当前位置:文档之家› 流体主要计算公式

流体主要计算公式

流体主要计算公式
流体主要计算公式

1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。

1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。

1781年拉格朗日首先引进了流函数的概念。

1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。

1876年雷诺发现了流体流动的两种流态:层流和紊流。

1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。

19世纪末,相似理论提出,实验和理论分析相结合。

1904年普朗特提出了边界层理论。

20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。

理想势流伯努利方程

(3-14)

或(3-15)

物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。

(应用条件:“”所示)

符号说明

二、沿流线的积分

1.只有重力作用的不可压缩恒定流,有

2.恒定流中流线与迹线重合:

沿流线(或元流)的能量方程:

(3-16)

注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。

(应用条件:“”所示,可以是有旋流)

流速势函数(势函数)观看录像>>

?存在条件:不可压缩无旋流,即或

必要条件存在全微分d

直角坐标

(3-19)

式中:——无旋运动的流速势函数,简称势函数。

?势函数的拉普拉斯方程形式

对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有:

或(3-20)

适用条件:不可压缩流体的有势流动。

点击这里练习一下

极坐标

(3-21)

流函数

1.流函数

存在条件:不可压缩流体平面流动。

直角坐标

连续性微分方程:

必要条件存在全微分d y

(3-22)

式中:y——不可压缩流体平面流动的流函数。

适用范围:无旋流、有旋流、实际流体、理想流体的不可压缩流体的平面流动。

流函数的拉普拉斯方程形式

对平面势流,有,则

或(3-23)

适用条件:不可压缩流体的平面有势流动。

极坐标

(3-24)

2.流函数的物理意义

(1)流函数等值线就是流线。

得平面流线方程(3-1):,得证。

(2)不可压缩流体的平面流动中,任意两条流线的流函数之差d y等于这两条流线间所通过的单位宽度流量d q。

AB断面所通过流量:

图3-26

粘性流体的运动微分方程

1.粘性流体的特点

(1)实际流体的面积力包括:压应力和粘性引起的切应力。

切应力由广义牛顿内摩擦定律确定:

(2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不等,即p xx p yy p zz 。任一点

动压强由式(2-5)为:

(3-11)

第三节 流体动力学基本方程式

一、连续性微分方程

在流场内取一微元六面体(如图3-23),边长为d x ,d y ,d z ,中心点O 流速为(u x ,u y ,u z ) 以x 轴方向为例: 图3-23

左表面流速 右表面流速

所以 单位时间内x 方向流出流进的质量流量差:

x 方向: 同理可

得:

y 方向:

z 方向:

质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应 等于六面体内因密度变化而减少的质量,即: (3-6)

(1)流体的连续性微分方程的一般形式 由(3-6)式可得

(3-7)

适用范围:理想流体或实际流体;恒定流或非恒定流;可压缩流体或不可压缩流体。 (2)可压缩流体恒定流动的连续性微分方程 当为恒定流时,有,则(3-7)式为

(3-8) 适用范围:理想、实际、可压缩、不可压缩的恒定流。 (3)不可压缩流体的连续性微分方程 当为不可压缩流时,有,则(3-7)式为

(3-9)

物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量),与流出的流体体积(质量)之差等于零。

适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。

二、理想流体运动微分方程

理想流体的动水压强特性与静水压强特性相同:

从理想流体中任取一(x ,y ,z )为中心的微元六面体为控制体,边长为d x ,d y ,d z ,中心点压强为p (x ,y ,z ) ,如图3-24。 图3-24

受力分析(x 方向为例): 1.表面力

因为理想流体,所以t =0 左表面

右表面

2.质量力

单位质量力在各坐标轴上分量为X,Y,Z,所以x方向的质量力为X d x d y d z

由牛顿第二运动定律,x方向有:

理想流体的运动微分方程(欧拉运动微分方程)

(3-10)

适用范围:恒定流或非恒定流,可压缩流或不可压缩流体。

若加速度等于0,则上式就可转化为欧拉平衡微分方程(2-6)式

三、粘性流体的运动微分方程

1.粘性流体的特点

(1)实际流体的面积力包括:压应力和粘性引起的切应力。

切应力由广义牛顿内摩擦定律确定:

(2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不等,即p xx p yy p zz。任一点动压强由式(2-5)为:

(3-11)

2.实际流体的运动微分方程式

图3-25

同样取一微元六面体作为控制体,如图3-25。 x 向受力

左右向压力、 上下向切力、 前后面切力、 质量力 x 方向(牛顿第二运动定律)

考虑条件: 1)不可压缩流体的连续性微分方程(3-9):

2)切应力与主应力的关系表达式(3-11)。 可得不可压缩粘性流体运动微分方程:

纳维-斯托克斯方程(Navier-Stokes ,N-S)方程

(3-12)

拉普拉斯算符 , 例:

想一想:N-S 方程与欧拉运动微分方程有何联系?

N -S 方程是不可压缩粘性流体的运动微分方程,而欧拉运动微分方程则是理想流体的运动微分方程。当流动流体的运动粘度等于0,即为理想流体时,N -S 方程即为欧拉运动微分方程。

第四节 欧拉运动微分方程的积分

由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三项中包含了未知数与其偏导数的乘积),因

法在一般情况下积分,只能在一定条件下积分。欧拉运动微分方程组(3-10)各式分别乘以d x ,d y ,d z (流场任意相邻两点间标分量),然而相加得: (3-13)

一、在势流条件下的积分

考虑条件

1.恒定流:;

2.均匀不可压缩流体,即=const,;

3.质量力只有重力,即X=Y=0,Z=-g;

4.有势流动,满足式(3-5):;

因此,(3-13)式中各项为:

(考虑欧拉加速度的表达式(3-3))

(引入有势流动的条件4)

由以上得:

积分得:

第一节流态判别

一、两种流态的运动特征

1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流观看录像>>

层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:

(1)有序性。水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循牛顿内摩擦定律。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且雷诺数Re较小时发生。

2.紊流观看录像>>

紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:

(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

二、雷诺实验

如图6-1所示,实验曲线分为三部分:

(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

图6-1图6-2

观看录像一>>观看录像二>>观看录像三>>实验结果(图6-2)的数学表达式

层流:m1=, h f=k1v , 即沿程水头损失与流线的一次方成正比。

紊流:m2=~, h f =k2v~,即沿程水头损失h f与流速的~次方成正比。

层流:

紊流:

流态判别

一、两种流态的运动特征

1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流

层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:

(1)有序性。水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循牛顿内摩擦定律

牛顿内摩擦定律

a. 牛顿内摩擦定律:液体运动时,相邻液层间所产生的切应力与剪切变形的速率成正比。即

(N/m2,Pa)(1-6)

—粘性切应力,是单位面积上的内摩擦力。

说明:1)流体的切应力与剪切变形速率,或角变形率成正比。——区别于固体的重要特性:固体的切应力与角变形的大小成正比。

2)流体的切应力与动力粘度成正比。

3)对于平衡流体d u /d y =0,对于理想流体=0,所以均不产生切应力,即t =0。

b.牛顿平板实验与内摩擦定律

图1-1 流体的绝对粘度

设板间的y 向流速呈直线分布,即:

则:

实验表明,对于大多数流体满足:

引入动力粘度,则得牛顿内摩擦定律

(1-7)

式中:流速梯度代表液体微团的剪切变形速率。线性变化时,即;非线性变化时,即是u对y求导。

证明:在两平板间取一方形质点,高度为d y,d t时间后,质点微团从abcd运动到a′b′c′d′。

由图1-2得:

则:

图1-2

说明:流体的切应力与剪切变形速率,或角变形率成正比。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且雷诺数Re较小时发生。

2.紊流

紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:

(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

三、层流、紊流的判别标准——临界雷诺数

临界雷诺数

上临界雷诺数:层流→紊流时的临界雷诺数,它易受外界干扰,数值不稳定。

下临界雷诺数:紊流→层流时的临界雷诺数,是流态的判别标准,它只取决于水流边界的形状,即水流的过水断面形状。

变直径管流中,细断面直径d1,粗断面直径d2=2d1,则粗细断面雷诺数关系是。

圆管流

(5-1)

层流

紊流

明渠流

(5-2)

式中:R——水力半径,R=A/P;

A——过水断面面积;

P——湿周,即断面中固体边界与流体相接触部分的周长。

问题:雷诺数与哪些因数有关?其物理意义是什么?当管道流量一定时,随管径的加大,雷诺数是增大还是减小?答案:

雷诺数与流体的粘度、流速及水流的边界形状有关。Re=惯性力/粘滞力, 随d增大,Re减小。

.为什么用下临界雷诺数,而不用上临界雷诺数作为层流与紊流的判别准则?

答:上临界雷诺数不稳定,而下临界雷诺数较稳定,只与水流的过水断面形状有关。

3.当管流的直径由小变大时,其下临界雷诺数如何变化?

答:不变,临界雷诺数只取决于水流边界形状,即水流的过水断面形状。

三、紊流的基本方程

对N-S方程(3-12)和连续性方程(3-9)进行时间平均即可得出紊流的时均流动方程。

连续性方程

(6-20)

N-S方程(x方向)

(6-21)

式中:

——由于脉动产生的附加法应力

统称为雷诺应力

——由于脉动产生的附加切应力

它们是紊流传输项,也是造成紊流动量交换及质点混掺的主要原因。在紊流边界层外侧或紊流扩散中,雷诺应力远远超过粘性切应力。

边界层概念

一、边界层的提出

1.边界层(boundary layer ):

图6-17

亦称附面层,雷诺数很大时,粘性小的流体(如空气或水)沿固体壁面流动(或固体在流体中运动)时壁面附近受粘性影响显著的薄流层,如图6-17。

判断:边界层内流体流动与粘性底层流体流动都属于层流。 你的回答:

2.流场的求解可分为两个区进行

根据边界层的概念,可将流场的求解可分为两个区进行: 边界层内流动必须计入流体的粘性影响可利用动量方程求得近似解。

边界层外流动视为理想流体流动,可按势流求解。

二、层流边界层和紊流边界层

1.边界层的描述

普兰特把贴近于平板边界存在较大切应力 ,粘性影响不能忽略的薄层称为边界层,图6-18。 边界中的水流同样存在两种流态:层流和紊流。

图6-18

2.边界层的厚度

边界层厚度δ(boundary layer thickness):自固体边界表面沿其外法线到纵向流速u x达到主流速U0的99%处,这段距离称为边界层厚度。边界层的厚度顺流增大,即δ是x的函数。

3.转捩点,临界雷诺数

转捩点:在x=x cr处边界层由层流转变为紊流的过渡点。

临界雷诺数:

(6-45)

特点:临界雷诺数的大小与来流的脉动程度有关,脉动强,小。

层流边界层与紊流边界层(图6-19)

层流边界层(laminar boundary layer):当边界层厚度d较小时,边界层内的流速梯度很大,粘滞应力的作用也很大,这时边界层内的流动属于层流,这种边界层称为层流边界层。

紊流边界层(turbulence boundary layer):当雷诺数达到一定数值时,边界层中的层流经过一个过渡区后转变为紊流,就成为紊流边界层。

在紊流边界层内,最紧靠平板的地方,d u x/d y仍很大,粘滞力仍起主要作用,其流态仍为层流,所以紊流边界层内有一粘性底层。

图6-19

光滑平板边界层

临界雷诺数的范围:

临界雷诺数并非常量,而是与来流的扰动程度有关,如果来流受到扰动,脉动强,流态的改变在较低的雷诺数就会发生。

边界层厚度

层流边界层紊流边界层(6-46) (6-47)

5.边界层特点

(1)边界层厚度为一有限值(当u x→时)

(2)边界层厚度沿程增加(δ=δ(x))

(3)边界层内:;边界层外:按理想流体或有势流动计算。

(4)边界层分层流边界层和紊流边界层。

边界层分离

1.边界层分离(separation of boundary layer):因压强沿流动方向增高,边界层内流体从壁面离开的现象称边界层分离。

观看录像>>

平板绕流的边界层分离,如图6-20。

压强梯度保持为零,即d p/d x=0

无论板有多长,都不会发生分离,这时边界层只会沿流向连续增厚。

压强沿程增大,即p2>p1或梯度 d p/d x>0

边界层迅速地增厚,压强的增大(流速减小)和阻力增大使边界层内动量减小,如两者共同作用在一足够长的距离,致使边界层内流体流动停滞下来,分离便由此而生,自分离点B起,边界流线必脱离边界,其下游近壁处形成回流(或涡旋),在分离点:

(6-48)

(6-49)

图6-20

点击这里练习一下!

2.尾流

尾流:分离流线与物体边界所围的下游区域,如图6-21。

减小尾流的主要途径:使绕流体型尽可能流线型化。

观看录像>>

图6-21

1.流体流动的两种形态(层流和紊流)的特点。(质点是否掺混,运动是否有序,水头损失与流速间关系)

2.层流、紊流的判别标准——下临界雷诺数Re c Re c只取决于边界形状(过水断面形状)。对圆管流Re c <2300时为层流。

3.均匀流基本方程:τ0=ρgRJτ=ρgR'J

4.不可压缩恒定均匀圆管层流

圆管层流流速呈旋转抛物面分布:。

圆管层流的最大流速:

圆管层流的断面平均流速:断面平均流速是最大流速为的2倍。

圆管层流的水头损失:,即水头损失与流速的一次方成正比,沿程阻力系数λ=64/Re。

5.紊流特点:无序性、耗能性、扩散性。

时均化处理紊流。瞬时流速=时均流速+脉动流速

6.紊流切应力:

7.紊流流速分布

a.近壁处:,线性分布

b.紊流核心区:,对数分布

粘性底层厚度:,随Re的增大而减小

8.能量损失,

恒定紊流能量方程

一、水流阻力与水头损失

产生流动阻力和能量损失的根源:流体的粘性和紊动。

1.水头损失的两种形式

(1)沿程阻力和沿程水头损失

沿程阻力(frictional drag):当限制流动的固体边界使流体作均匀流动时,流动阻力只有沿程不变的切应

力,该阻力称为沿程阻力。

沿程水头损失(frictional head loss):由沿程阻力作功而引起的水头损失称为沿程水头损失。

(2)局部阻力和局部水头损失观看录像>>

局部阻力(local resistance):液流因固体边界急剧改变而引起速度分布的变化,从而产生的阻力称为局部阻力。

局部水头损失(local head loss):由局部阻力作功而引起的水头损失称为局部水头损失。

(3)特点

沿程水头损失h f:主要由于“摩擦阻力”所引起的,随流程的增加而增加。在较长的直管道和明渠中是以h f 为主的流动。

局部阻力水头损失h j:主要是因为固体边界形状突然改变,从而引起水流内部结构遭受破坏,产生漩涡,以

及在局部阻力之后,水流还要重新调整结构以适应新的均匀流条件所造成的。例“弯头”,“闸门”,“突然扩

大”等。

(4)水头损失的叠加原理

水头损失叠加原理:流段两截面间的水头损失为两截面间的所有沿程损失和所有局部损失的总和。即:

(6-26)

式中:n——等截面的段数;

m——局部阻力个数。

不同固体边界下的水头损失如图6-11:

图6-11

2.沿程水头损失公式

(1)魏斯巴赫(Weisbach)公式

实验表明:

(6-27)

式中:λ——沿程阻力系数。

R——水力半径,R=A/P。

适用范围:适用于任意形状等截面流道的恒定均匀流。

(2)圆管流的达西-魏斯巴赫公式(简称为D-W公式)

圆管的R=d/4,则

(6-28)

适用范围:适用于圆管紊流或层流,为恒定均匀管流的通用公式。

判断:有两根管道,一根输油管,一根输水管,当直径、长度、边界粗糙度均相等时,则沿程水头损失必

然相等。你的回答:对错

(3)谢才公式

(6-29)

式中:C——谢才系数,。通常按经验公式确定。

适用范围:适用于各种流态或流区。但是当C按经验公式曼宁公式和巴甫洛夫斯基公式确定时,只适用于处于紊流粗糙管区(阻力平方区)时的明渠、管道均匀流,如明渠流、有压混凝土管流、有压隧洞流等。

选择:半圆形明渠,半径r0=4m,水力半径为:你的回答:4m 3m 2m 1m

判断:谢才系数C是一个无量纲的纯数。你的回答:对错

(4)谢才系数的计算

a.计算常用公式:

由式(6-27)可得

(6-30)

适用范围:适用于任何流区。

b.曼宁公式

(6-31)

适用范围:适用于水流处于阻力平方区的均匀

流。

c.巴甫洛夫斯基公式

(6-32)

适用范围:适用于水流处于阻力平方区的均匀流,且≤R≤,≤n≤。

式中:R——水力半径(m);n——糙率。

第一节流动相似

原型:天然水流和实际建筑物称为原型。

模型:通常把原型(实物)按一定比例关系缩小(或放大)的代表物,称为模型。

水力学模型试验:是依据相似原理把水工建筑物或其它建筑物的原型按一定比例缩小制成模型,模拟与天然情况相似的水流进行观测和分析研究,然后将模型试验的成果换算和应用到原型中,分析判断原型的情况。

水力学模型试验的目的:利用模型水流来模拟和研究原型水流问题。

关键问题:模型水流和原型水流保持流动相似。

流动相似:两个流动的相应点上的同名物理量(如速度、压强、各种作用力等)具有各自的固定比例关系,则这两个流动就是相似的。

模型和原型保证流动相似,应满足:

几何相似

运动相似

动力相似

初始条件和边界条件相似

1.几何相似

几何相似:指原型和模型两个流场的几何形状相似,即原型和模型及其流动所有相应的线性变量的比值均相等。

长度比尺:(5-1)

面积比尺:(5-2)

体积比尺:

2. 运动相似

运动相似:是指流体运动的速度场相似,也即两流场各相应点(包括边界上各点)的速度u及加速度a方向相同,且大小各具有同一比值。

速度比尺:(5-4)

加速度比尺:(5-5)

3.动力相似

动力相似:是指两流动各相应点上流体质点所受的同名力方向相同,其大小比值相

等。

力的比尺:

(5-6)

4.初始条件和边界条件的相似

初始条件:适用于非恒定流。

边界条件:有几何、运动和动力三个方面的因素。如固体边界上的法线流速为零,自由液面上的压强为大

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流体力学基本公式

1流体中稳定流动和均匀流动的区别 (1)①根据当地加速度是否为0,即流体运动要素是否随时间变化,流体分为 稳定流动和不稳定流动。 ②根据迁移加速度是否为0,即流体运动要素是否随空间参数变化,流体 分为均匀流和非均匀流。(非均匀流又分为缓变流和急变流) (2)稳定流动是流场中流体质点通过空间点时所有的运动要素都不随时间改变 的流动。 (3)均匀流动是指流场中同一直线上的各流体质点的运动要素沿程不变(不随 空间参数变化)的流动。 (4)稳定流的流线可以为曲线。均匀流的流线不能为曲线,只能是一元流动。 2迹线方程最后是写成多个还是整合成一个? 答:如果迹线方程可以合并为一个,尽量合并为一个,并且尽量消掉参数t 。如果不能合并,就不用合并。理论上说都是可以的,但是从考试的答案来说,基本上都是合并的。 流体力学基本公式 1.牛顿内摩擦定律 (1)表达式: dy du μτ±=。 (2)内摩擦定律与三个因素相关,粘性切应力与流体粘度和速度梯度有关,与 压力的大小关系不大。 (3)适用条件:牛顿流体的层流运动。 2.欧拉平衡微分方程 (1)01=??-x p X ρ,01=??-y p Y ρ,01=??-z p Z ρ (2)适用于绝对静止状态和相对静止状态,可压缩流体和不可压缩流体。 3.静力学基本方程式 (1) g p z g p z ρρ2 211+=+ (2)适用条件:重力作用下、静止的、连通的、均质流体。 (3)几何意义:静止流体中,各点的测压管水头为常数。 (4)物理意义:静止流体中,各点的总比能为常数。 4.连续性方程

(1)适用于系统的质量守恒定律在控制体上的应用。 (2)三种形式:一般形式,恒定流,不可压缩流。 ①一般形式:0)()()(=??+??+??+??z u y u x u t z y x ρρρρ ②恒定流:0)()()(=??+??+??z u y u x u z y x ρρρ ③不可压缩流体:0=??+??+??z u y u x u z y x 5.欧拉运动方程 (1) dt du z p Z dt du y p Y dt du x p X z y x =??-=??-=??-ρρρ1,1,1 (2)适用条件:所有理想流体。 6.理想流体的伯努利方程 (1)2211221222p u p u z z g g g g ρρ++=++ (2)适用条件:理想流体;不可压缩流体;质量力只有重力;沿稳定流的流线 或微小流束。 (3)几何意义:沿流线总水头为常数。 (4)物理意义:沿流线总比能为常数。 7.实际流体总流的伯努利方程 (1)221112221222w p v p v z z h g g g g ααρρ++=+++ (2)适用条件:实际流体稳定流;不可压缩流体;质量力只有重力;所取断面 为缓变流断面。 (3)动能修正系数α:总流有效断面上的实际动能与按平均流速算出的假想动 能的比值。1α>,由断面上的速度分布不均匀引起,不均匀性越大,α越大。 8.动量方程 (1)() 21=Q F v v ρ-∑

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

流体力学计算公式

C3.6.2 达西摩擦因子 为了确定λ与Re 的关系,人们作了大量实验和理论研究,下面介绍有代表性的结果。 1.尼古拉兹实验 尼古拉兹(J.Nikuradse,1932)分析了达西的圆管沿程阻力实验数据后,发现壁面粗糙度对λ的影响很大,决定用人工粗糙度方法实现对粗糙度的控制。他用当地黄砂砂粒经筛选后分类均匀粘贴在管内壁上,相对粗糙度ε/d 从1/30—1/1014分6种,测得λ与Re 的关系,得到尼古拉兹图(图C3.6.1)。 2. 常用计算公式 从尼古拉兹图中看到在不同Re 数和ε/d 值的区域,λ有不同的变化规律。 图C3.6.1

(1)层流区 由泊肃叶定律推导的沿程水头损失(C3.4.10)式可得 代入达西公式(C3.6.3)式,可得层流区λ的解析式 上式表明层流区λ与管壁粗糙度无关,写成常用对数形式为 上式在双对数坐标系中是一条直线,与尼古拉兹图吻合。 (2)过渡区 该区是层流向湍流的转捩区(2000ε)时(图C3.6.2)摩擦因子同壁面粗糙度无关,称为湍流光滑管区。 布拉修斯(P.Blasius,1911)运用1/ 7次指数律速度分布式,结合实验数据导出经验公式: 上式称为布拉修斯公式,适用范围为4000

流体力学复习要点(计算公式)

第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ,3 m kg 29.1=空气 ρ 牛顿内摩擦定律:剪切力:dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度:ρυμ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱m m 73610/9800012===m m N at 2/1013251m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D += 1 ) () 2(32121h h h h L e ++= 3 2L e y D = = (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形 12 3bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力 z x P P P += 与水平面的夹角 x z P P arctan =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ?? ?????+??+??+??=??+??+??+??= ??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

流体力学计算公式

1、单位质量力:m F f B B = 2、流体的运动粘度:ρ μ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dp d dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dT d dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+= 7、静水总压力: )h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ== 8、元流伯努利方程;'2221112w h g p z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,g p ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C g p p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h g v g p z g v g p z +++=++222 221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42 122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:g v d l h f 22 λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)

冲床冲压力计算公式

冲床冲压力计算公式 冲床冲压力计算公式 冲床冲压力计算公式P=kltГ 其中:k为系数,一般约等于1, l 冲压后产品的周长,单位mm; t为材料厚度,单位mm;Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少就是多少T 冲床冲压力计算公式P=kltГ 其中:k为系数,一般约等于1, l冲压后产品的周长,单位mm; t为材料厚度,单位mm; Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少就是多少T. 这个只能算大致的,为了安全起见,把以上得到的值乘以2就可以了,这样算出的值也符合复合模的冲压力. 冲裁力计算公式:P=K*L*t*τ P——平刃口冲裁力(N); t——材料厚度(mm); L——冲裁周长(mm); τ——材料抗剪强度(MPa); K——安全系数,一般取K=1.3. 冲剪力计算公式:F=S*L*440/10000 S——工件厚度 L——工件长度 一般情况下用此公式即可。 冲压力是指在冲裁时,压力机应具有的最小压力。 P冲压=P冲裁+P卸料+P推料+P压边力+P拉深力。 冲压力是选择冲床吨位,进行模具强度。刚度校核依据。 1、冲裁力:冲裁力及其影响周素:使板料分离动称作冲裁力.影响冲裁力的主要因素: 2.冲裁力计算: P冲=Ltσb 其中:P冲裁-冲裁力 L-冲裁件周边长度 t-板料厚度 σb-材料强度极限σb-的参考数0.6 算出的结果单位为KN

3、卸料力:把工件或废料从凸模上卸下的力 Px=KxP冲 其中Kx-卸料力系数Kx-的参考数为0.04 算出的结果单位为KN 4、推件力:将工件或废料顺着冲裁方向从凹模内推出的力 Pt=KtPn Kt-推件力系数n-留于凹模洞口内的件数 其中:Px、Pt --分别为卸料力、推件力 Kx,Kt分别是上述两种力的修正系数 P——冲裁力; n——查正表卡在凹模洞口内的件数Kt的参考数为0.05,结果单位为KN 5、压边力:P y=1/4 [D2—(d1+2R凹)2]P 式中D------毛坯直径 d1-------凹模直径 R凹-----凹模圆角半径 p--------拉深力 6、拉深力:Fl= d1 bk1(N) 式中d1-----首次拉深直径(mm) b-----材料抗拉强度(Mpa) K-------修正系数

冲床冲压力计算公式

冲床冲压力计算公式 2007-01-22 13:57 这下面有几个公式,任选一个就可以,只能算出个大概,我公司是用Excle做好的函数算的,非常精确,如果你想得到更精确的,我可以帮你算,把冲压产品的周长或规格,厚度,原材料材质(越详细越好,如钢铁的含碳量多少)发到我邮箱landray2006@https://www.doczj.com/doc/7b6782503.html, ,标题请注明 "算冲压力",不然我会当垃圾邮件直接删的.我会在两天内回复,如果想自己算,就用下面的任一个公式都能算. --------------------------------------- 冲床冲压力计算公司P=kltГ 其中:k为系数,一般约等于1, l冲压后产品的周长,单位mm; t为材料厚度,单位mm; Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少 就是多少T. 这个只能算大致的,为了安全起见,把以上得到的值乘以2就可以了,这样算出的值也符合复合模的冲压力. ---------------------------------- 冲裁力计算公式:P=K*L*t*τ P——平刃口冲裁力(N); t——材料厚度(mm); L——冲裁周长(mm); τ——材料抗剪强度(MPa); K——安全系数,一般取K=1.3. ------------------------------------ 冲剪力计算公式:F=S*L*440/10000 S——工件厚度 L——工件长度 一般情况下用此公式即可。 ------------------------------------- 冲压力是指在冲裁时,压力机应具有的最小压力。 P冲压=P冲裁+P卸料+P推料+P压边力+P拉深力。 冲压力是选择冲床吨位,进行模具强度。刚度校核依据。 1、冲裁力:冲裁力及其影响周素:使板料分离动称作冲裁力.影响冲裁力的主要因素: 2.冲裁力计算: P冲=Ltσb 其中:P冲裁-冲裁力 L-冲裁件周边长度

流体力学公式总结(完整资料).doc

【最新整理,下载后即可编辑】 工程流体力学公式总结 第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: T V V ??=1αp V V ??-=1κV P V K ??- =κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm ·a 离心惯性力ΔFR = Δm ·rω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即: p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??- =ρ

流体力学公式总结

工程流体力学公式总结 第二章 流体的主要物理性质 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: 12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm·a 离心惯性力ΔFR = Δm·r ω2 . T V V ??=1αp V V ??-=1κV P V K ??-=κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即:p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 单位质量流体的力平衡方程为: 5.压强差公式(欧拉平衡微分方程式综合形式) 6.质量力的势函数 7.重力场中平衡流体的质量力势函数 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??-=ρ0 1=??-x p f x ρ10y p f y ??-=ρ01=??-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (??+??+??=++ρ) d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ??????=++++=-

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式 1.流体的体积压缩系数计算式:β1dρ p=-1dV Vdp=ρdp 流体的体积弹性系数计算式:E=-Vdpdp dV=ρdρ 流体的体积膨胀系数计算式:βdV T=1 VdT=-1dρ ρdT 2.等压条件下气体密度与温度的关系式:ρ0 t=ρ 1+βt,其中β=1 273。 3T=±μAdu dy 或τ=Tdu A=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631 E)?10-4 f1?p? x-ρ?x=0?fr-1?p=0? ?ρ?r?? 4.欧拉平衡微分方程式: f? y-1?p ρ?y=0??和fθ-1?p ρ=0? f1?p?r?θ ρ?z=0?? ??f1?p? z-z-ρ?z=0?? 欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0 frdr+fθrdθ+fzdz=0 6p γ+z=C 或 p1 γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2 相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz2 7p=p0+γh,其中p0为自由液面上的压力。

8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式: ax+gz=C;自由液面方程式:ax+gz=0。注意:p0为自由液面上的压力。 1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r2 2g-z);等压面方程式:ω2r2 2-gz=C;自由液面方程式:ω2r2 2-gz=0。注意:p0为自由液面上的压力。 10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)A Ixc ycA或yD-yc=Ixc ycA。当自由液面上的压力为大气压时:yD=yc+ 矩形截面的惯性矩Ixc计算式:Ixc= 圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 64 11.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。 12 ?ux?ux?ux?ux?+ux+uy+uz?τ?x?y?z???uy?uy?uy?uy?+ux+uy+uz直角坐标系:ay=? ?τ?x?y?z??u?uz?uz?uz?az=z+ux+uy+uz?τ?x?y?z??ax= ?ur?ur?ur?uruθ2ar=+ur+uθ+uz-?τ?rr?θ?zr ?u?u?u?uuu圆柱坐标系:aθ=θ+urθ+uθθ+uzθ+rθ ?τ?rr?θ?zr ?u?uz?uz?uzaz=z+ur+uθ+uz?τ?rr?θ?z????????? 流体质点的压力、密度等流动参量对时间的变化率计算式: dp?p?p?p?p=+ux+uy+uzdτ?τ?x?y?z dρ?ρ?ρ?ρ?ρ=+ux+uy+uz?τ?x?y?z dτ 13 drrdθdzdxdydz==== 及uxuyuzuruθuz2 ?ρ?(ρux)?(ρuy)?(ρuz)14.三维连续性方程式的一般式:+++=0 ?τ?x?y?z ?ρρur?(ρur)?(ρuθ)?(ρuz)++++=0 ?τr?rr?θ?z ?ux?uy?uz15.不可压缩流体的三维连续性方程式:++=0 ?x?y?z ur?ur?uθ?uz+++=0?rr?θ?z r 16M=ρ11A1=ρ22A2 对于不可压缩流体: Q=1A1=2A2

流体力学-公式

随体倒数 ()D u D t t ααα?= +??? ()() u u i v j w k i j k u v w x y z x y z ??????????=++?++=++ ????????? 雷诺输运定理:对系统的随体倒数求法 [()][ )]V V k V V k D dv u dv D t t D dv u dv D t t x φφφφφφ?=+????? = +?????? ( ij i j e e δ=? ()i j k i jkl l jkl il jki ijk e e e e e εεδεε??=?=== i j ijk k e e e ε?= ()()()() i j i j i j i j i i e e e e x x x x x x φ φφφ?????????=?=?=?????? ()i i i i e e x x φφφ???==?? ()i i j j i i a a e a e x x ??????=?= ????? ()()j j k i j j i j ijk k ijk i i i i j a a a a e a e e e e e x x x x εε??????=?=?==????

1、i j u x ?? ?? ?????? :速度梯度张量 应变率张量:表示微团的变形运动 1122112211 22ij u u v u w x y x z x v u v v w s x y y z y w u w v w x z y z z ?? ?? ???????++ ? ? ?????????? ? ? ?? ?? ????? ?=++ ? ?????? ? ???? ? ?? ??????? ? ++ ? ? ???????? ?? ? ? 旋转张量:表示旋转 3231 210 0 0ij a ωωωωωω-?? ?= ? ?-?? - 质量守恒: ()0k k u t x ρρ??+=?? 0k k u D D t x ρρ ?+=? 第二那诺雷诺输运定律: V V D D dv dv D t D t αραρ= ? ? 动量守恒定律:() u u u f t ρ ρρ?+??=??+?σ ij i i j D u f D t x σρ ρ?= +? ij i i j i j j u u u f t x x σρ ρρ???+= +??? D u f D t ρ ρ=??+σ 能量守恒定律:()1 2i i i j ij i i i i q D e u u u u f D t x x ρ σρ???? +=+- ????? 231a ω=-312 a ω=-123a ω=-ij ijk k a εω=-

流体力学计算公式

2、流体的运动粘度: [动力]粘度, 密 度) 5、牛顿内摩擦定律: T A ,以应力表示为 (u 为运动速度,y 为液体厚) dy dy 6、静止液体某点压强: p P o g (z o z ) p o gh (h 为该点到液面的距离) 7、静水总压力: 10、文丘里流量计测管道流量: -、 2g) 1 11、沿程水头损失一般表达式: h f 1 V ( l 为管长,d 为管径,v 为断面平均流速,g d 2g 1单位质量力: F B 3、压缩系数: 1?dV V dp 丄?d dp 的单位是m %)体积模量为压缩系数的倒数 4、体积膨胀系数: v 1?dV V dT (V 的单位是 1K ,1 C ) p P c A ghA (p 为静水总压力, h 为受压面形心淹没深度 ,A 为受压面积) 8、元流伯努利方程;乙旦 g 2 U 1 2g Z 2 虫 h w' (h w'为粘性流体元流单位重量流体由过流 g 断面1-1运动至过流断面2-2 的机械能损失,z 为某点的位置高度或位置水头, 管高度或压强水头, 2 —是单位流体具有的动能, g u fg 晋丽, u C 2g p g p C 2gh u C 是修正系数,数值接近于 9、总流伯努利方程 2 1 V 1 z Z 2 2g R L g 2 2V 2 h w (为修正系数通常取1) (Z 2

为重力加速度, 为沿程阻力系数) 12、局部水头损失一般表达式: 2 h j —(为局部水头损失系数, v 为 对应的断面平均流速) J 2g .-pl 13、圆管流雷诺数:R e 一(u 为流速,V 为运动粘度,d 为圆管直径) V uR 14、非圆管道流雷诺数: R e (R 为水力半径,水力半径R V 渠宽度,h 为明渠水深) 力坡度,J 牛) 半径,J '为所取流束的水力坡度,与总水流坡度相等) 17、过流断面上的流速分布的解析式: u J (r ; r 2) 4 18、平均流速:v Q A Q 2 r 。 8 r0 ,断面平均流速与最大流速的关系: 1 v U max 2 19、沿程水头损失: h f 64 l v 2 l 2 爲g ,其中为沿程摩阻系数 ,沿程摩阻系数 Re d 2g 64 Re 20、谢才公式:V 8g . RJ C ? RJ (v 为断面平均流速,R 为水力半径,J 为水力坡 度,C 为谢才系数) A A 为过流断面面积,x 为过流断面上流体与固体接触的周界, 矩形断面明渠流的水力半径: R 一 ,b 为明 b 2h 15、均匀流动方程式: h f l gA gR? gRJ (R 为水力半径,J 为水 16、流束的均匀流动方程: gRJ (为所取流束表面的剪应力, R'为所取流束的水力 21、曼宁公式: 1 -R n 1 0.5 6(吹) (n 为综合反映壁面对水流阻滞作用的系数,称为粗糙

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

冲压力及压力中心的计算

冲压力及压力中心的计算 1.冲压力的计算 根据冲压力的计算公式F=KLtτb,查表可得τb= 460,K=1.3,t=0.8,L1=283.41 L2=10.05. 冲孔时:F冲=4×(1.3×10.05×0.8×460)N=20092.8N≈20.09KN 落料时:F落=1.3×283.41×0.8×460N=135583.344N≈135.58KN F冲裁力=F冲+F落=155.67KN F卸=K X F=0.04×155.67KN=6.23KN F总冲压力=F冲裁力+F卸≈161.9KN 初选压力机,此处初步选择开式固定台压力机,其型号为JA21-35,具体参数见《冲压模具设计与制造》第一章第三节表1-6。

2.压力中心的计算 如上图所示,以冲压件的左下角建立直角坐标系,计算出每一段线段及圆弧的长度,标出每一段线段及圆弧的压力中心的坐标,列入下表。 线段符号长度线段或圆弧压力中心 的坐标 L150 (0,25) L260 (30,50) L350 (60,25) L4 6 (57,0) L526 (54,13) L615.7 (51.071,33.071)L728 (30,36) L815.7 (8.929,33.071) L926 (6,13) L10 6 (3,0) L1110.05 (3,6). L1210.05 (3,29) L1310.05 (57,29) L1410.05 (57.6)

依据压力中心的计算公式 x0=(L1x1+L2x2+…+L14x14)/(L1+L2…+L14 ) y0=(L1y1+L2y2+…+L14y14)/(L1+L2…+L14 ) 把上表中的数值代人上述公式可得:x0=30,y0=34.48 即冲压件的压力中心坐标为(30,34.48)

相关主题
文本预览