当前位置:文档之家› 基于单片机的大棚温湿度控制系统的设计

基于单片机的大棚温湿度控制系统的设计

基于单片机的大棚温湿度控制系统的设计
基于单片机的大棚温湿度控制系统的设计

摘要

随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。

本论文主要阐述了基于AT89C51单片机的温室大棚温湿度控制系统设计原理,主要电路设计及软件设计等。该系统采用AT89C51单片机作为控制器,SHT11作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,根据实际需求设计了单片机硬件系统,该系统能够实现数据采集,数据处理,数值显示,键盘扫描等功能功能。同时介绍了温湿度传感器,单片机接口,及其应用软件的设计,该基于单片机和SHT11温湿度传感器的大棚温湿度控制系统,该系统性能可靠,结构简单,能实现对温室内温湿度的自动调节。

关键词:AT89C51;SHT11;大棚;温湿度;控制系统;传感器;单片机

Abstract

With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs.

This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions.According to the actual demand design the microcontroller hardware system, this system can realize data acquisition, data processing, the numerical display, keyboard scan function function. At the same time, temperature and humidity sensor is introduced, and its application software interface chip design, this based on SCM and SHT10 temperature and humidity sensor shelter, temperature and humidity control system reliable performance, the system structure is simple, can realize the automatic adjustment of the temperature and humidity in a greenhouse.

Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor;Single-chip microcomputer

目录

1.绪论 (4)

1.1 系统设计背景 (4)

1.2 系统功能、优势及特点 (4)

2. 设计内容 (5)

2.1 总体方案的设计 (5)

2.1.1 设计思想 (5)

2.1.2 系统组成及框图 (5)

2.2 系统主要电路的设计 (6)

2.2.1 主要芯片89C51的功能及引脚图 (6)

2.2.2 温湿度检测电路的设计 (7)

2.2.3 温湿度传感器SHT11的工作原理 (8)

2.2.4 温湿度调节系统的设计 (9)

2.2.5 X25045简介 (9)

3. 硬件设计 (10)

3.1 温湿度测量电路 (10)

3.2 LCD显示电路 (11)

3.3 键盘扫描电路 (12)

3.4输出接口控制电路 (13)

3.5单片机与X25045接口电路 (14)

4. 系统软件的设计 (15)

4.1 系统主程序 (15)

4.2 键盘扫描子程序,消抖程序流程图 (16)

4.3 1602LCD液晶显示程序流程图 (19)

4.4 温湿度读取子程序 (19)

4.5 键盘扫描源程序 (20)

4.6 显示程序 (22)

4.7 温湿度采集程序 (26)

参考文献 (27)

1. 绪论

1.1 系统设计背景

植物的生长都是在一定的环境中进行的,其在生长过程中受到环境中各种因素的影响,其中对植物生长影响最大的是环境中的温度和湿度。环境中昼夜的温度和湿度变化大,其对植物生长极为不利。因此必须对环境的温度和湿度进行监测和控制,使其适合植物的生长,提高其产量和质量。本系统就是利用价格便宜的一般电子器件来设计一个参数精度高,控制操作方便,性价比高的应用于农业种植生产的温室大棚温湿度测控系统。

本系统温湿度的监控包括以下步骤:感应环境温湿度;判断感应到的温湿度是否异常;若感应到的温湿度异常,判断异常是否超过预设时间;若异常超过预设时间,则异常报警;判断异常是否处理完毕;若异常处理完毕,解除报警。并可以利用控制器和单片机机来达到机房温湿度的远程控制,从而实现温室大棚温湿度管理的实时性和有效性。

为此,在现代化的温室大棚管理中通常有温湿度自动控制系统,以控制大棚温度,适应生产需要。它以先进的技术和现代化设施,人为控制作物生长的环境条件,使作物生长不受自然气候的影响,做到常年工厂化,进行高效率,高产值和高效益的生产。

1.2 系统功能、优势及特点

该检测系统充分利用AT89C51单片机的软、硬件资源,辅以相应的测量电路和SHT10数字式集成温湿度传感器等智能仪器,能实现多任务、多通道的检测和输出。它具有测量范围广、测量精度高等特点,前端测量用的传感器类型可在该基础上修改为其他非电量参数的测量系统。温湿度检测系统采用SHT11为温湿度测量元件。系统在硬件设计上充分考虑了可扩展性,经过一定的添加或改造,很容易增加功能。根据温室大棚内的温湿度传感器采集到的信息,利用数据总线将传感器信息送给单片机,以及进行LCD显示,报警,查询等功能。监控中心可向现场控制器发出控制指令,监测仪根据指令控制风机、水泵、等设备进行降温除湿,以保证大棚内作物的生长环境。监控中心也可以通过报警指令来启动现场监测仪上的声光报警装置,通知大棚管理人员采取相应措施来确保大棚内的环境正常。

2. 设计内容

2.1 总体方案的设计 2.1.1 设计思想

大棚温湿度控制系统上电工作后,用户首先通过键盘输入温度及湿度的初值,单片机系统将用户设置的初值保存在X25045芯片中,单片机进入主程序后,开始以查询的方式检测温湿度传感器SHT11的温湿度状态,并将相应的数值通过显示器显示输出。当温室内的温度(或湿度)小于设置的初值时,单片机将通过控制输出接口使加温设备(或加湿设备)开始工作;当温室内的温度(或湿度)大于(或等于)设置的初值时,单片机将通过控制输出接口使加温设备(或加湿设备)停止工作。

2.1.2 系统组成及框图

系统由电源电路、温湿度传感器SHT11、X25045芯片、键盘,显示和控制模块(AT89C51)组成。

1、温湿度传感器:负责检测并采集各控制点温湿度数据。

2、数据通讯转换器:负责温湿度数据采集数据的信号转换,复位等。

3、软件部分:软件部分负责对所有数据进行读取分析,并执行各项管理功能。

4、控制部分(即温湿度调节系统):执行远程控制指令。 控制部分连接增湿装置、干燥装置、温度的控制装置等。 其系统原理图如图2-1所示:

图2-1 大棚温湿度控制原理框图

温湿度检测电路

复位电路

输入按键

温湿度调节系统

键盘,报警电路

显示电路

单片机控制系

统 电源

2.2 系统主要电路的设计

2.2.1 主要芯片89C51的功能及引脚图

芯片89C51共有40个引脚,其中电源引脚有4个,控制引脚有4个,并行的I/O 接口有32个,其引脚图如图2-2所示:

图2-2 89C51引脚

(1)电源及时钟引脚(4个)

Vcc:电源接入引脚;

Vss:接地引脚;

XTAL1:晶体振荡器接入的一个引脚(采用外部振荡器时,此引脚接地);

XTAL2:晶体振荡器接入的另一个引脚(采用外部振荡器时,此引脚作为外部

振荡信号的输入端)。

(2)控制线引脚(4个)

RST/VPD:复位信号输入引脚/备用电源输入引脚;

ALE/PROG:地址锁存允许信号输出引脚/编程脉冲输入引脚(低电平有效);

EA/Vpp:内外存储器选择引脚(低电平有效)/片内EPROM(或FlashROM)编程电压输入引脚;

PSEN:外部存储器选通信号输出引脚(低电平有效)。

(3)并行I/O引脚(32个,分成4个8位口)

P0.0~P0.7:一般I/O引脚或数据/低位地址总线服用引脚;

P1.0~P1.7:一般I/O引脚;

P2.0~P2.7:一般I/O引脚或高位地址总线引脚;

P3.0~P3.7:一般I/O引脚或第二功能引脚。

2.2.2 温湿度检测电路的设计

本系统选择的温湿度传感器是由瑞士Sensirion公司推出了SHT11单片数字温湿度集成传感器,采用CMOS过程微加工专利技术(CMOSens technology),确保产品具有极高的可靠性和出色的长期稳定性。该传感器包括一个电容性聚合体湿度敏感元件、一个用能隙材料制成的温度敏感元件,并在同一芯片上,与l4位的A/D转换器以及串行接口电路实现无缝连接。每个传感器芯片都在极为精确的湿度腔室中进行标定,以镜面冷凝式湿度计为参照。校准系数以程序形式存储在OTP内存中,在校正的过程中使用。两线制的串行接口,使外围系统集成变得快速而简单。微小的体积、极低的功耗,使其成为各类应用的首选。

下图2—3为SHT11传感器内部结构框图

图2—3 SHT11内部结构图

2.2.3 温湿度传感器SHT11的工作原理

SHT11的温湿度检测运用电容式结构,并采用具有不同保护的“微型结构”检测电极系统与聚合物覆盖层来组成传感器芯片的电容,除保持电容式湿敏器件的原有特性外,还可抵御来自外界的影响。由于它将温度传感器与湿度传感器结合在一起而构成了一个单一的个体,因而测量精度高且可精确得出露点,同时不会产生由于温度与湿度传感器之间随温度梯度变化引起的误会。CMOSensTM 技术不仅将温湿度传感器结合在一起,而且还将信号放大器、模/数转换器、校准数据存储器、标准I2C 总线等电路全部集成在一个芯片内。

SHT11的每一个传感器都是在极为精确得湿度室内中校准的。SHT11传感器的校准系数预先存在OTP 内存中。经校准的相对湿度和温度传感器与一个14位的A/D 转换器相连,可将装换后的数字温湿度值送给I2C 总线器件,从而将数字信号转换为符合I2C 总线协议的串行数字信号。由于将传感器与电路部分结合在一起,因此,该传感器具有比其他类型的温湿度传感器优越得多的性能。首先是传感器信号强度的增加增强了传感器的抗干扰性能,保证了传感器的长期稳定性,而A/D 转换的同时完成,则降低了传感器对干扰噪声的敏感程序。其次在传感器芯片内装载的校准数据保证了每一只温湿度传感器都具有相同的功能,即具有100%的互换性。最后,传感器可直接通过I2C 总线与任何类型的微处理器、微控制器系统连接,从而减少了接口电路的硬件成本,简化了接口方式。

DA TA GND VDD

湿度传感器 温度传感器 放大器

14位模数转换器 标定储存器

I 2C 总 线 接 口

SCK

2.2.4 温湿度调节系统的设计

温湿度调节系统包括加湿模块除湿模块、加温模块和制冷模块。它是由单片机的I/O 口控制的,有效控制电平为+5V,执行机构的各种设备都是在市电下正常工作的,必须采用I/O口控制继电器的导通和切断来控制市电的通断,也即控制执行设备的工作状态。由于单片机的I/O不能提供足够的电流,不能直接驱动继电器导通,因此,我们采用达林顿管,将进行两级放大,提供了足够大的驱动电流,让继电器中的电感线圈产生足够大的磁力,将开关吸合。用户预先输入温湿度报警值到程序中,该值作为系统阈值。温湿度传感器监测值传输给单片机,当单片机比较监测到的数值超出所设定阈值时,驱动蜂鸣器报警,并为温湿度调节系统提供控制信号,实现自动控制。

2.2.5 X25045简介

X25045是美国Xicor公司的生产的标准化8脚集成电路,它将EEPROM、看门狗定时器、电压监控三种功能组合在单个芯片之内,大大简化了硬件设计,提高了系统的可靠性,减少了对印制电路板的空间要求,降低了成本和系统功耗,是一种理想的单片机外围芯片。X25045引脚如图3所示。

图3 X25045引脚图

X25045硬件连接图如图4所示。X25045芯片内包含有一个看门狗定时器,可通过软件预置系统的监控时间。在看门狗定时器预置的时间内若没有总线活动,则X25045将从RESET输出一个高电平信号,经过微分电路C2、R3输出一个正脉冲,使CPU复位。图2电路中,CPU的复位信号共有3个:上电复位(C1、R2),人工复位(S、R1、R2)和Watchdog复位(C2、R3),通过或门综合后加到RESET 端。C2、R3的时间常数不必太大,有数百微秒即可,因为这时CPU的振荡器已经在工作。

图4 X25045看门狗电路硬件连接图

看门狗定时器的预置时间是通过X25045的状态寄存器的相应位来设定的。如表1所示,X25045状态寄存器共有6位有含义,其中WD1、WD0和看门狗电路有关,其余位和EEPROM的工作设置有关。

表1 X25045状态寄存器

WD1=0,WD0=0,预置时间为1.4s。

WD1=0,WD0=1,预置时间为0.6s。

WD1=1,WD0=0,预置时间为0.2s。

WD1=1,WD0=1,禁止看门狗工作。

看门狗电路的定时时间长短可由具体应用程序的循环周期决定,通常比系统正常工作时最大循环周期的时间略长即可。编程时,可在软件的合适地方加一条喂狗指令,使看门狗的定时时间永远达不到预置时间,系统就不会复位而正常工作。当系统跑飞,用软件陷阱等别的方法无法捕捉回程序时,则看门狗定时时间很快增长到预置时间,迫使系统复位。

3. 硬件设计

3.1 温湿度测量电路

温湿度测量用的是SHT11温湿度传感器,该传感器包括一个电容性聚合体湿度敏感元件、一个用能隙材料制成的温度敏感元件,并在同一芯片上,与l4位的A/D转换器以及串行接口电路实现无缝连接。该传感器与89C51的电路连接图,如图3—2所示:

图3—2

SHT11的测量时序如下:当一个SCK为高电平时,DATA出现低电平,然后SCK变为低电平,接着当SCK再为高电平时,DATA也变为高电平则表示开始数据读写(启动序列)温湿度传感器SHT11送出的温度、湿度数据必须经过数据转换才能表示实际的温度和湿度,其公式如下:

T c =d

1

+d

2

×SO

T

RH

Linear =C

1

+C

2

×SO

RH

+C

3

×SO

RH

2

RH

True =(T

c

-25)×(t

1

+t

2

×SO

RH

)+RH

Linear

式中:T

c 为温度;RH

True

为经过温度补偿的相对湿度;d

1

、d

2

与温度分辨率有

关;C

1、C

2、

C

3、

t

1、

t

2

与湿度分辨率有关;SO

T

表示从SHT11中读出的温度值;SO

RH

表示从SHT11中读出的湿度值。其对应关系如表2、表3所示表2温度校正系数

d 1 d

2

14b(5V)-40 0.01 表3湿度校正系数

C 1C

2

C

3

t

1

t

2

12b -4 0.0405 -0.0000002 0.01 0.00008

3.2 LCD显示电路

LCD显示电路用LCD1602字符型液晶显示模块与单片机连接进行数值显示,

其电路图如3—3所示:

图3—3

1602LCD采用标准14脚或16脚接口,RS为寄存器选择器,RS为高电平时选择数据寄存器,为低电平时选择指令寄存器。R/W为读写信号线,为高电平时进行读操作,为低电平时进行写操作,当RS和R/W同为低电平时可以写入指令或者显示地址;当RS为低电平时,R/W为高电平时可以读忙信号;当RS为高电平,R/W为低电平时可以写入数据。E为使能端,当E端由高电平跳变为低电平时,液晶模块执行命令。D0~D7为8位双向数据线。

3.3 键盘扫描电路

KEY1为温度和湿度设定切换,KEY2为温度或湿度加1,KEY3为温度或湿度减1,KEY4当前状态与设定状态切换,KEY5为上下限设定切换。接口电路如图3—

4所示。

图3—4 3.4 输出接口控制电路

如图3—5

图3—5 3.5单片机与X25045接口电路

单片机与X25045接口电路如图3—6所示。

图3—6

本设计选用了P1口的P10~P12及74LS138的11脚,由于X25045的RESET 为漏极开路的输出端,所以应接上拉电阻。写操作至少需要24个时钟周期,片选必须拉低并在操作期间保持低电平。单片机可以连续写入16个字节的数据,但这16个字节必须写入同一页,一页的地址开始于地址[X XXXX 0000],结束于地址[X XXXX 1111],如果待写入的字节地址已到达一页的最后,而时钟还在继续存在,计数器就将回绕到该页的第一个地址并覆盖前面所写的内容。在本设计中,一页存储三组数据,每组数据有五个字节组成,分别包括日、月、小时、分钟和秒。而一页的最后一个字节用于存放每次读取该页的次数,以便于新的数据可再从首地址写入,达到循环存储数据的目的。

4.系统软件的设计

软件设计主要分为主程序、温湿度传感器数据读取子程序、LCD显示程序、键盘扫描,按键去抖动的处理、控制器控制流程。

4.1系统主程序

本系统的智能核心是AT89C51,其监控程序和应用软件全部固化在EPROM 内。他的工作过程是:当系统接通电源后,AT89C51单片机进入监控状态,同时完成对各个端口的初始化工作,当有按键按下时,产生申请中断,进入响应的中断程序,完成键盘处理工作。当没有外部控制信息的输入时,系统会

自动采集温湿度传感器的电压值,最终数据在LCD显示屏上显示。主程序流

程图如图4—1所示:

N

Y

Y

N

图4—1 主程序流程图

4.2 键盘扫描子程序,消抖程序流程图

键盘扫描子程序如图4—2:

延时

序 初始化各端口

初始化温湿度传感器 温湿度值是否符

合正常值?

控制电路调节温湿度

查询键盘,是否有

键按下?

显示

开始

调用湿度检测电路

测量温湿度值

Y

N

Y

N

Y

N

Y

N

Y N

N

Y

图4—2 键盘扫描程序流程图

消抖程序流程图如图4—3:

开始

初始化

键1是否按下

键2是否按下 键3是否按下

键4是否按下

键5

是否按下 温湿度是否正常

温,湿度切换

温,湿度加1

温,湿度减1

当前与设定切换 上,下限切换

报警,控制电路调节温湿度

N

Y

Y N

Y

Y

N

Y

图4—3 键盘扫描流程图

开始

延时去抖

是否有键闭合 是否有键闭合

扫描取得键值 闭合键释放否 结束

4.3 1602LCD液晶显示程序流程图

LCD显示流程图如图4—4所示:

开始

LCD初始化

延时

设第一行显

示位置

显示第一行

内容

设第二行显

示位置

显示第二行

内容

结束

图4—4 LCD显示程序流程图4.4 温湿度读取子程序

温湿度利用SHT11温湿度传感器测量温度。

温湿度读取子程序流程图如图4—5所示:

开始

SHT11初始

读取温湿度

计算温湿度值

N

温湿度是否正常控制程序调

节温湿度

Y

显示温湿度

结束

图4—5 温湿度读取子程序流程图

4.5 键盘扫描源程序

ORG 0000H

AJMP MAIN

【开题报告】大棚温湿度控制系统开题报告

【关键字】开题报告 大棚温湿度控制系统开题报告 篇一:蔬菜大棚温度控制系统开题报告 中北大学信息商务学院 毕业设计开题报告 学生姓名: 系别: 专业: 设计题目: 指导教师: XX 年 3 月20日XXX 学号:信息商务学院自动控制系自动化蔬菜大棚温度控制系统设计赵耀霞 开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资 格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用按信息商务学院教学管理部统一设计 的电子文档标准格式(可从教务处或信息商务学院网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参照文献应不少于15篇(不包括辞典、 手册)。文中应用参照文献处应标出文献序号,文后“参照文献”的书写,应按照国标GB 7714—87《文后参照文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如0XX401X02),不能只写最 后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94 《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“XX年3月15日”或“XX-03-15”; 6. 指导教师意见和所在专业意见用黑墨水笔工整书写,不得 随便涂改或潦草书写。 毕业设计开题报告 篇二:温室温湿度控制系统设计开题报告 辽宁(本文来自:小草范文网:大棚温湿度控制系统开题报告)石油化工大学 信息与控制工程学院 毕业设计(论文)开题报告 论文题目:温室温湿度控制系统设计 学生姓名:刘晓薇

基于PLC的温室控制系统的设计开题报告

郑州科技学院毕业设计(论文)开题报告

年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代代末开始出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化无人化的方向发展。 目前,一些经济发达的国家和地区已经研制并实现计算机自动化控制的现代高科技温室,并形成了令人惊险的植物工厂。而我国的温室系统属于半开放系统,温室内环境控制水平较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 3.温室控制系统研制与开发的意义 温室是植物栽培生产中必不可少的设施之一,温度是影响植物生长发育最重要的因子之一。它的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。 虽然有些温室也安装有各种加热、通风和降温的设备,但其主要操作大多仍是由人工来完成的当温室面积较大或数量较多时,操作人员的劳动强度很大,而且也无法达到对温湿度的准确控制。本文介绍一种基于PLC和数字式温度传感器的温室控制系统。该系统实现了室内温度的自动测量和调节,大大降低了操作人员的劳动强度。 二、主要设计(研究)内容、设计(研究)思想、解决的关键问题、拟采用的技术方案及工作流程 1.研究内容: 温室的作用是用来改变植物的生长环境,避免外界四季变化和恶劣气候对作物生长的不利影响,为植物生长创造适宜的良好条件。温室一般以采光和覆盖材料作为主要结构材料,它可以在冬季或其他不适宜植物露地生长的季节栽培植物,从而达到对农作物调节产期、促进生长发育、防治病虫害及提高产量的目的。温室环境指的是作物在地面上的生长空间,它是由光照、温度、湿度、二氧化碳浓度等因素构成的。温室控制主要是控制温室内的温度、湿度、通风与光照。

大棚温度控制系统设计报告DOC

课程设计主要任务 基于AT89S52单片机的温度测量控制系统,数字温度传感器DS18B20通过单总线与单片机连接,实现温度测量控制,主要性能为: (1 )通过该系统实现对大棚温度的采集和显示; (2)对大棚所需适宜温度进行设定; (3)当大棚内温度参数超过设定值时控制通风机进行降温,当温度低于设定值时利用热风 机进行升温控制; (4)通过显示装置实时监测大棚内温度变化,便于记录和研究; 系统的设计指标 (1 )温度控制范围:0 C ~+50 C; (2)温度测量精度:土2 C; (3)显示分辨率:0.1 C; (4)工作电压:220V/50HZ ± 10%

目录 第一章序言 1 第二章总体设计及个人分工 2 第三章传感器设计及应用 4 第四章总结8

第一章序言 随着人口的增长,农业生产不得不采取新的方法和途径满足人们生活的需要,大棚技术的出现改善了农业生产的窘迫现状。塑料大棚技术就是模拟生物生长的条件,创造人工的气象环境,消除温度对农作物生长的限制,使农作物在不适宜的季节也能满足市场的需求。随着大棚技术的普及,对大棚温度的控制成为了一个重要课题。早期的温度控制是简单的通过温度计测量,然后进行升温或降温的处理,进行的是人工测量,耗费大量的人力物力,温度控制成为一项复杂的程序。 大多数的蔬菜大棚以单个家庭作业为主,种植户为蔬菜大棚配备多参数的智能设备,经济成本很高,因此将温度控制由复杂的人为控制转化为自动化的机械控制成为必然。目前现代化的温度控制已经发展的很完备了,通过传感器检测基本上可以实现对各个执行机构的自动控制,应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。近年来电子技术和信息技术的飞速发展,温度计算机控制与管理系统正在不断吸收自动控制和信息管理领域的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化,产业化。温度计算机控制及管理技术便函先在发达国家得到广泛应用,后来各发展中国家也都纷纷引进,开发出适合自己的系统。这在给各国带来了巨大的经济效益的同时,也极大地推动了各国农业的现代化进程。本系统以AT89S52单片机为控制核心,主要是为了对蔬菜大棚内的温度进行 检测与控制而设计的。该测控仪具有检测精度高、使用简单、成本较 低和工作稳定可靠等特点,所以具有一定的应用前景。

大棚温湿度控制

毕业论文(设计) 大棚温湿度自动调控 朱康允 指导老师:王国强 班级:机电设备09 系(部):机电工程系 专业:机电设备维护与管理 答辩时间: 1

摘要 随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。 本论文主要阐述了基于AT89C51单片机的西红柿大棚温湿度控制系统设计原理,主要电路设计及软件设计等。该系统采用AT89C51单片机作为控制器,SHT10作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,具有上下位机直接设置温湿度范围,温湿度实时显示等功能。上位机采用Delphi软件进行编写,用户界面友好,操作简单,可以根据大棚西红柿生长情况绘制成简明直观的作物生长走势图,从而容易得出最适合作物生长的温湿度值。 关键词:AT89C51;SHT10;蔬菜大棚;温湿度;控制系统;传感器 2

Abstract With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs. This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions. PC using Delphi software to compile, user friendly interface, easy operation, can according to shed tomato growth situation blazoned with simple, direct simulations of crop growth, thus easy to draw the most suitable for crop growth of temperature and humidity value. Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor 3

PLC温室大棚控制系统设计开题报告

滨州学院 毕业设计(论文)开题报告题目基于PLC温室大棚控制系统设计 系(院)自动化系年级2010级 专业电气自动化技术班级4班 学生姓名石瑞学号1023091219 指导教师王国明职称助教 滨州学院教务处 二〇一三年三月 开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用

的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下

基于单片机AT89C51的温室大棚温湿度控制系统设计

毕业论文(设计) 题目名称温室大棚温湿度控制系统 院(系)电子信息学院 专业班级电气10803 学生姓名 指导教师 辅导教师 时间2012年3月至2012年6月

目录 长江大学毕业设计(论文)任务书 (3) 毕业设计开题报告 ..................................................... VII 长江大学毕业论文(设计)指导教师评审意见 ................................ XI 长江大学毕业论文(设计)评阅教师评语 ................................... XII 长江大学毕业论文(设计)答辩记录及成绩评定 ............................ XIII 中外文摘要 ............................................ 错误!未定义书签。前言 ................................................................. XVI 绪论 (18) 1.1课题来源 (18) 1.2国内外发展现状、趋势以及面临的挑战 (18) 1.3研究的目的、意义及主要内容 (19) 2硬件设计 (19) 2.1系统总体结构设计 (19) 2.2控制模块的设计 (20) 2.2.1 STC89C51的主要特性 (20) 2.2.2 AT89C51的管脚说明 (21) 2.2.3震荡电路 (23) 2.2.4 复位电路 (23) 2.2.5 单片机的CPU (24) 2.2.6 单片机的中断系统 (26) 2.2.7 单片机最小系统 (29) 2.3 传感器设计 (31) 2.3.1 DHT11的简介 (32) 2.3.2 引脚说明 (32) 2.3.3 电源引脚 (33) 2.3.4 串行接口(单线双向) (33) 2.4 无线模块的设计 (35) 2.4.1 APC220的性能 (35) 2.4.2 无线传输模块APC220的接口说明 (36) 2.4.3 APC220无线模块的工作参数的设置 (37) 2.4.4 APC220无线模块的技术指示 (39) 2.5键盘和显示模块的设计 (39) 2.5.1显示模块设计 (39) 2.5.2键盘模块设计 (40) 2.6执行模块的设计 (42) 2.6.1调节模块 (42) 2.6.2 报警模块 (43) 3.软件设计 (45) 3.1 初始化子程序 (45)

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

大棚温湿度控制

摘要 随着大棚技术的普及,温室大棚数量不断增多,对于蔬菜大棚来说,最重要的一个管理因素是温湿度控制。温湿度太低,蔬菜就会被冻死或则停止生长,所以要将温湿度始终控制在适合蔬菜生长的范围内。传统的温度控制是在温室大棚内部悬挂温度计,工人依据读取的温度值来调节大棚内的温度。如果仅靠人工控制既耗人力,又容易发生差错。现在,随着农业产业规模的提高,对于数量较多的大棚,传统的温度控制措施就显现出很大的局性。为此,在现代化的蔬菜大棚管理中通常有温湿度自动控制系统,以控制蔬菜大棚温度,适应生产需要。 本论文主要阐述了基于AT89C51单片机的西红柿大棚温湿度控制系统设计原理,主要电路设计及软件设计等。该系统采用AT89C51单片机作为控制器,SHT10作为温湿度数据采集系统,可对执行机构发出指令实现大棚温湿度参数调节,具有上下位机直接设置温湿度范围,温湿度实时显示等功能。上位机采用Delphi软件进行编写,用户界面友好,操作简单,可以根据大棚西红柿生长情况绘制成简明直观的作物生长走势图,从而容易得出最适合作物生长的温湿度值。 关键词:AT89C51;SHT10;蔬菜大棚;温湿度;控制系统;传感器 1

Abstract With the popularization of trellis technology, greenhouse trellis an ever-growing number, for vegetable shed speaking, one of the most important management factor is the temperature and humidity control. Temperature is too low, the vegetables will freeze to death or stop growing, so will always control temperature and humidity in a suitable vegetable growth range. Traditional temperature control is in greenhouse trellis internal hanging a thermometer, workers according to regulate the temperature reading the temperature inside the shelter. If only by artificial control both consumption manpower, and easy to place regular orders. Now, with the improvement of agricultural industry scale, for larger quantity of trellis, traditional temperature control measures will show great bureau sex. Therefore, in modern vegetable shed management zhongtong often temperature and humidity automatic control system, in order to control the temperature, adapt to the trellis vegetable production needs. This thesis mainly elaborated based on AT89C51 tomatoes canopy temperature and humidity control system design principle, main circuit design and software design, etc. This system USES AT89C51 single chip microcomputer as controller, SHT10 as temperature and humidity data acquisition system, may to the actuator directives realize trellis temperature and humidity parameters adjustment, has the upper and lower level computer directly set temperature range, temperature and humidity real-time display, and other functions. PC using Delphi software to compile, user friendly interface, easy operation, can according to shed tomato growth situation blazoned with simple, direct simulations of crop growth, thus easy to draw the most suitable for crop growth of temperature and humidity value. Key words:AT89C51; SHT10;vegetable shed; Temperature and humidity; Control System; sensor 2

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

温室大棚控制系统-设计报告详解

哈尔滨师范大学 物联网感知综合课程设计报告 题目:温室大棚控制系统 年级: 2013级专业:物联网工程姓名:高英亮袁昊慈指导教师:李世明杜军

温室大棚控制系统 高英亮、袁昊慈 摘要中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。利用物联网的传感器技术实时采集温室环境的空气温湿度、土壤水分和光照度等因素,单片机将数据进行分析处理做出合理的控制决策,控制执行器进行自动喷灌,实现了计算机自动控制,按需、按期和按量喷灌。系统主要由温室环境信息采集模块、单片机模块和控制模块组成,采集模块包括光照度传感器和空气温湿度传感器。该系统采用传感器技术和单片机相结合,由上位机和下位机( 都用单片机实现) 构成,采用接口进行通讯,实现温室大棚自动化控制。本系统环保节能、节水、省力,具有很好的实用性和推广性。 1 引言 中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。 目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能。

大棚温湿度自动控制系统设计说明

大棚温湿度自动控制系统设计 摘要:本设计是基于STC89C52RC单片机的大棚温湿度自动控制系统,采用SHT10作为温湿度传感器,LCD1602液晶屏进行显示。SHT10使用类似于I2C总线的时序与单片机进行通信,由于它高度集成,已经包括A/D转换电路,所以使用方便,而且准确、耐用。LCD1602能够分两行显示数据,第一行显示温度,第二行显示湿度。这个控制系统能够测量温室大棚中的温度和湿度,将其显示在液晶屏LCD1602上,同时将其与设定值进行对比,如果超出上下限,将进行报警并启动温湿度调节设备。此外,还可以通过独立式键盘对设定的温湿度进行修改。通过设计系统原理图、用Proteus软件进行仿真,证明了该系统的可行性。 关键词:STC89C52RC,SHT10,I2C总线,独立式键盘,温湿度自动控制 Abstract: This design is an automatic temperature and humidity controller for greenhouses, with the STC89C52RC MCU being its main controller. It uses the SHT10 as the temperature and humidity sensor, and the LCD1602 to display the messages. The SHT10 uses a timing sequence much like the I2C to communicate with the micro-controller. Because it’s a highly integrated chip, it already includes an analog to digital converter. Therefore, it’s quite convenient to use, and also accurate and durable. The LCD1602 can display two lines of messages, with the first line for temperature and the second line for humidity. The design can measure the temperature and humidity in a greenhouse, and then display it on a LCD1602. Meanwhile, it compares the data with the set limit. If the limit is exceeded, then the system will send out a warning using a buzzer and activate the temperature and humidity controlling equipment. Besides, the set limit can be modified with the independent keyboard. Through schematic design and Proteus simulation, the feasibility of this design has been proved. Keywords: STC89C52RC, SHT10, I2C bus, independent keyboard, temperature and humidity control

大棚自动控制系统设计

摘要 本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词:STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测

目录第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择 §2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.4 RS-485通信设计 §2.5小结 第3章系统软件的设计 §3.1系统主程序 §3.2系统部分子程序 §3.2.1 DS18B20初始化子程序 §3.2.2 DS18B20读子程序 第4章总结 参考文献 附录

第一章绪论 1.1选题背景 在人类的生活环境中,温湿度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度和湿度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温湿度有着密切的联系。在冶金、钢铁、石化、水泥、玻璃、医药等行业,可以说几乎80%的工业部门都不得不考虑着温湿度的因素。温湿度不但对于工业如此重要,在农业生产中温度的监测与控制也有着十分重要的意义。我国人多地少,人均占有耕地面积更少。因此,要改变这种局面,只靠增加耕地面积是不可能实现的,因此我们要另辟蹊径,想办法来提高单位亩产量。温室大棚技术就是其中一个好的方法。温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度对生物生长的约束。而且,温室大棚能克服环境对生物生长的限制,能使不同的农作物在不适合生长的季节产出,使季节对农作物的生长不再产生过度影响,部分或完全摆脱了农作物对自然条件的依赖。由于温室大棚能带来可观的经济效益,所以温室大棚技术越来越普及,并且已成为农民增收的主要手段。 随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温湿度控制便成为一个十分重要的课题。传统的温湿度控制是在温室大棚内部悬挂温度计和湿度计,通过读取温度值和湿度值了解实际温湿度,然后根据现有温湿度与额定温湿度进行比较,看温湿度是否过高或过低,然后进行相应的通风或者洒水。这些操作都是在人工情况下进行的,耗费了大量的人力物力。现在,随着国家经济的快速发展,农业产业规模的不断提高,农产品在大棚中培育的品种越来越多,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。温室大棚的建设对温湿度检测与控制技术也提出了越来越高的要求。 今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。时下,家用电器和办公设备的智能化、遥控化、模糊控制化已成为世界潮流,而这些高性能无一不是靠单片机来实现的。采用单片机来对温湿度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温湿度的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中必不可少且广泛应用的器件,尤其在日常生活中也发挥越来越大的作用。因此,单片机对温湿度的控制问题是一个工农业生产中经常会遇到的问题。因此,本课题围绕基于单片机的温室大棚控制系统展开了应用研究工作。

大棚温度这么控制

根据本地区的 气象 条件,一般在9月中旬扣膜,10月中旬可撤膜,管理的原则是:保住最低温度,限制最高温度,延长最适温度。黄瓜低于12摄氏度根系停止生长,低于5摄氏度易受冻害,最低温度应保持在10摄氏度以上。 黄瓜最适温度25—28摄氏度,最高不超过35摄氏度。尽可能使黄瓜生育最适温度保持时间达到6—8小时,当气温下降至20摄氏度时应及时闭风,天气不好时可提早闭风,当气温降至15摄氏度时应盖草帘,遇到寒流可在17—18摄氏度时盖草帘,盖草帘的气温可回升2—3摄氏度,以后逐渐下降,白天保持在22—25摄氏度,夜间保持16—20摄氏度,下半夜10——16摄氏度。在灾害性天气条件下,早晨短时间最低气温降至8摄氏度,甚至5摄氏度,黄瓜也不致于受害,但若低于5摄氏度,或较长时间低于10摄氏度,则会对黄瓜造成寒害,所以应加温室的保温,一定要按设计要求建造温室,及时补住温室漏洞,温室前口加防寒裙,遇强寒流等连阴天的灾害性天气,还应适当补充加温。 冬季地温低是黄瓜生产的制约因素,因此,应千方百计提高地温。研究表明,地温提高1摄氏度,则相当气温提高2—3摄氏度的效果。所以在温室前沿必须挖防寒沟,温室内铺盖 拱棚主要靠通风,也可以在上面覆盖遮阳网 日光温室也一样,高档点的能装风机,还可能有外遮阳和内遮阳(不是简单的覆在上面),冬天可能有暖气、炉子之类的加温设备 连栋温室降温主要靠自然通风和湿帘风机强制通风,内外遮阳降温,冬季加温靠暖气、风机盘管、热风炉,内遮阳可以起到保温作用 温室最主要的环境控制工具是覆盖材料 众所周知,温室大棚内温度是和大棚外温度的变化是一样的。白天阳光照射充足时,如薄膜密闭,棚内温度很快升高,阴雨天增温较差。夜间,棚内最低气温一般比棚外高1-3℃。棚内地温比气温稳定,而气温呈现中间高、两边低,所以大棚中间的植株往往会比两边长得好。从大棚上下部分分析,白天太阳光照射时,上部温度比下部高,温差大;夜间或阴雨天则相反。

温室控制系统设计开题报告

毕业设计开题报告 一.选题的依据、意义和理论或实际应用方面的价值 随着农业现代化的发展,设施园艺工程因其涉及学科广、科技含量高、与人民生活关系密切,己越来越受到世界各国的重视。这也为我国大型现代化植物大棚的发展提供了极好的机遇,并产生巨大的推动作用。我国的现代化植物大棚是在引进与自我开发并进的过程中发展起来的。温室大棚是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的理想场所。实现温室大棚环境智能控制的目的是主动地调节温度、湿度、光照和二氧化碳气体浓度等环境因素,以满足作物最佳生长环境的要求。其中,温湿度是最重要的环境因数。目前,我国绝大多数温室大棚设备都比较简陋,温室大棚环境仍然靠人工根据经验来管理。环境因素的自动调节和控制的研究正处于起步阶段,已严重影响了设施农业的大力发展。特别是北方地区因其纬度高,寒冷季节长,四季温差和昼夜温差较大,不利于作物生长,目前应用于温室大棚的温湿度检测系统大多采用传统的温湿度检测。这种温湿度采集系统需要在温室大棚内布置大量的测温电缆和湿度传感器,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大,不利于控制者根据温度变化及时做出决定。在这样的形式下,开发一种实时性高、精度高,能够综合处理多点温度信息的测控系统就很有必要。 二.本课题在国内外的研究现状 我国的现代化温室是在引进与自我开发并进的过程中发展起来的。国外对温室环境控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。目前,一些经济发达的国家和地区已经研制并实现计算机自动控制的现代化高科技温室,并且形成了令人惊羡的植物土厂。而我国的温室系统属于半开放系统,温室内环境控制水平比较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量和产量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 三.课题研究的内容及拟采取的方法 本设计以AT89C51 单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度

温室大棚自动控制系统开题报告

题目:温室大棚自动控制系统的设计学院: 专业: 学生姓名: 学号: 指导教师: 开题时间:

势发展。 参考文献 [1]张友德等.单片机原理应用与实验[M].第一版.上海:复旦大学出版社,2000:63-80 [2]阳宪惠.现场总线技术及其应用[M].第二版.清华大学出版社,1999:26-33 [3]杨恢先,黄辉先.单片机原理及其应用[M].第一版.国防科技大学出版社,2003:60-73 [4]李朝青.单片机原理及接口技术[M].第二版.北京航空航天大学出版社,1996:42-50 [5]阎石.数字电子技术基础[M].第二版.高等教育出版社,1998:10-25 [6]孙传友.测控电路与装置[M].北京:北航出版社,2003:51-60 [7]来清民.传感器与单片机接口及实例[M].北京:航空航天大学出版社,2007:12-23 [8]阿力木·甫拉提.温室大棚温度的调控[N].农业科技,2010(8) [9]胡真明.基于单片机控制的温度环境测控装置的研究[D].西北农林科技大学,2007:15-30 [10]王华祥,张淑英.传感器原理及应用[M].天津:天津大学出版社,2007:22-24 [11]HUMIREL Relative Humidity Measurement using the Humerel HS1101 Sensor 2008 [12]V.Yu.Teplov & A.V. Anisimov.Thermostatting System Using a Single-Chip Microcomputer and Thermoelectric Modules Based on the Peltier Effect[J].2002:10-13 [13]Yeager Brent.How to troubleshoot your electronic scale[J].. Powder and Bulk Engineering.1995:5-12 [14]Meehan Joanne & Muir Lindsey.SCM in Merseyside SMEs:Benefits and barriers[J].. TQM Journal.2008:7-10 [15]Behzad Razavi.Design of Analog CMOS Integrated Circuits[M].2001:8-12

相关主题
文本预览
相关文档 最新文档