当前位置:文档之家› 动态图最短路算法的比较与优化

动态图最短路算法的比较与优化

动态图最短路算法的比较与优化
动态图最短路算法的比较与优化

电气原理图的分析方法

一.运用电各气设备图形符号绘制电气系统图应注意以下几点:1.符号尺寸大小、线条粗细根据国家标准可以放大与缩小,但在同一张图样中,同一符号的尺寸应保持一致,各符号间及符号本身比例应保持不变。 2.标准中示出的符号方位在不改变符号含义的前提下,可根据图面布置的需要旋转或成镜像位置放置,但文字和指示方向不得倒置。 3.大多数符号可以加上补充说明标记。 4.部分具体器件的图形符号可以由设计者根据国家标准的符号要素、一般符号和限定符号组合而成。 5.国家标准未规定的图形符号可根据实际需要,按突出特征、结构简单、便于识别的原则进行设计,但需要报国家标准局备案。当采用其他来源的符号或代号时,必须在图解和文件上说明其含义。 二.机床电气原理图分析方法 在仔细阅读设备说明书,了解机床电气控制系统的总体结构、电机的分布状况及控制要求等内容之后,便可以对其电气原理图进行阅读分析。 1.主电路分析。先分析执行元件的线路。一般先从电机着手,即从主电路看有哪些控制原件的主触头和附加元件,根据其组合规律大致可知该电动机的工作情况(是否有特殊的启动、制动要求、要不要正反转,是否要求调速等)。 这样分析控制电路时就可以有的放矢。 2.控制电路分析。在控制电路中,由主电路的控制元件、主触头文字符号找到有关的控制环节以及环节间的联系,将控制线路“化整为零”,按功能不同划分成若干单元控制线路进行分析。通常按展开顺序表、结合元件表、元件动作位置图表进行阅读。 . 从按动操作按钮(应记住各信号元件、控制元件或执行元件的原始状态)开始查询线路。观察元件的触头信号时如何控制其他元件动作的,查看受驱动的执行元件有何运动;再继续追查执行元件带动机械运动时,会使哪些信号元件状态发生变化。在识图过程中,特别要注意相互联系和制约关系,直至将线路全部看懂为止。 3.辅助电路分析。辅助电路包括执行元件的工作状态、电源显示、参数测定、照明和故障报警等单元电路。实际应用时,辅助电路中很多部分由控制电路中元件进行控制,所以常将辅助电路和控制电路一起分析,不再将辅助电路单独列出分析。 4.联锁与保护环节分析。生产机械对于系统的安全性、可靠性均有很高的要求,实现这些要求,除了合理的选择拖动、控制方案外,在控制线路中还设置了一系列电气保护和必要的电气联锁。在电气原理图的分析过程中,电气联锁与电气保护环节是一个重要的内容,不能遗漏。 5.特殊控制环节分析。在某些控制线路中,还设置了一些主电路、控制电路关系不密切,相对独立的控制环节,如产品计数器装置、自动检测系统、晶闸管触发电路、自动调温装置等。这些部分往往自成一个小系统,其识图分析方法可以参照上述分析过程,并灵活运用电子技术、自控系统等知识逐一分析。 6.整体检查。经过“化整为零”,逐步分析各单元电路工作原理及各部分控制关

最短路算法[1]

最短路算法及其应用 广东北江中学余远铭【摘要】 最短路问题是图论中的核心问题之一,它是许多更深层算法的基础。同时,该问题有着大量的生产实际的背景。不少问题从表面上看与最短路问题没有什么关系,却也可以归结为最短路问题。本文较详尽地介绍了相关的基本概念、常用算法及其适用范围,并对其应用做出了举例说明,侧重于模型的建立、思考和证明的过程,最后作出总结。 【关键字】 最短路 【目录】 一、基本概念 (2) 1.1 定义 (2) 1.2简单变体 (2) 1.3负权边 (3) 1.4重要性质及松弛技术 (4) 二、常用算法 (5) 2.1 Dijkstra算法 (5) 2.2 Bellman-Ford算法 (7) 2.3 SPFA算法 (8) 三、应用举例 (10) 3.1 例题1——货币兑换 (10) 3.2 例题2——双调路径 (11) 3.3 例题3——Layout (13) 3.4 例题4——网络提速 (15) 四、总结 (18)

【正文】 一、基本概念 1.1 定义 乘汽车旅行的人总希望找出到目的地尽可能短的行程。如果有一张地图并 在地图上标出了每对十字路口之间的距离,如何找出这一最短行程? 一种可能的方法是枚举出所有路径,并计算出每条路径的长度,然后选择最短的一条。然而我们很容易看到,即使不考虑含回路的路径,依然存在数以百万计的行车路线,而其中绝大多数是没必要考虑的。 下面我们将阐明如何有效地解决这类问题。在最短路问题中,给出的是一 有向加权图G=(V ,E),在其上定义的加权函数W:E →R 为从边到实型权值的映射。路径P=(v 0, v 1,……, v k )的权是指其组成边的所有权值之和: 11()(,)k i i i w p w v v -==∑ 定义u 到v 间最短路径的权为 {}{}min ():)w p u v u v v δυ→(,=∞ 如果存在由到的通路 如果不存在 从结点u 到结点v 的最短路径定义为权())w p v δυ=(,的任何路径。 在乘车旅行的例子中,我们可以把公路地图模型化为一个图:结点表示路口,边表示连接两个路口的公路,边权表示公路的长度。我们的目标是从起点出发找一条到达目的地的最短路径。 边的权常被解释为一种度量方法,而不仅仅是距离。它们常常被用来表示 时间、金钱、罚款、损失或任何其他沿路径线性积累的数量形式。 1.2简单变体 单目标最短路径问题: 找出从每一结点v 到某指定结点u 的一条最短路 径。把图中的每条边反向,我们就可以把这一问题转化为单源最短路径问题。 单对结点间的最短路径问题:对于某给定结点u 和v ,找出从u 到v 的一 条最短路径。如果我们解决了源结点为u 的单源问题,则这一问题也就获得了解决。对于该问题的最坏情况,从渐进意义上看,目前还未发现比最好的单源算法更快的方法。 每对结点间的最短路径问题:对于每对结点u 和v ,找出从u 到v 的最短 路径。我们可以用单源算法对每个结点作为源点运行一次就可以解决问题。

Dijkstra最短路径算法的优化和改进

本科毕业设计(论文)Dijkstra最短路径算法的优化和改进

摘要 随着计算机和地理信息科学的发展,GIS(地理信息系统)的应用领域越来越广.最短路径分析是GIS地理网络分析功能中的一个关键性的问题.计算最短路径的经典算法之一就是Dijkstra算法,许多工程中解决最短路径问题都是采用这种算法.然而,传统的Dijkstra算法在求解节点间最短路径时,对已标识节点外的大量节点进行了计算,从而影响了算法的速度. 该算法的主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍.本文在传统Dijkstra算法的基础上,对其进行了优化,此优化算法只对最短路径上节点的邻点做了一些处理,从而不涉及到其他的一些节点.提出的优化算法在更新最短路径值与选择最短路径值最小的节点时,仅仅涉及到节点的邻居集合及已标识集合中所有节点的邻居集合与已标识集合的差集,其运行时间取决于转接点的邻居集合的元素数量多少.通过减小算法中成功搜索的搜索范围和改进算法的存储结构这两个主要的研究方向使算法得到优化.因而,此优化算法在计算的节点数较传统算法大幅减少,提高了算法的速度.本文通过实验和实际应用对改进后的算法进行了简单的验证.之后将一些算法的改进和实际例子相结合,这样就能使文章中算法的优化更为理想. 关键词最短路径;Dijkstra;优化算法

Abstract With the development of computer and geographic information science, the applications of GIS (Geographic Information System) are becoming more and more widely. However, shortest path analysis is the key problem of network analyses, Dijkstra algorithm is a classic arithmetic for the shortest path. It is the academic foundation that many engineerings were solved in the shortest path is use. When a shortest path between nodes is searched with Dijkstra algorithm, a lot of nodes away from lagged nodes are involved, so that the efficiency of Dijkstra algorithm is low. Main features of the algorithm is the starting point as the center outward expansion layers until it extended to the end point. Dijkstra's algorithm is very representative of the shortest path algorithm, in many professional courses in the basic content as described in detail. The proposed algorithm updates the shortest path in the value of the minimum value of the shortest path to the node, only the set of neighbors of the node related to the identified set and a neighbor set of all nodes in the identified set with the set difference, its running time depends transfer the contact elements of the set of neighbors of quantity. Successful search algorithm by reducing the search range and improved algorithm storage structure of these two main research directions to optimize the algorithm. Therefore,the number of processed nodes is largely reduced in the optimization algorithm, and efficiency of the optimization algorithm is improved. The improved algorithm is proved to be correct and efficient by experiments and practical application. After some of the algorithm and the combination of practical examples, so you can make the article more ideal algorithm optimization. Keywords The shortest path; Dijkstra; Optimization algorithm

物理电路图分析方法

1、物理电路图分析方法 首先,看到电路图判断是串联还是并联电路一定要记住两种电路各自的电流电压的特点可以将已知的条件标注在图上还有,多做有关这方面的典型习题,尤其是老师的举例,多问同学和老师同一个电路图可能有不同看法或分析方法的,但结果是一样的物理不能只靠死记硬背,要多观察,善于思考电路图不会刻意和老师多沟通画电路图的方法:先辨别是串联还是并联,若是并联,再找开关控制哪条干路和支路。 首先牢记电器符号的代表意义,弄清每个元件在电路中的作用,结合生活中常遇电路,多看、多画、多联系实际。遇到电路图时,按:电源+——开关——用电器——电源- 的顺序看,注意串联、并联器件在电路中的作用(分压、分流、限流等)。这个还是要多加练习的。 最基本的,先找到电源正极,电流就从电源正极出发,沿着导线流。遇到分叉路的时候这样看:如果分叉路中有一条是没有任何电器的,只是一条导线,或者只有电流表,(初中阶段电流表是可以看做没有电阻的,所以也相当于一根导线),那么所有的电流肯定只会走这个叉路,不会走别的地方。如果分叉路中有一条是有电压表的(初中阶段电压表看做电阻无限大,也就相当于断路),那么电流肯定不会走这条路。 除了上述两种特殊情况外,电流到了分叉路口就会往各个支路流去,每个支路电流的大小可以用欧姆定律计算。 上面对初中物理电路图分析方法的知识讲解学习,相信同学们已经很好的掌握了吧,希望上面的电路图分析方法给同学们的学习很好的帮助。 2、电路图其实就是看看串联还是并联。 第1步:所有电压表以及它左右两边直至节点的导线遮去不看。 第2步:寻找有没有其他节点,如果有再看两两节点之间的东西,比如电流表测什么电流(与之串联)之类的。(电源到节点的电阻或者电流表是在干路上的,这点要明白,先用铅笔描干路) 第3步:复查,重新走一遍电路,还是电压表遮掉。

图论及其应用(精)

图论及其应用 学时:40 学分:2 课程属性:专业选修课开课单位:理学院 先修课程:高等代数后续课程:无 一、课程的性质 《图论及其应用》是数学与应用数学专业的专业选修课程。 二、教学目的 通过教学,使学生掌握图论及其算法的基本理论和基本技巧,初步掌握图论及其算法的基本应用手段、基本算法设计及编程,并能用所学理论解决一些应用问题。 三、教学内容 1.图的基本概念 2.图的连通性 3.树的基本性质及其应用 4.Euler Graphs and Hamilton Graphs with Applications 5.平面图性质 6.匹配,求最大匹配算法及应用 7.图的染色及应用 8.极图理论 四、学时分配 章课程内容学时 1 图的基本概念 4 2 图的连通性 6 3 树的基本性质及其应用 6 4 Euler Graphs and Hamilton Graphs with Applications 4 5 平面图性质 6 6 匹配,求最大匹配算法及应用 6

7 图的染色及应用 4 8 极图理论 4 合计40 五、教学方式 本课程采用多媒体课堂讲授,结合实际范例深入浅出讲解讨论。 六、考核方式 本课程考核采用平时与期末考核相结合的办法,特别注重平时的考核,作业采用简单练习、论文等形式,期末考试采用简单考题或论文形式。 七、教材及教学参考书 参考教材: [1] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications, The Macmillan Press LTD,1976. [2] 蒋长浩.图论与网络流.北京:中国林业出版社,2000. 参考书目: [1] Bela Bollobas.Modern Graph Theory(现代图论,影印版).北京:科学出版社,2001. [2] 殷剑宏、吴开亚.图论及其算法.合肥:中国科学技术大学出版社,2003. [3] 谢金星、邢文训.网络优化.北京:清华大学出版社.2000. [4] 程理民、吴江、张玉林.运筹学模型与方法教程.北京:清华大学出版社,2000. [5] 三味工作室.SPSS V10.0 for Windows 实用基础教程.北京:北京希望电子出版社2001. [6] 孙魁明、张海彤.Mathematica工具软件大全.北京:中国铁道出版社,1994. [7] 楼顺天、于卫、闫华梁.MATLAB程序设计语言.西安:西安电子科技大学出版社,1997.八、教学基本内容及要求 第一章图的基本概念 1.教学基本要求 掌握的图的基本概念、特殊图概念,了解最短路问题。 2.教学具体内容 图的基本概念,路和圈,最短路问题。

电路图识图方法:10大原则与7大步骤

电路图识图方法:10大原则与7大步骤 01、电路简化的基本原则 初中物理电学中的复杂电路可以通过如下原则进行简化: 第一:不计导线电阻,认定R线≈0。有电流流过的导线两端电压为零,断开时开关两端可以测得电压(电路中没有其他断点)。 第二:开关闭合时等效于一根导线;开关断开时等效于断路,可从电路两节点间去掉。开关闭合有电流流过时,开关两端电压为零,断开时开关两端可以测得电压(电路中没有其他断点)。 第三:电流表内阻很小,在分析电路的连接方式时,有电流表的地方可看作一根导线。 第四:电压表内阻很大,在分析电路的连接方式时,有电压表的地方可视作断路,从电路两节点间去掉. 第五:用电器(电阻)短路:用电器(电阻)和导线(开关、电流表)并联时,用电器中无电流通过(如下图示),可以把用电器从电路的两节点间拆除(去掉)。

第六:滑动变阻器Pa段被导线(金属杆)短接不工作,去掉Pa段后,下图a变为图b。 第七:根据串、并联电路电流和电压规律“串联分压、并联分流”分析总电流、总电压和分电流、分电压的关系。 第八:电流表和哪个用电器串联就测哪个用电器的电流,电压表和哪个用电器并联就测哪个用电器的电压。判断电压表所测量的电压可用滑移法和去源法。 第九:电压表原则上要求并联在电路中,单独测量电源电压时,可直接在电源两端。 一般情况下,如果电压表串联在电路中,测得的电压是电源两端电压(具体情况见笔记)。电流表直接接在电源两端会被烧坏,且让电源短路,烧坏电源。 第十:如果导线上(节点之间)没有用电器(开关,电流表除外),那么导线上的各点可以看做是一个点,可以任意合并、

分开、增减。(此法又称节点法)例如: 02、电路简化步骤 第一步:按照题目要求将断开的开关去掉,将闭合的开关变成导线。 第二步:将电流表变成导线(视具体情况也可保留)。 第三步:去掉电压表。 第四步:合并(或者换位)导线上的节点。(此步骤在电路中用电器比较多,且相互纠结时,采用)。 第五步:画出等效电路图,判断各用电器是串联还是并联。 第六步:在原电路中利用原则七、八判断电流表和电压表各测量哪个用电器的电流和电压。 第七步:将电压表和电流表添加到等效电路图中,分析各电流表和电压表示数之间的关系。(利用原则七) 03、经典例题选讲 例1:在如下电路图中,开关S闭合后,电压表V1的示数是2.5V,V2的示数是1V,如果A2的示数是0.2A,那么A1的示数是多少?试求两只灯泡两端的电压。

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

最短路问题及其应用——最短路径

最短路问题及应用 摘要:主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法以及这两种算法在实际问题中的应用和比较。 关键词:最短路获克斯特拉(Dijkstra),弗罗伊德(Floyd)算法 1.引言 图论是应用数学的一个分支,它的概念和结果来源非常广泛,最早起源于一些数 学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题,如迷宫问题、博弈问题、棋盘上马的行走路线问题等。这些古老的难题,当时吸引了很多学者的注意。在这些问题研究的基础上又继续提出了著名的四色猜想 和汉米尔顿(环游世界)数学难题。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学 等各个领域的问题时,发挥出越来越大的作用在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题的有力工具之一。 最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点 间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学 与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 2.最短路算法 2.1 最短路的定义 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该ij 算法能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短

电子电路设计的一般方法和步骤

电子电路设计的一般方法与步骤 一、总体方案的设计与选择 1.方案原理的构想 (1)提出原理方案 一个复杂的系统需要进行原理方案的构思,也就是用什么原理来实现系统要求。因此,应对课题的任务、要求和条件进行仔细的分析与研究,找出其关键问题是什么,然后根据此关键问题提出实现的原理与方法,并画出其原理框图(即提出原理方案)。提出原理方案关系到设计全局,应广泛收集与查阅有关资料,广开思路,开动脑筋,利用已有的各种理论知识,提出尽可能多的方案,以便作出更合理的选择。所提方案必须对关键部分的可行性进行讨论,一般应通过试验加以确认。 (2)原理方案的比较选择 原理方案提出后,必须对所提出的几种方案进行分析比较。在详细的总体方案尚未完成之前,只能就原理方案的简单与复杂,方案实现的难易程度进行分析比较,并作出初步的选择。如果有两种方案难以敲定,那么可对两种方案都进行后续阶段设计,直到得出两种方案的总体电路图,然后就性能、成本、体积等方面进行分析比较,才能最后确定下来。 2.总体方案的确定 原理方案选定以后,便可着手进行总体方案的确定,原理方案只着眼于方案的原理,不涉及方案的许多细节,因此,原理方案框图中的每个框图也只是原理性的、粗略的,它可能由一个单元电路构成,亦可能由许多单元电路构成。为了把总体方案确定下来,必须把每一个框图进一步分解成若干个小框,每个小框为一个较简单的单元电路。当然,每个框图不宜分得太细,亦不能分得太粗,太细对选择不同的单元电路或器件带来不利,并使单元电路之间的相互连接复杂化;但太粗将使单元电路本身功能过于复杂,不好进行设计或选择。总之,

应从单元电路和单元之间连接的设计与选择出发,恰当地分解框图。 二、单元电路的设计与选择 1.单元电路结构形式的选择与设计 按已确定的总体方案框图,对各功能框分别设计或选择出满足其要求的单元电路。因此,必须根据系统要求,明确功能框对单元电路的技术要求,必要时应详细拟定出单元电路的性能指标,然后进行单元电路结构形式的选择或设计。 满足功能框要求的单元电路可能不止一个,因此必须进行分析比较,择优选择。 2.元器件的选择 (1)元器件选择的一般原则 元器件的品种规格十分繁多,性能、价格和体积各异,而且新品种不断涌现,这就需要我们经常关心元器件信息和新动向,多查阅器件手册和有关的科技资料,尤其要熟悉一些常用的元器件型号、性能和价格,这对单元电路和总体电路设计极为有利。选择什么样的元器件最合适,需要进行分析比较。首先应考虑满足单元电路对元器件性能指标的要求,其次是考虑价格、货源和元器件体积等方面的要求。 (2)集成电路与分立元件电路的选择问题 随着微电子技术的飞速发展,各种集成电路大量涌现,集成电路的应用越来越广泛。今天,一块集成电路常常就是具有一定功能的单元电路,它的性能、体积、成本、安装调试和维修等方面一般都优于由分立元件构成的单元电路。 优先选用集成电路不等于什么场合都一定要用集成电路。在某些特殊情况,如:在高频、宽频带、高电压、大电流等场合,集成电路往往还不能适应,有时仍需采用分立元件。另外,对一些功能十分简单的电路,往往只需一只三极管或一只二极管就能解决问题,就不必选用集成电路。

关于最短路问题算法的一点思考

关于最短路问题算法的一点思考 最短路问题,实际上是P95。也就是我们用一个算法解决SP问题时,就是在找这个加权图G中从s到t的P(s,t)中边权之和最小的P*(s,t). 由定义就可以看出,实际生活中经常有最短路问题的例子。例如: 实例1.某公司在六个城市s,t,a,b都有分公司,公司成员经常往来于它们之间,已知从Vi到Vj的直达航班票价由下述矩阵的第i行,第j列元素给出(∞表示无直达航班),该公司想算出一张任意两个城市之间的最廉价路线航费表。 图+矩阵 实例2.如图的交通网络,每条弧上的数字代表车辆在该路段行驶所需的时间,有向边表示单行道。若有一批货物要从s号顶点运往t号顶点,问运货车应沿哪条线路行驶,才能最快地到达目的地? 图+矩阵 因此怎么样快速又精确的求解一个最短路问题就显得至关重要。下面我们来介绍几种解决SP问题的有效途径。 一、把求最短路问题转化为LP问题 P95 二、最短路问题的原始对偶算法:Dijkstra算法 Pdf最短路+课本P138 综上,即为Dijkstra算法,它的有效实施体现在:P161 对Dijkstra算法的一点思考: 1.关于Dijkstra算法,书中的例子定义了一个使用范围,即寻求有向图中,从一固定顶点到其余各点的最短路径。那么一个简单的推广就是在于,对于无向图或者混合图的情况Dijkstra算法还能否使用?答案应该是肯定的。也就是说,实例2中无论是单行道,双行道的情况都是可以应用Dijkstra算法进行求解的。 2. 作为学习图论的一名学生,Dijkstra算法的本质可以说就是在一个图中,进行标号,每次迭代产生一个永久标号, 从而生长一颗以s为根的最短路树,在这颗树上每个顶点与根s 节点之间的路径皆为最短路径. 3.Dijkstra算法明确要求权(费用)非负,这无疑会限制一些是实际生活中的例子进行求解,若出现的边权为负的情况,Dijkstra算法就要进行修改。并且,如果我们对Dijkstra算法进行编程,即使根据书中拟Algol语言的提示以我现有的水平也根本写不出Matlab的高级程序语言。但是有另外一种算法有效的避免了这个麻烦,它的逻辑更为简单,并允许网络中的弧有负权,能探测网络中负费用圈,与一般的原始对偶算法不同。 三、Floyd-Warshall算法 P164 并且,有一点比较吸引我的地方是在于Floyd-Warshall算法的逻辑较为简单,我可以跟据课本上拟Algol语言,编写出一部分Matlab的程序,但是因为编译程序的水平的限制,每次运行的时候都会出现不同的错误。在与计算数学的同学进行讨论的时候,因为他们偏重绘图而我们偏重优化,导致也为得出有效的解决措施。

电子电路原理图的分析方法

电子电路原理图的分析方法,建议多看看! 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。1.交流等效电路分析法首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。2.直流等效电路分析法画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。3.频率特性分析法主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。4.时间常数分析法主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。

电气原理图识图步骤和方法

步骤和方法 电气原理图绘制一般原则 1.按标准---按规定的电气符号绘制。 2.文字符号标准---按国家标准GB7159-1987规定的文字符号标明。 3.按顺序排列---按照先后工作顺序纵向排列,或者水平排列。 4.用展开法绘制---电路中的主电路,用粗实线画在的左边、上部或下部。 5.表明动作原理与控制关系---必须表达清楚控制与被控制的关系。 6. 电气原理图中的主电路和辅助电路(主电路、辅助电路)。 电气原理图识图的步骤 1.识主电路的具体步骤 (1)查看主电路的选用电器类型。 (2)查看电器是用什么样的控制元件控制,是用几个控制元件控制。(3)查看主电路中除用电器以外的其他元器件,以及这些元件所起的作用。(4)查看电源。电源的种类和电压等级。 2.查看辅助电路的具体步骤 (1)查看辅助电路的电源(交流电源、直流电源)。 (2)弄清辅助电路的每个控制元件的作用。 (3)研究辅助电路中各控制元件的作用之间的制约关系。 电气接线图识图的步骤和方法 电气接线图绘制的基本原则

(1)按照国家规定的电气图形符号绘制,而不考虑真实。 (2)电路中各元件位置及内部结构处理。 (3)每条线都有明确的标号,每根线的两端必须标同一个线号。 (4)凡是标有同线号的导线可以并接于一起。 (5)进线端为元器件的上端接线柱,而出线端为元件的下端接线柱。 电气接线图中电气设备、装置和控制元件位置常识 (1)出入端子处理----安排在配电盘下方或左侧。 (2)控制开关位置----一般都是安排在配电盘下方位置(左上方或右下方)。 (3)熔断器处理----安排在配电盘的上方位置。 (4)开关处理----安装在容易操作的面板上,而不是安装在配电盘上。 (5)指示灯处理----安装在容易观察的面板上。 (6)交直流元件区分处理----采用直流控制的元器件与采用交流控制的元器件分开安装。 电气接线图的识图步骤和方法 (1)分析清楚电气原理图中主电路和辅助电路所含有的元器件,弄清楚每个元器件的动作原理。 (2)弄清楚电气原理图和电气接线图中元器件的对应关系。 (3)弄清楚电气接线图中接线导线的根数和所用导线的具体规格。 (4)根据电气接线图中的线号研究主电路的线路走向。 (5)根据线号研究辅助电路的走向。

十种复杂电路分析方法

十种复杂电路分析方法 Jenny was compiled in January 2021

电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。识别电路的方法很多,现结合具体实 一、特征识别法 串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。 例1.试画出图1所示的等效电路。 解:设电流由A端流入,在a点分叉,b点汇合,由B端流出。支路a—R1—b和a—R2—R3(R4)—b各点电势逐次降低,两条支路的a、b两点之间电压相等,故知R3和R4并联后与R2串联,再与R1并联,等效电路如图2所示。 二、伸缩翻转法 在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去,或将一支路翻到别处,翻转时支路的两端保持不动;导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。 例2.画出图3的等效电路。 解:先将连接a、c节点的导线缩短,并把连接b、d节点的导线伸长翻转到R3—C—R4支路外边去,如图4。

再把连接a、C节点的导线缩成一点,把连接b、d节点的导线也缩成一点,并把R5连到节点d的导线伸长线上(图5)。由此可看出R2、R3与R4并联,再与R1和R5串联,接到电源上。 三、电流走向法 电流是分析电路的核心。从电源正极出发(无源电路可假设电流由一端流入另一端流出)顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。 例3.试画出图6所示的等效电路。 解:电流从电源正极流出过A点分为三路(AB导线可缩为一点),经外电路巡行一周,由D 点流入电源负极。第一路经R1直达D点,第二路经R2到达C点,第三路经R3也到达C 点,显然R2和R3接联在AC两点之间为并联。二、三络电流同汇于c点经R4到达D点,可知R2、R3并联后与R4串联,再与R1并联,如图7所示。 四、等电势法(不讲) 在较复杂的电路中往往能找到电势相等的点,把所有电势相等的点归结为一点,或画在一条线段上。当两等势点之间有非电源元件时,可将之去掉不考虑;当某条支路既无电源又无电流时,可取消这一支路。我们将这种简比电路的方法称为等电势法。 例4.如图8所示,已知R1=R2=R3=R4=2Ω,求A、B两点间的总电阻。 解:设想把A、B两点分别接到电源的正负极上进行分析,A、D两点电势相等,B、C两点电势也相等,分别画成两条线段。电阻R1接在A、C两点,也即接在A、B两点;R2接在

电气原理图识图步骤和方法

电气原理图识图步骤和 方法 The manuscript was revised on the evening of 2021

步骤和方法 电气原理图绘制一般原则 1.按标准---按规定的电气符号绘制。 2.文字符号标准---按国家标准GB7159-1987规定的文字符号标明。 3.按顺序排列---按照先后工作顺序纵向排列,或者水平排列。 4.用展开法绘制---电路中的主电路,用粗实线画在的左边、上部或下部。 5.表明动作原理与控制关系---必须表达清楚控制与被控制的关系。 6. 电气原理图中的主电路和辅助电路(主电路、辅助电路)。 电气原理图识图的步骤 1.识主电路的具体步骤 (1)查看主电路的选用电器类型。 (2)查看电器是用什么样的控制元件控制,是用几个控制元件控制。(3)查看主电路中除用电器以外的其他元器件,以及这些元件所起的作用。(4)查看电源。电源的种类和电压等级。 2.查看辅助电路的具体步骤 (1)查看辅助电路的电源(交流电源、直流电源)。 (2)弄清辅助电路的每个控制元件的作用。 (3)研究辅助电路中各控制元件的作用之间的制约关系。 电气接线图识图的步骤和方法 电气接线图绘制的基本原则

(1)按照国家规定的电气图形符号绘制,而不考虑真实。 (2)电路中各元件位置及内部结构处理。 (3)每条线都有明确的标号,每根线的两端必须标同一个线号。 (4)凡是标有同线号的导线可以并接于一起。 (5)进线端为元器件的上端接线柱,而出线端为元件的下端接线柱。 电气接线图中电气设备、装置和控制元件位置常识 (1)出入端子处理----安排在配电盘下方或左侧。 (2)控制开关位置----一般都是安排在配电盘下方位置(左上方或右下方)。 (3)熔断器处理----安排在配电盘的上方位置。 (4)开关处理----安装在容易操作的面板上,而不是安装在配电盘上。 (5)指示灯处理----安装在容易观察的面板上。 (6)交直流元件区分处理----采用直流控制的元器件与采用交流控制的元器件分开安装。 电气接线图的识图步骤和方法 (1)分析清楚电气原理图中主电路和辅助电路所含有的元器件,弄清楚每个元器件的动作原理。 (2)弄清楚电气原理图和电气接线图中元器件的对应关系。 (3)弄清楚电气接线图中接线导线的根数和所用导线的具体规格。 (4)根据电气接线图中的线号研究主电路的线路走向。 (5)根据线号研究辅助电路的走向。

多条最短路算法的优化

*硕士研究生,北方交通大学系统所,100024;**工程师,北京重型电机厂设计所,100039北京收稿日期:1998-01-05 多条最短路算法的优化 王丽星*  郜 巍 ** 摘 要 先进的运输管理系统与先进的交通导行系统是智能交通系统(I T S )的关键组成部分,而最佳出行路线又是交通导行系统的关键技术之一,本文正是针对这一问题进行研究,并对现有多条最短路算法中存在的自回路现象及在大型网络中运行效率低等不适于实际网络的问题进行了优化。关键词 算法 多条最短路 自回路 优化 智能交通系统中图资料分类号 U 12 城市交通设施的建设远远落后于汽车的增长,由此造成的城市交通道路的堵塞和拥挤已成为世界各大城市面临的共同难题,其解决办法就是大力发展智能交通系统(I T S ),改变现有的交通管理模式。IT S 研究中的一项基础的研究工作就是如何确定最佳出行路线,也就是要确定任意两点间最短路问题。由于实际交通网络系统中存在着路段堵塞现象,所以仅仅给出任意两点间的一条最短路显然是不够的,应给出多条最短路供给IT S 系统判别并选出最佳出行路线。 1 算法的优选 总结现有的算法就不难发现当今算法可分为两大类。一是枚举法,它通过依赖函数在与局部梯度相关的方向上移动来寻找局部最优,即先找到局部最优,再沿最佳允许方向处理函数。枚举法现在很多情况和规模上被认可,但效率很低,由于很多实际问题的网络都很大,以至于搜索一次需要的计算量很大,运算速度缓慢,但它能一次算出多条最短路,而这恰恰是我们所需要的;二是随机算法,它是利用随机技术来实现的。根据随机技术的不同又可分为遗传算法和模拟退火算法。就目前较为热门的遗传算法而言,它是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,将达尔文进化论中的“适者生存”与利用随机信息进行变化相结合。说到随机性,遗传算法不是简单的随机走动,而是有效地利用、开发原有信息,并带着期望改善的性能去推测新的搜索点。因此在处理大型网络时比较有效,但它无法一次算出多条最短路〔4〕。比较上述两类算法的优、劣之后,决定选取枚举法来进行优化后使用。因为找到多条最短路是最终的目标,随机算法虽能有效地处理大型网络,但却无法搜索到多条最短路,进行优化也比较困难;枚举法虽在处理大型网络时效率较低,但却能搜索到多条最短路,且优化也较容易些。 枚举法中的算法又可分为求解一条最短路算法和求解多条最短路算法。文献〔2〕、〔3〕中均给出了在稀疏网络中一条最 短路的优化,但都不适于求解多条最短路问题。在求解多条最短路算法中又包含两个算法,既二重扫除法(Shie r)和推广的福劳德算法(Floy d )。其中用二重扫除算法求任意两点间K 条最短路需用O (K N 3)时间,(其中N 为节点数,K N 3为运算次数,O (K N 3)表示进行K N 3次运算所用的时间);而推广的福劳德算法需用O (2N 3)。因此当K 大于1时,推广的福劳德算法优于二重扫除算法,所以选择推广的福劳德算法作为进一步优化的算法。但推广的福劳德最短路算法存在着自回路现象;同时由于运输网络一般为大型网络,运算次数极为庞大,致使运算速度极为缓慢,使得在实际应用中难以操作,因此需要对现有的算法进行优化。 2 问题的描述 一个运输网络可以用一个有向图G =(V ,E ,W )来表示。 其中V 为顶点集,V ={V i |i =1,2,…n };E 为边集E ={e (V i ,V j )|V i ,V j ∈V i },W 为权集,W ={W (V i ,V j )|V i ,V j ∈V j }。假设要求出K 条最短路,则从点V i 到点V j 的K 条最短路的距离定义为一向量d i j ,d ij ={d ij 1,d ij 2,…d ijk },其中的元素d ijk 表示第k 条最短路的距离,而距离d ijk 对应的路径为向量R ijk ,R ijk 中的元素排列顺序为i 到j 依次经过的点的顺序。 此种算法包括了一个特殊的代数运算,称为广义和运算,在这类运算中把向量看成单个数值,参加运算的向量要求维数相同,其元素值允许含∞,取两个同维向量进行交叉和运算,结果经排序以后得第三向量,其维数相同,而元素取自排序后的最前部分,设广义和的运算符号为×,则广义和的运算为A ×B 。 3 优化后的多条最短路算法的思想 在推广的福劳德算法中存在着自回路现象,但这种自回路现象不会出现在最短路上,只会出现在K 大于1的短路 科技情报开发与经济 1999年 第2期

求最短路问题的改进算法

第18卷第1期工 科 数 学Vo l.18,№.1 2002年2月JO URN AL O F M AT HEM ATICS FO R TECHNO LOGY Feb.2002求最短路问题的改进算法 黄祖庆 (景德镇陶瓷学院,景德镇333001) [摘 要]本文对图论中含有负权的最短路问题的算法进行了讨论,给出了一个具有“可节省存储空间、提高运算速度、易编程实现”等优点的改进算法(算法三),并通过例题进一步验证了该改进算法的优越性,具有一定的现实意义. [关键词]负权有向图;最短路;Dijkst ra算法;改进算法 [中图分类号]O157.5 [文献标识码]A [文章编号]1007-4120(2002)01-0052-03 图论中的最短路问题可描述为:在赋权有向图中,求两个顶点v1到v n之间的一条路,使得在这条路上各个弧的权值之和在从v1到v n的所有路中是最小的. 类似的实际问题有许多,如企业的投资决策问题、各种管线的铺设问题、设备更新问题等等,其求解的算法是由Dijkstra在1959年提出的,故称为Dijkstra算法.其基本思路是:假设在得到从v1到v n的最短路之前,已经知道了图中最接近顶点v1的m个顶点,以及从v1到m个顶点的最短路;然后再确定最接近顶点v1的第m+1个顶点v k,以及从点v1到v k的最短路;如此继续延伸,直到v n也被确定,此时问题求解结束. 记P,T分别为永久标号集和临时标号集.顶点v i的临时标号记成T(i),它表示从v1到v i的最短距离的上界;顶点v i的永久标号记成P(i),它表示从v1到v i的实际最短距离.已得到P类标号的顶点不再改变其标号,而没有标上P类标号的顶点必须标上T类标号.算法的每一步要把某一顶点的T类标号改为P类标号.当v n获得P类标号时,就求得了从v1到v n的最短路线.w ij为弧(v i,v j)的权值.则Dijkstra算法具体步骤为(称作算法一): i)给顶点v1标上永久标号P(1)=0,这表示从v1到v1最短距离为零.其余顶点标上临时标号T (j)=∞; ii)设顶点i是刚得到P类标号的顶点,把与顶点i有弧直接相连而又属于T类标号的各顶点j的标号改为下列T类标号: T(j)=min{T(j),P(i)+w i j}; iii)在T类标号中选标号最小的顶点j0,并把它的临时标号T(j0)改为永久标号P(j0).若终点获得P类标号,则算法终止,最短路已经找到;否则转向ii). Dijkstra的思路、算法简单,但是仅适用权值w i j≥0的情形.当权值w ij有负值时,此时须对Dijkstra 算法作些改动、补充,则仍可以求出含有负权值图的最短路,算法步骤如下(称作算法二): i)先对图中各个顶点按Dijkstra算法标号,称之为第一次标号(此次标号的结果是有可能改变的),记作P(1).令m=1,转向第二步; ii)对图中除v1外的所有点进行第m+1次标号.记P(m+1)(k)为对顶点v k的第m+1次标号的第二个标号值,其计算公式为: P(m+1)(k)=min{P(m)(k),{P(m)(i)+w ik|存在弧(v i,v k)}};  [收稿日期]2001-02-15

相关主题
文本预览
相关文档 最新文档