中十分常见和常用的一种模型,应用与经济的各个领域。本文基于ARIMA模型,采用了莱宝高科近67个交易日的数据,对历史数据进行分析,并且在此基础上做出一定的预测,试图为现实的投资提供一些参考信息。[关键字]ARIMA模型;股价预测;莱宝高科一、引言时间序列分析是从一段时间上的一组属性值数据中发现模式并预测未来值的过程。ARIMA模型是目前最常用的用于拟合非平稳序列的模型,对于满足有限参数线形模型的平稳时间序列的分析,ARIMA在理论上已趋成熟,它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。有限参数线形模型能描述的随机现象相当广泛,模型拟合的精度能达到实际工程的要求,而且由有限参数的线形模型结构可推导出适用的线形预报理论。利用ARIMA 模型描述的时间序列预报问题在金融,股票等领域具有重要的理论意义。本文将利用ARIMA模型结合莱宝高科的数据建立模型,并运用该模型对莱宝的股票日收盘价进行预测。二、ARIMA模型的建立 2.1ARIMA模型简介ARIMA是自回归移动平均结合模型的简写形式,用于平稳序列或通过差分而平稳的序列分析,简记为ARIMA(p,d,q)用公式表示为:△dZt=Xt=ψ1Xt-1+ψ2Xt-2+?+ψpXt-p+at-θ1at-1-θ2at-2-?-θqat-q 其中,p、d、q分别是自回归阶数、差分阶数和滑动平均阶数;Zt是时间序列;Xt是经过d阶差分后的时间序列值;at-q是时间为t-q的随机扰动项;ψp、θq分别是对应项前的系数。 2.2模型建立流程(1)平稳性检验以2010-3-4到2010-6-10的“莱宝高科”(002106)股票的收盘价作为模型的数据进行建立时间序列模型:做出折线图观察数据的特征:进行单位根检验,判别序列是否为平稳序列;若一阶差分后的数据为平稳序列,可以建立时间序列模型。说明原数据为一阶单整。(2)模型的选择和参数的估计根据数据的平稳性特征,初步确定建立ARIMA模型。观察一阶差分以后的序列的自相关函数和偏自相关

R 语言环境下用ARIMA模型做时间序列预测

R 语言环境下使用ARIMA模型做时间序列预测 1.序列平稳性检验 通过趋势线、自相关(ACF)与偏自相关(PACF)图、假设检验和因素分解等方法确定序列平稳性,识别周期性,从而为选择适当的模型提供依据。 1.1绘制趋势线 图1 序列趋势线图 从图1很难判断出序列的平稳性。 1.2绘制自相关和偏自相关图

图2 序列的自相关和偏自相关图

从图2可以看出,ACF拖尾,PACF1步截尾(p=1),说明该现金流时间序列可能是平稳性时间序列。 1.3 ADF、PP和KPSS 检验平稳性 图3 ADF、PP和KPSS检验结果 通过ADF检验,说明该现金流时间序列是平稳性时间序列(p-value for ADF test <0.02,拒绝零假设).pp test和kpss test 结果中的警告信息说明这两种检验在这里不可用。但是这些检验没有充分考虑趋势、周期和季节性等因素。下面对该序列进行趋势、季节性和不确定性因素分解来进一步确认序列的平稳性。 1.4 趋势、季节性和不确定性因素分解 R 提供了两种方法来分解时间序列中的趋势、季节性和不确定性因素。第一种是使用简单的对称过滤法,把相应时期内经趋势调整后的观察值进行平均,通过decompose()函数实现,如图4。第二种方法更为精确,它通过平滑增大规模后的观察值来寻找趋势、季节和不确定因素,利用stl()函数实现。如图5。

图4 decompose()函数分解法 图5 stl()函数分解法 两种方法得到的结果非常相似。从上图可以看出,该现金流时间序列没有很明显的长期趋势。但是有明显的季节性或周期性趋势,经分解后的不确定因素明显减少。

SAS学习系列39.时间序列分析报告Ⅲ—ARIMA模型

39. 时间序列分析Ⅱ——ARIMA 模型 随着对时间序列分析方法的深入研究,人们发现非平稳序列的确定性因素分解方法(如季节模型、趋势模型、移动平均、指数平滑等)只能提取显著的确定性信息,对随机性信息浪费严重,同时也无法对确定性因素之间的关系进行分析。 而非平稳序列随机分析的发展就是为了弥补确定性因素分解方法的不足。时间序列数据分析的第一步都是要通过有效手段提取序列中所蕴藏的确定性信息。Box 和Jenkins 使用大量的案例分析证明差分方法是一种非常简便有效的确定性信息的提取方法。而Gramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。 (一)ARMA 模型 即自回归移动平均移动模型,是最常用的拟合平稳时间序列的模型,分为三类:AR 模型、MA 模型和ARMA 模型。 一、AR(p )模型——p 阶自回归模型 1. 模型: 011t t p t p t x x x φφφε--=+++L 其中,0p φ≠,随机干扰序列εt 为0均值、2εσ方差的白噪声序列(()0t s E εε=, t ≠s ),且当期的干扰与过去的序列值无关,即E(x t εt )=0.

由于是平稳序列,可推得均值0 11p φμφφ= ---L . 若00φ=,称为 中心化的AR (p )模型,对于非中心化的平稳时间序列,可以令 01(1)p φμφφ=---L ,*t t x x μ=-转化为中心化。 记B 为延迟算子,1()p p p B I B B φφΦ=---L 称为p 阶自回归多项式,则AR (p )模型可表示为:()p t t B x εΦ=. 2. 格林函数 用来描述系统记忆扰动程度的函数,反映了影响效应衰减的快慢程度(回到平衡位置的速度),G j 表示扰动εt-j 对系统现在行为影响的权数。 例如,AR(1)模型(一阶非齐次差分方程),1, 0,1,2,j j G j φ==L 模型解为0t j t j j x G ε∞ -==∑. 3. 模型的方差 对于AR(1)模型,22 2 1()()1t j t j j Var x G Var εσεφ∞ -===-∑. 4. 模型的自协方差 对中心化的平稳模型,可推得自协方差函数的递推公式: 用格林函数显示表示: 2 00 ()()i j t j t k j j k j i j j k G G E G G γεεσ ∞∞ ∞ ---+=====∑∑∑ 对于AR(1)模型,

时间序列建模案例ARIMA(1,1,1)

们可以观察到1978年~2006年我国GDP(现价,生产法)具有明显的上升趋势。在ADF检验时选择含有常数项和时间趋势项,由SIC 准则确定滞后阶数(p=4)。GDP序列的ADF检验如下: 检验结果显示,GDP序列以较大的P值,即100%的概率接受原假设,即存在单位根的结论。 将GDP序列做1阶差分,然后对ΔGDP进行ADF检验 检验结果显示,ΔGDP序列仍接受存在单位根的结论。其他检验方法

的结果也接受原假设,ΔGDP序列存在单位根,是非平稳的。 再对ΔGDP序列做差分,则Δ2GDP的ADF检验(选择不含常数项和趋势项,)如下: 检验结果显示,二阶差分序列Δ2GDP在1%的显著性水平下拒绝原假设,接受不存在单位根的结论,因此可以确定GDP序列是2阶单整序列,即GDP ~I (2)。 GDP序列是2阶单整序列,即GDP ~I (2)。但是检验得到GDP的对数序列ln(GDP)是1阶单整序列,所以本例建立Δln(GDP)序列的ARIMA模型。首先观察Δln(GDP)序列的相关图

图5.10Δl n(G D P)序列的相关图 Δln(GDP)序列的自相关系数和偏自相关系数都在1阶截尾,则取模型的阶数p =1 和q =1,建立ARIMA(1,1,1) 模型(时间期间:1978~2004年,2005和2006年实际数据不参加建模,留作检验):

图5.11Δl n(G D P)序列的A R I M A(1,1,1)模型残差的相关图从图5.11的相关图中可以看出模型的残差不存在序列相关,并且模型的各项统计量也很好。 图5.12是这个模型的拟合和预测(静态)的结果,其中2005年和2006年为预测结果。

AR,MA,ARIMA模型介绍及案例分析

BOX-JENKINS 预测法 1 适用于平稳时序的三种基本模型 (1)()AR p 模型(Auto regression Model )——自回归模型 p 阶自回归模型: 式中,为时间序列第时刻的观察值,即为因变量或称被解释变量;, 为时序的滞后序列,这里作为自变量或称为解释变量;是随机误 差项;,,,为待估的自回归参数。 (2)()MA q 模型(Moving Average Model )——移动平均模型 q 阶移动平均模型: 式中,μ为时间序列的平均数,但当{}t y 序列在0上下变动时,显然μ=0,可删除此项;t e ,1t e -,2t e -,…,t q e -为模型在第t 期,第1t -期,…,第t q -期 的误差;1θ,2θ,…,q θ为待估的移动平均参数。 (3)(,)ARMA p q 模型——自回归移动平均模型(Auto regression Moving Average Model ) 模型的形式为: 显然,(,)ARMA p q 模型为自回归模型和移动平均模型的混合模型。当q =0,时,退化为纯自回归模型()AR p ;当p =0时,退化为移动平均模型()MA q 。 2 改进的ARMA 模型 (1)(,,)ARIMA p d q 模型 这里的d 是对原时序进行逐期差分的阶数,差分的目的是为了让某些非平稳(具有一定趋势的)序列变换为平稳的,通常来说d 的取值一般为0,1,2。 对于具有趋势性非平稳时序,不能直接建立ARMA 模型,只能对经过平稳化处理,而后对新的平稳时序建立(,)ARMA p q 模型。这里的平文化处理可以是差分处理,也可以是对数变换,也可以是两者相结合,先对数变换再进行差分处理。 (2)(,,)(,,)s ARIMA p d q P D Q 模型 对于具有季节性的非平稳时序(如冰箱的销售量,羽绒服的销售量),也同样需要进行季节差分,从而得到平稳时序。这里的D 即为进行季节差分的阶数; ,P Q 分别是季节性自回归阶数和季节性移动平均阶数;S 为季节周期的长度, 如时序为月度数据,则S =12,时序为季度数据,则S =4。 在SPSS19.0中的操作如下

时间序列和ARIMA模型

实验五 ARIMA模型的概念和构造 一、实验目的 了解AR,MA以及ARIMA模型的特点,了解三者之间的区别联系,以及AR与MA的转换,掌握如何利用自相关系数和偏自相关系数对ARIMA模型进行识别,利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。 在ARIMA模型的识别过程中,我们主要用到两个工具:自相关函数(简称ACF),偏自相关函数(简称PACF)以及它们各自的相关图(即ACF、PACF相对于滞后长度描图)。对于一个序列来说,它的第j阶自相关系数(记作 )定义为它的j阶自协方差除以它的方差,即=,它是关于j的函数,因此我们也称之为自相关函数,通常记ACF(j)。偏自相关函数PACF(j)度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: 根据1991年1月~2005年1月我国货币供应量(广义货币M2)的月度时间数据来说明在Eviews3.1 软件中如何利用B-J方法论建立合适的ARIMA(p,d,q)模型,并利用此模型进行数据的预测。 2、实验要求: (1)深刻理解上述基本概念; (2)思考:如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作。 四、实验指导 1、ARIMA模型的识别 (1)导入数据 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,出现“Workfile Range”对话框,在“Workfile frequency”框中选择“Monthly”,在“Start date”和“End date”框中分别输入“1991:01”和“2005:01”,然后单击“OK”,选择“File”菜单中的“Import--Read Text-Lotus-Excel”选项,找到要导入的名为EX6.2.xls的Excel文档,单击“打开”出现“Excel Spreadsheet Import”对话框并在其中输入相关数据名称(M2),再单击“OK”完成数据导入。 (2)模型的识别 首先利用ADF检验,确定d值,判断M2序列为2阶非平稳过程(由于具体操作方法我们在第五章中予以说明,此处略),即d的值为2,将两次差分后得到的平稳序列命名为W2;下面我们来看W2的自相关、偏自相关函数图。打开W2序列,点击“View”—“Correlogram”菜单,会弹出如图5-1所示的窗口,

实验指导书ARIMA模型建模与预测范本

实验指导书ARIMA 模型建模与预测

实验指导书(ARIMA模型建模与预测) 例:中国1952- 的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。 在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…, 找到相应的Excel数据集,打开数据集,出现如下图的窗口,

在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,因此在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据): (2)时序图判断平稳性 双击序列im_ex,点击view/Graph/line,得到下列对话框:

得到如下该序列的时序图,由图形能够看出该序列呈指数上升趋势,直观来看,显著非平稳。 IM_EX 240,000 200,000 160,000 120,000 80,000 40,000 556065707580859095000510 (3 因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:

金融时间序列分析-ARIMA模型建模实验报告

(1)判断原序列平稳性 观察时序图,该序列在不同的阶段有不同的均值,表现出一定的周期性,初步判断不平稳。继续观察自相关图,由图可以清晰看到,序列自相关函数下降趋势缓慢,没有快速衰减至0,判断其不平稳。 该序列三种模型的分别为0.9104、0.6981、0.4589,均大于0.05,不能拒绝有单 位根的原假设,因此是非平稳序列。需要进行处理后再进行建模。

(2)差分序列平稳性检验 对原序列进行一次差分,再对其进行平稳性检验。观察其时序图,该序列的时序图都表现出围绕其水平均值不断波动的过程,没有明显的趋势或周期性,粗略估计是平稳时间序列。再观察其自相关函数图。自相关系数快速衰减到0,在虚线范围内波动,没有明显的波动、发散,判断为平稳序列。 模型3与模型2的伴随概率为0,拒绝有单位根的原假设,说明序列是平稳的。但模型3的时间趋势项的伴随概率为0.1789,常数项的伴随概率0.3504,在显著性水平0.05情况下不显著,故不选用。而模型2的常数项的伴随概率为0.6608,也不显著,不选用。因此模型1是最合适的模型,不含有常数项和时间趋势项。

(3)模型的参数估计及模型的诊断检验 观察自相关图最后两列可以看到,Q检验的伴随概率均小于0.05,拒绝没有自相关性的原假设,因此该序列不是白噪声序列,没有把信息都提取出来。接下来将尝试使用AR(1)、AR(2)、AR(3)、MA(1)、ARMA(1,1)、ARMA(2,1)模型进行拟合。 (1)AR(1): 该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,拒绝没有自相关性的原假设,不是白噪声序列,不选用。

实验指导书(ARIMA模型建模与预测)

实验指导书(ARIMA 模型建模与预测) 例:我国1952-2011年的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开 Eviews 软件,选择"File ”菜单中的"New--Workfile ”选项,在"Workfile structure type ”栏选择"Dated -regular frequency ”,在"Date specification ”栏中 分别选择“ Annual ” (年数据),分别在起始年输入 1952,终止年输入 2011,文件名输入 “im_ex ”,点击ok ,见下图,这样就建立了一个工作文件。 在 workfile 中新建序列im_ex , 并录入数据 (点击 File/Import/Read Text-Lotus-Excel …, File | Edit Object View 卩 iroc Quick Options Window Help New ? □pen i Save Fetch from DB... T5D Fi le Im port-. DRI Bask Economics Database... Read Text-Lctu s-Excel... 找到相应的Excel 数据集,打开数据集,出现如下图的窗口,在“ Data order ”选项中 选择“ By observation-series in columns ”即按照观察值顺序录入,第一个数据是从 B15 开始的,所以在“ Upper-left data cell ”中输入B15,本例只有一列数据,在“ Namesfor series or number if named in file ”中输入序列的名字 im_ex ,点击ok ,则录入了数据): import Ex port Print PtFrtl Setup-.,.

时间序列上机实验-ARIMA模型的建立(季节乘积模型)

实验二 ARIMA 模型的建立 一、实验目的 熟悉ARIMA 模型,掌握利用ARIMA 模型建模过程,学会利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及学会利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 ARIMA 模型,即将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容 (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的2000年1月到2011年10月美国的失业率数据建立ARIMA (,,p d q )模型,并利用此模型进行失业率的预测。 四、实验要求: 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。 五、实验步骤 (1) 输入原始数据 打开Eviews 软件,选择“File ”菜单中的“New--Workfile ”选项,在“Workfile structure type ”栏中选择“Dated-regular frequency ”,在“Frequency ”栏中选择“Monthly ”,分别在起始月输入1991.01,终止月输入2010.12,点击ok ,见图1。再建立一个New object ,将选取的x 的月度数据复制进去 。

时间序列分析基于ARIMA模型的城镇居民人均收入的预测

时间序列分析基于 A R I M A模型的城镇居民 人均收入的预测 The following text is amended on 12 November 2020.

基于ARIMA 模型的城镇居民人均收入的预测 摘要 :城镇居民可支配收入一向较为是反映人民生活水平和国内经济发展状况的重要指标,故对于城镇居民可支配收入的情况了解几何就显得尤为重要。在此对1980—2015年我国城镇居民人均可支配收入的数据进行训练集和检验集的划分处理后,运用统计软件建立了ARIMA (1,1,0)城镇居民人均可支配收入的拟合模型:()t t B x B ε75705.011 1-= -。并预测 2016年城镇居民人均的可支配收 入为元,为政府部门提供了制定相关惠民政策的参考有着极为重要的作用。 一、 引言 城镇居民可支配收入是指反映居民家庭全部收入在能用于安排家庭日常生活支出的部分收入。随着经济的发展,国家财政在民生政策和民生福利上的不断加大投入,在此城镇居民的可支配收入就成为了一个非常重要的参考指标,可以用来衡量城镇居民的生活水平,从而是政府制定相关政策的重要依据。就目前而言国内针对城镇居民可支配收入的预测研究的文献主要采用两种预测方法平稳时间序列预测法和灰色预测法。一种是由着名学者邓聚龙教授提出的灰色预测系统理论,目前已经广泛应用到了经济、科教、工农业、气象、军事等领域,并取得了较好的预测效果。其中游中胜以重庆城镇居民家庭为例构造了GM (1,1)的家庭人均可支配收入模型,并分别预测了2013—2015年的人均可支配收入 ] 2[。另一种则是通过建立ARIMA 模型进行预测,通过对数据的处理分析最终得到较好的预 测结果。文献有蒋琴莉利用ARIMA 模型预测了我国城镇居民家庭人均可支配收入并提出建设性的政策意见 ] 3[。本文运用软件对《中国统计年鉴2016》1980—2015年我国城镇居民 人均可支配收入的数据进行分析,此外,为了更好地检验数据的拟合效果,我们将数据分为训练集和检验集,并运用ARIMA 模型对城镇居民可支配收入进行了预测。 二、 ARlMA 模型原理 ARIMA 模型全称为自回归移动平均模型(Autoregressive Integrated Moving Average Model ,简记ARIMA),具有如下结构: t s Ex t s E Var E B x B t s s t t t t t d

时间序列ARIMA模型在R中的实现

J I A N G S U U N I V E R S I T Y 江苏省餐饮业零售总额分析预测 学校:江苏大学 学院:财经学院 班级:统计1201 组员:韩亚琼3120812015 马海燕3120812022 顾君颖3120812020 王培培3120812009 陆金龙3120812029 白卓3120812028 完成时间:2014年12月13日星期六

一、摘要 二、引言 三、数据分析 原始数据的获取: 本文所有的样本数据均来自《江苏统计年鉴——2014》(https://www.doczj.com/doc/7c14181795.html,/2014nj/nj14.htm) 得到的样本数据参见表1: 表1 按行业分社会消费品零售总额

这里我们仅用到第三列数据,为了方便分析,我们将餐饮业零售总额序列命名为caterts。 第一步序列的平稳性检验 为判断一个序列是否平稳,我们主要通过时序图以及自相关图进行检验。对caterts做时序图,有图形发现有明显的指数趋势,序列非平稳,也可以初步发现江苏省的餐饮业零售总额逐年递增,尤其是在新世纪以后,人们的生活水平逐年提高,对餐饮业的贡献也增大: 图1 caterts序列时序图 因为原序列有明显的指数趋势,故先对数列进行对数变换得到新的数列

logcatets,序列图如下,具有明显的非线性增长趋势: 图2 对数化后的时序图 对具有明显线性趋势的数列常用的平稳化措施是差分,我们对logcaterts序列进行一阶差分得到新的数列difflogcaterts,时序图如下: 图3 对数化和一阶差分后的时序图 通过对时序图分析发现数列具有平稳性,为了方便分析,我们对difflogcaterts 序列进行中心化处理,得到新的数列x。对x进行ADF检验(单位根检验)。R

ARIMA模型预测GDP 刘春锋的论文请勿作抄袭使用

基于ARIMA模型对河南省2010年GDP预 测 摘要:ARIMA模型是对ARMA模型的差分得到的平稳时间序列模型,具有序列相关性,本文收集了1978-2009年河南省GDP数据,根据ARIMA模型的性质、利用统计软件对河南省2010年GDP进行预测。 关键字:平稳性、ARMA模型、ARIMA模型 由于2008年金融海啸的全面性的爆发,我国的整体经济水平难免呈现不良的发展趋势,4万亿的救市计划,终于达到2009年的保八目标。在这个时候如果对我国GDP进行预测,难免有些偏差,因此本文选择受金融危机影响较小、地处中原、经济持续平稳增长的河南省为例,收集改革开放30年来的数据对2010年的GDP进行预测。GDP时间序列具有明显的增长趋势,因此ARMA模型显然的不稳定的,基于ARMA模型进行差分,发现二次差分的结果不仅稳定,而且表示出良好的序列相关性,所以能用ARMIMA模型对为例GDP 进行预测。比较原始值GDP和预测值GDPF,两曲线吻合的比较好。 一、ARIMA模型的建立 时间序列模型有四种:自回归模型AR、移动平均模型MA、自回归移动平均模型ARMA、自回归差分移动平均模型ARIMA,可以

说前三种都是ARIMA 模型的特殊形式。 1. 自回归模型AR(p) p 阶自回归模型记作AR(p),满足下面的方程: t p t p t t t y y y c y εφφφ+++++=--- 2211 其中:参数 c 为常数;1,2 ,…,p 是自回归模型系数;p 为自回归模型阶数;t ε是均值为0方差为 2σ 的白噪声序列。 2. 移动平均模型MA(q) q 阶移动平均模型记作MA(q) ,满足下面的方程: q t q t t t y ---+++=εθεθεθμ 2211 其中:参数μ为常数;q θθθ,,,21 是 q 阶移动平均模型的系数; t ε是均值为0,方差为2σ 的白噪声序列。 3. ARMA(p,q)模型 q t q t t p t p t t y y c y ----++++++=εθεθεφφ 1111 显然此模型是模型AR(p)与MA(q)的组合形式,称为混合模型,常记作ARMA(p,q)。当 p=0 时,ARMA(0, q) = MA(q);当q = 0时,ARMA(p, 0) = AR(p)。 4. ARIMA (p,d,q )模型 对于非平稳序列,经过几次差分后,如果能得到平稳的时间序列,就称这样的序列为单整序列。设t y 是 d 阶单整序列,记作:t y ~ I(d),则 t d t d t y L y w )1(-=?= t w 为平稳序列,即t w ~ I(0) ,于是可以对t w 建立ARMA(p,q) 模

arima模型

ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列(Time-series Approach)预测方法,所以又称为Box-Jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。 ARIMA模型的基本思想是:将由预测对象形成的数据序列视为随机序列,并使用某个数学模型对该序列进行近似。一旦确定了模型,就可以根据时间序列的过去和现在值预测将来的值。现代统计方法和计量经济学模型已经能够在一定程度上帮助公司预测未来。 预测程序: ARIMA模型预测的基本程序 (一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。 (二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,

并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。 (三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。(截尾是指时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF);拖尾是ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)。) (四)进行参数估计,检验是否具有统计意义。 (五)进行假设检验,诊断残差序列是否为白噪声。 (六)利用已通过检验的模型进行预测分析。

基于ARIMA模型的航材需求预测

摘要:为了对航材的需求进行预测,本文根据时间序列乘积季节模型,利用统计软件spss,对收集到的航材需求的历史数据进行了建模、参数估计、检验、预测,经检验预测效果较好。该方法简便实用,利于实际推广和使用。 abstract: in order to predict the uncertain demand for aircraft spareparts,a multiple arima model is used to solve this problem by time series forecasting system in spss. the prediction result and its applications are discussed. this method is simple, practical and convenient for spreading. 关键词:时间序列;需求预测;参数估计;白噪声序列 中图分类号:td176 文献标识码:a 文章编号:1006-4311(2016)24-0250-02 0 引言 随着航空兵部队的换装和飞机的更新换代,航空器材的种类越来越多,价值越来越昂贵,如何根据消耗器材的历史数据,准确预测未来器材的需求,这不仅提高了航材保障的精细化程度,减少了库存,避免了因器材具有时效性而产生的浪费,而且增加了航材保障的可预见性,为完成各种飞行任务奠定基础。某种型号的航材需求量,可随着时间的推移,形成一个序列,成为航材需求的时间序列。对某种型号的航材来说,需求量在一定的时间内,是不确定的,它受到飞机训练强度、环境气候、季节性等因素的影响。因此时间序列可能随着时间的推移,呈现一定的趋势性,也可能受季节因素的影响,呈现一定的季节性,如雨季训练强度减少,对器材的消耗就少,需求就相应的减少。而目前对航材需求量的预测,大多采用回归法,滑动平均法,而这些方法的处理和预测,缺少对季节性的考量,而利用时间序列arima (p,d,q)(p,d,q)s模型,可对影响航材需求的各种因素综合考虑,对于短期预测效果较好。 1 arima(p,d,q)(p,d,q)s模型 如果时间序列(yt)是平稳的,可以利用自回归移动平均模型arma(p,q)实现建模和预测,但如果时间序列具有趋势性的非平稳时序,不能直接建立arma(p,q)模型,只能对其经过平稳化处理。这里平稳化处理一般用差分处理,差分处理后的模型记为arima(p,d,q),d是差分的阶数,记bk为k阶滞后算子,即bkyt=yt-k,若k=1,则byt=yt-1。差分形式用(1-b)d表示,如果d=1,(1-b)yt=yt-yt-1,就是一阶差分。有些序列的值和季节变动有关,往往还要进行剔除季节性的影响,这样还要进行季节差分,可表示成(1-bs)d,表示d阶季节差分,若d=1,则(1-bs)yt=yt-yt-s就是一阶季节差分,如果是月度季节差分,s=12,如果是季度季节差分,s=4。为了考虑各种情况,考虑如下的模型形式:?准(b)u(b)(1-b)d(1-bs)dyt=θ(b)v(b)εt 该模型就是模型arima(p,d,q)(p,d,q)s,是自回归移动平均模型的推广。 其中,?准(b)=1-?准1b-?准2b2-…-?准pbp是p阶自回归算子,θ(b)=1-θ1b-θ2b2-…-θpbq,是q阶移动平均算子,(1-b)d是d阶差分算子,u(b)=1-u1bs-u2b2s-…-upbps是p阶季节自回归移动算子,v(b)=1-v1bs-v2b2s-…-vqbqs是q阶季节移动平均算子,(1-bs)d是d阶季节差分算子,其中?准1,?准2,…,?准p,θ1,θ2,…,θq,u1,u2,…,up,v1,v2,…,vq,都是待估参数。 2 利用arima(p,d,q)(p,d,q)s模型预测的步骤 第一步:转化成平稳序列。严格的判定序列的平稳性比较困难,可借助图像,如果图像无趋势性,无周期性,可大致认为序列平稳,也可利用自相关函数acf,若自相关函数acf 随滞后期增大,而迅速趋于0,则认为该序列是平稳的。非平稳性序列,如果具有较强的趋势性,可以通过逐期差分,逐期差分的次数,决定模型中d的取值,如果序列周期性比较明显,可以通过季节差分来实现平稳性,季节差分的阶数,就是模型中的d。

相关主题
文本预览
相关文档 最新文档