当前位置:文档之家› 医学影像学发展趋势及医学影像学专业教学改革的探讨

医学影像学发展趋势及医学影像学专业教学改革的探讨

医学影像学发展趋势及医学影像学专业教学改革的探讨
医学影像学发展趋势及医学影像学专业教学改革的探讨

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来;20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR 成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩大,它是真正意义上的功能水平和分子水平的成像。20世纪90年代后出现了PACS,实现了医学影像的大融合,将各种数字化的图像串联起来,可进行数字化图像的远程传输和远程会诊,并与医院的HIS、CIS、RIS等进行联网,实现了数字化医院。 由于医学影像设备的不断发展,医学影像技术的日新月异,医学影像学的CT、MR、介入、普放,超声和核医学等亚学科逐渐建立,医学影像技术学科也逐渐形成。 医学影像学的发展经历了三个阶段;X线的临床应用,放射学的形成,医学影像学的形成。总体走向是建立现代医学影像学:从大体形态学向分子、生理、功能代谢/基因成像过渡;从胶片采集、显示向数字采集/电子传输发展;对比剂从一般性组织增强向组织/疾病特异性增强发展。;介入治疗,以及与内镜、微创治疗/外科的融合、发展。具体走向是:影像信息更加具有敏感性、直观性、特异性、早期性;图像分析由定性向定量发展:由显示诊断信息向提供手术路径方案发展;图像采集与显示:由二维模拟向三维全数字化发展;图像存储由胶片硬拷贝向软拷贝无胶片化,乃至图像传输网络化发展;从单一图像技术向综合图像技术发展

医学影像学知识点归纳归纳

第1 页共24 页医学影像学应考笔记 第一章X线成像 一、X线的产生与特性 X线的产生:真空管内高速行进的电子流轰击钨靶时产生的。TX线的特性:1穿透性:X线成像基础; 2荧光效应:透视检查基础; 3感光效应:X线射影基础; 4电离效应:放射治疗基础。 X线成像波长为:0.031~0.008nm 二、X线成像的三个基本条件 1 X线的特征荧光及穿透感光

2人体组织密度和厚度的差异 3显像过程 三、X线图象特点 X线是由黑到白不同灰度的一图像组成的,是灰阶图象。 四、X线检查技术 自然对比:人体组织结构的密度不同,这种组织结构密度上的差别,是产生X线影像对比的基础。 人工对比:对于缺乏自然对比的组织器官,可以认为的引入一定量的在密度上高于或低于它的物质,使之 产生对比。 五、N数字减影血管造影DSA:是运用计算机处理数字影像信息,消除骨骼和软组织,使血管清晰的成像技术。 @ 正常X线不能显示:滋养管、骺板

第2章骨与软骨 第一节检查技术 特点:1有良好的自然对比 2骨关节病诊断必不可少 3检查方法发展快 4病变定位准确,定性困难需要结合临床。 一普通X线检查 透视、射片:首选射片,一般不透视。 射片原则:1正、侧位; 2包括周围软组织和邻近关节、相邻锥体;3必要时加射健侧对照。二造影检查

1关节照影、2血管照影 三CT检查(优点) 1发现骨骼肌肉细小的病变; 2限时复杂的骨关节创伤; 3 X线病可疑病变; 4骨膜增生; 5限时破坏区内部及周围结构。 第二节影像观察与分析 一正常X线表现:(掌握) 小儿骨的结构:骨干、干骺端、骨骺、骺板。主要特点是骺软骨,且未骨化。成人骨的结构:干骺端与骺结合,骺线消失,分骨干、骨端。

医学影像学发展及应用

医学影像学发展及应用作者:陈郑达指导教师:王世伟摘要:医学影像学在医学诊断领域是一门新兴的学科,不过目前在临床的应用上是非常广泛的,对疾病的诊断提供了很大的科学和直观的依据,可以更好的配合临床的症状、化验等方面,为最终准确诊断病情起到不可替代的作用;同时也很好的应用在治疗方面。关键字:医学影像发展正文:1895年德国的物理学家伦琴发现了X线,不久即被用于人体的疾病检查,并由此形成了放射诊断学。近30年来,CT、MRI、超声和核素显像设备在不断地改进核完善,检查技术核方法也在不断地创新,影像诊断已从单一依靠形态变化进行诊断发展成为集形态、功能、代谢改变为一体的综合诊断体系。与此同时,一些新的技术如心脏和脑的磁源成像和新的学科分支如分子影像学在不断涌现,影像诊断学的范畴仍在不断发展和扩大之中。 X射线是波长介于紫外线和γ射线间的电磁辐射。X 射线是一种波长很短的电磁辐射,其波长约为(20~0.06)×10-8厘米之间。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。波长小于0.1埃的称超硬X射线,在0.1~1埃范围内的称硬X射线,1~10埃范围

内的称软X射线。自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用 X线技术检查人体病变的不足。1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。1967年,英国电子工程师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成

《医学影像诊断学》学习指南

《医学影像诊断学》学习指南 一、课程介绍: 《医学影像诊断学》是运用X线、CT、MRI等成像技术来研究人体组织器官在正常和病理状态下的成像,以唯物辩证法的观点进行综合分析,进而判断病变性质,为临床治疗提供重要诊断依据的一门学科。随着医学影像医学检查手段和方法的不断进步,医学影像诊断学内容亦在不断丰富和更新,成为包括超声、X线、CT、MR、ECT、PET 和介入放射学等一门独立而成熟的临床学科。在本门课程的教学内容中除反映国内、外医学影像学的现状和成熟的观点外,还兼顾我国医学教育事业发展的实际需要,以系统为主线,在每系统中均以总论、正常X线、CT、MR表现和基本病变的表现为主,适当地编入了部分常见病和多发病的影像学诊断,以保持学科的系统性、完整性,忌片面求新求深。 本课程讲授中,为适应学生在今后工作中查阅外文文献和国际交流的需要,在学习中还需讲授重要名词和术语的英文单词。 二、课程学习目标: 1、掌握医学影像诊断学的基础理论与基本知识。 2、熟练掌握医学影像诊断学范畴内的各项技术,掌握各种影像学检查方法的原理 和疾病诊断合理方法的选择、疾病的影像学诊断基础(包括常规放射学、CT、MR、超声学、核医学、介入放射学。 3、能够运用影像学的诊断技术进行疾病诊断的能力。 4、了解影像诊断的理论前沿和发展动态。 三、课程学习内容与安排 医学影像专业本科生要求掌握各种影像检查方法的成像原理、检查技术,掌握各系统正常和基本病变的影像学表现,掌握一些常见病和多发病的影像诊断,了解本专业成像技术的最新进展。按照本专业的教学计划要求,分为理论课和实践课二大模块。 在理论课中按系统分为11个部分共78学时,实践课教学分为实验课、见习和实习3个部分。

脑血管病影像诊断新进展

脑血管病影像诊断新进展 脑血管病(cerebrovascular disease, CVD)是一类由各种脑血管源性病因所致的脑部疾病的总称。出血性脑血管病的发病时间规律性不强,多数患者起病急、症状明显,由于CT的广泛应用,能得到及时的诊治。缺血性脑血管病多数凌晨发病,起病缓慢,症状逐渐加重,所以往往延误诊治时机。要提高缺血性脑血管病诊治水平,就要做到早期发现、及时干预脑缺血进程和防止严重后果的发生,现代影像诊断学在此方面发挥着重要作用。 第一部分缺血性脑血管病CT和MRI诊断新进展 一、头颈动脉血管狭窄影像诊断 (一)头颈动脉CTA 1.基本原理和方法 CT血管造影(CT angiography, CTA)是螺旋CT 的一项特殊应用,是指静脉注射对比剂后,在循环血中及靶血管内对比剂浓度达到最高峰的时间内,进行螺旋CT容积扫描,经计算机最终重建成靶血管数字化的立体影像。 扫描方式为横断面螺旋扫描,根据需要头颈CTA扫描范围可从主动脉弓到颅底或全脑;经肘静脉以 3.5ml/s的流速注入非离子型对比剂50~60ml;选主动脉层面,使用智能触发技术,CT值设为150HU~200HU。图像后处理技术包括MPR,曲面重组(curved planar reformation, CPR),最大密度投影(maximum intensity projection,MIP)和容积重组(volume rendering,VR)。应用机器配有高级血管成像功能与计算机辅助诊断相结合的病变发现和诊断软件,全面显

示血管。 2.头颈CTA应用现状临床实践表明,合理应用CTA能提供与常规血管造影相近似的诊断信息,且具有扫描时间短,并发症少等优势。报道显示颈动脉CTA和常规血管造影评价颈动脉狭窄的相关系数达82%~92%。颅内动脉的CTA能清晰显示Willis环及其分支血管。可以用于诊断动脉瘤、血管畸形及烟雾病或血管狭窄。应用螺旋CT 重建显示脑静脉系统,称脑CT静脉血管造影(CT venography, CTV)。目前,此技术在脑静脉系统病变的诊断上已显示出重要价值。 3.头颈CTA新进展-64排螺旋 64排螺旋CT扫描速度很快,可完成3期以上外周静脉注入对比剂的增强扫描和大范围血管增强扫描成像,如脑、颈部、肺动脉、主动脉及四肢血管等,可采集纯粹的动脉或静脉时相数据,这些都有助于对血管的观察和分析。而且它配有高级血管成像功能与计算机辅助诊断相结合的病变发现和诊断软件,使其在血管成像方面的优势更加突出。总结其在头颈、脊柱CTA上的主要优点有以下几个方面: (1)血管成像范围广,能很容易完成头颈部联合或长段脊柱、脊髓CTA; (2)可同时显示血管及其相邻骨结构及其关系,如钩椎关节增生对椎动脉压迫,根据程度可分为级:I级,椎动脉平直,无压迫;II级,椎动脉受压迂曲,管腔无狭窄;III级,椎动脉受压,管腔狭窄。(3)可同时显示血管内硬化斑块,特别是在颈动脉CTA;0.6mm~0.625mm层厚的原始图像可以清晰显示血管壁硬化斑块,并根据CT

医学影像学的进展对临床医学的影响

医学影像学的进展对临床医学的影响 发表时间:2019-03-21T13:23:33.207Z 来源:《医师在线》2018年10月20期作者:于昊扬 [导读] 医学影像学为放射技术在临床医学中的应用,其采用超声波、X光等,将人体组织通过影像使得模式表现出来,使得医生可以对患者身体开展诊断。随着科学技术的进步,医学影像学在医疗诊断中的作用逐渐凸显,促进了临床医学的进步。 于昊扬 (荣成市第六中学年级:高三二班;山东荣成264300) 【摘要】医学影像学为放射技术在临床医学中的应用,其采用超声波、X光等,将人体组织通过影像使得模式表现出来,使得医生可以对患者身体开展诊断。随着科学技术的进步,医学影像学在医疗诊断中的作用逐渐凸显,促进了临床医学的进步。为此探析医学影像学对临床医学的影响与作用,意义重大。 【关键词】医学影响;临床医学;医疗诊断 [ 中图分类号 ]R2 [ 文献标号 ]A [ 文章编号 ]2095-7165(2018)20-0271-01 引言 随着医疗水平的提升,很多新技术开始应用到医疗领域,很多基本得到有效的诊断,保证了人们的健康。临床医学为医疗领域的关键组成,影响学的出现、应用与深入发展对临床医学的发展意义重大。 1.医学影像对临床医学的宏观作用 1.1改变信息的呈现模式 医学影响如今可以显示的医学信息已经从传统的二维模式转变为数字化显示模式,可以开展各种图像的重建、重组以及数字化变换等;显示的复杂程度逐渐提升,可以通过3D技术、曲面重组以及密度投影、面积再现等。除了形态学信息之外还可以做功性信息以及代写性信息的实施显示。可以对不同类型的信息进行融合显示,可以将形态学、功能性以及代谢性融合显示。 如今的影像学信息就是将大体解剖学的形态学信息乃至大体解剖学信息等直观的展示给临床医生,使得临床医生可以通过简单的模式解读常规二维模式信息与横断面的信息,进而可以开展细致而丰富的开展医疗诊断。 1.2形态学信息改变时相 信息显示内部的时间分辨能力的提升已经从实时重建逐渐的发展成为动态显示,多个时期重叠显示,进而在时间的概念上扩大了采集信息的质量。比如对于肝脏的多层动态扫描可以准确的判断各个时期动态图片,进而可以捕捉到不同时期的病变与具体情况。同时采用扩散成像等独特的应用外,还可以具有显示时相方面的功能,比如可以较为显著的提升脑病变的显示时间,进而大幅度的提升抢救的效率。 1.3信息显示模式多样化 试着目前逐渐深入引用的扩散成像后,对于神经内外科都具有十分重要的意义。脑功能成像已经成为可能,在临床中已有深入的应用,可以提供可靠的诊断信息;心脏以及其他器官等,通过灌注成像可以提供相关器官具有的循环可以直观的了解其内部具有的信息;分子影像学以及基因影像学的出现,使得医学影响技术几乎进入到了新的医学领域之中。这些还仅仅是信息显示模块中的一小部分,这些新的信息模式给临床医生提供了很多有用的诊断信息,进而可以直接的判断病情的情况。 1.4对于医学理论的影响 医学影像学的深入发展与新的信息呈现模式出现,对临床医学乃至于整个医学的影响十分深远。譬如在皮层影响研究总中,已经发现了传统的生理学与解剖学所部了解甚至理解错误的神经反射路径。脑与心血管的成像可以直接的了解缺血的脑或心肌的存活情况,进而需要彻底的改变传统治疗模式;接入放射等多种技术的联合开发使得教科书内部多种诊断技术与治疗技术得到更新。总体来说,介入放射学的开展为目前外科手术内部蓬勃发展的关键所在。 2.具体影响分析 2.1疾病的普查 伴随着成像技术的发展,其已经广泛的应用到疾病的普查上,欧美等医疗机构已经将肺部的CT普查纳入到医保范围,同时在骨科的检查中,这两种技术也得到了较为深入的应用,使得人们可以对于自身的疾病情况有了详细的了解。 2.2腹部检查 首先对于肝脏的检测,可以提供肝脏的血供应情况,通过二维、三维的信息显示,明确的得到病变部位,这是所有医生手术前必要的资料。其次为中空器官,比如胃、直肠等通过透明化技术了解详细情况,了解内外病变特征,同时还可以综合应用几种成像的模式,以求做到信息的互补。最后为妇科与盆腔的病变检查,在提升采集速度的基础上可以克服胎儿运动的影响。 2.3中枢神经系统检查 传统的CT检测对于缺血性诊断的时间盲区比较长,通过扩散成像技术使得病患的诊断时间缩短为2小时,缺血性中枢被认为是介入性治疗方法可以提早或者是及时的开展介入治疗,为其提供有效的方案。对于脑肿瘤的形态学改变研究已经很多,扩散成像技术可以对其开展更为精确地诊断,改变相关参数之后可以明确肿瘤血管具有的基本类型、血液循环的结构以及动力学等,进而提示出病变具有的基本特征,还可以通过延迟拍照技术等,分析不同时期具有的影像资料,进而推断得到病变的实际情况。 2.4计算机辅助检测技术 计算机辅助检测最早出现在美国,应用到乳腺癌以及乳癌的诊断中,随着其在肺癌普查之中的应用,为其应用打开新的领域。同时在结肠癌、冠心病等多领域的诊断之中也得到了深入的应用。随着计算机辅助检测的应用,大幅度的降低了工作的强度。 计算机辅助检测实际上为从累积的资料作为依据,对于输入病例开展细致的研究,最后得出智能化的检测结果,构成综合诊断与专家分析系统,使得每个病例都得到标准化的检测。计算机辅助系统的结论仅仅为提示性的,经过医师的确认之后可以很好的补充临床的实

医学影像学的进展对临床医学的影响

随着放射学发展为医学影像学,该专业从临床医学中的一个辅助性学科跃升为支撑性学科。现代的医学影像学对先进科学技术依赖之深决定了它必将随着现代科技的前沿迅猛发展,进而对临床医学整体产生深刻的影响。 一.医学影像学对临床医学的宏观影响 (一)形态学信息显示方式的改变 医学影像学目前显示的信息类型已经从简单的二维的模拟影像转 科有重要的意义;脑功能性成像已 开发了若干年,且已在广泛的临床 应用中;CT与MRI的肿瘤灌注成像 已逐步开展,以提供参数性诊断信 息;心脏与其他实质性器官,如肝 脏,灌注成像将提供相应器官微循 环改变的更直观的信息;心脏的 MR向量成像是研究心腔内循环状 况的新方法;分子影像学与基因影 像学的出现反映了医学影像学几乎 同步地冲入了这些崭新的医学领域。 这些还只是新的信息模式的一部份。 这些新的信息模式给临床医生提供 了大量新的有用的诊断信息,直接 影响对疾病的病情与预后的判断。 (四)对医学基本理论的冲击 医学影像学的迅速进展和新的 信息类型涌现,对临床医学乃至基 础医学的冲击已经到了必需改写教 科书的程度。如MR皮层功能定位研 究已发现了传统的解剖学与生理学 不了解、甚至描述不正确的神经反 射投射路径;脑与心肌的灌注成像 可直接提供缺血的脑或心肌存活状 况,从而需要彻底修改传统的治疗 方案;介入放射学的多种技术开发 使教科书中很多疾病的诊断与治疗 方法的描述要作重大修改。事实上, 介入放射学的开展是当前外科手术 中蓬勃发展的微创技术的先驱。 二.医学影像学对主要应用领 域的影响 (一)中枢神经系统 1.卒中 传统的CT检查对缺血性 卒中诊断的时间盲区达24小时或更 久;传统的MRI诊断缺血性卒中的 时间盲区也为12小时左右;MRI扩 散成像、MR灌注成像以及发展较晚 但应用更普及的CT灌注成像可提早 到发病后2小时作出诊断。缺血性卒 中的溶栓治疗是公认的介入性治疗变为: 1.数字化影像 可用为各种重 建、重组和数字化存贮与传输的基 础; 2.复杂的重组影像 可作2D、3D、 4D显示、内窥镜显示、曲面重组、多 平面重组、最大强(密)度投影、最小 强(密)度投影、遮蔽表面显示、容积 再现等; 3.除形态学信息以外还可作功 能性信息和代谢性信息的显示; 4.可作不同类型信息(CT、MRI、 PET……)的融合显示与形态学、功 能性与代谢性信息的融合显示。 当代的影像学信息可以把相当 于大体解剖学的形态学信息乃至远 较大体解剖学信息丰富的各类信息 直观地提供给临床医生,使临床医 生免去解读常规的二维模式信息以 及横断层面信息的困难,得到丰富 的、很多是其他检查方法无法提供 的信息类型。 (二)形态学信息显示时相的改变 信息显示中时间分辨力的提高 已从早期的“实时重建”,发展为动态 器官的实时动态显示和多期相采集, 从时间的概念上扩大了采集到的信 息的“质”与“量”。如肝脏的多层CT 动态扫描已经可以准确地分辨动脉 早期、动脉期、动脉晚期、门脉流入 期、门脉晚期等期相,从而可捕捉到 以往不能显示的病变和/或表现。 此外,MR扩散成像、MR灌注成 像、CT灌注成像等除特定应用外,也 具有显示时相方面的优势,如可以 显著地提早脑缺血病变的显示时间, 从传统CT的发病后24小时提早到发 病后2小时。 (三)新的信息模式不断涌现 近年开发并日趋完善的脑白质 束成像(tractography)是基于MR扩 散成像发展的扩散张量成像(tensor imaging)的直接结果,对神经内、外

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 ◆医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现 一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 ◆1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在 此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 ◆随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断 产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来; 20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩

医学影像学知识点归纳总结

第 1 页共 24 页医学影像学应考笔记 第一章 X线成像 一、X线的产生与特性 X线的产生:真空管内高速行进的电子流轰击钨靶时产生的。TX线的特性: 1穿透性:X线成像基础; 2荧光效应:透视检查基础; 3感光效应:X线射影基础; 4电离效应:放射治疗基础。 X线成像波长为:~ 二、X线成像的三个基本条件 1 X线的特征荧光及穿透感光 2人体组织密度和厚度的差异 3显像过程 三、X线图象特点 X线是由黑到白不同灰度的一图像组成的,是灰阶图象。

四、X线检查技术 自然对比:人体组织结构的密度不同,这种组织结构密度上的差别,是产生X线影像对比的基础。 人工对比:对于缺乏自然对比的组织器官,可以认为的引入一定量的在密度上高于或低于它的物质,使之 产生对比。 五、N数字减影血管造影DSA:是运用计算机处理数字影像信息,消除骨骼和软组织,使血管清晰的成像技术。 @ 正常X线不能显示:滋养管、骺板 第2章骨与软骨 第一节检查技术 特点: 1有良好的自然对比 2骨关节病诊断必不可少 3检查方法发展快 4病变定位准确,定性困难需要结合临床。 一普通X线检查 透视、射片:首选射片,一般不透视。

射片原则: 1正、侧位; 2包括周围软组织和邻近关节、相邻锥体;3必要时加射健侧对照。 二造影检查 1关节照影、 2血管照影 三 CT检查(优点) 1发现骨骼肌肉细小的病变; 2限时复杂的骨关节创伤; 3 X线病可疑病变; 4骨膜增生; 5限时破坏区内部及周围结构。 第二节影像观察与分析 一正常X线表现:(掌握) 小儿骨的结构:骨干、干骺端、骨骺、骺板。主要特点是骺软骨,且未骨化。 成人骨的结构:干骺端与骺结合,骺线消失,分骨干、骨端。 四肢关节:包括骨端、关节软骨和关节束。软骨和束为软骨组织不显示,关节间隙为半透明影。

医学影像技术的应用及发展趋势

医学影像技术的应用及发展趋势 摘要】随着计算机技术的不断发展,医学影像技术逐渐超出了传统X线摄影的 范畴,已经具备了CT、DR、MRI 等多种医学影像技术。这些设备提供了巨大的信 影像信息,为临床提供大量的诊断数据,很大程度上提高了医学影像学科和临床 医疗水平。本文谈了医学影像技术发展史,归纳总结医学影像技术的发展趋势。 【关键词】医学影像技术发展 【中图分类号】R445 【文献标识码】A 【文章编号】2095-1752(2014)13-0260-02 医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的 一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念 和方法及物理原理发展起来的先进技术手段。随着医学影像技术的不断发展,CT、DR、MRI 等多种医学影像技术在医学领域和临床应用中取得了创新和突破。借助 各种医学影像技术的应用,医护人员对解剖结构的成像更为详细,对病变组织的 形态了解更为清晰。本单位拥有的影像技术设备是西门子1.5tMRI、GE64排螺旋CT、上海DR、超声、核医学等。本文主要是探讨和分析医学影像技术的应用及发展趋势 1 医学影像技术的发展 1.1X线发现伊始即用于医学临床,基于X线的物理特性:穿透性、荧光效应、感光效应和人体组织间的密度、厚度的差别,当X线透过人体不同的组织结构时,被吸收的程度不同,到达荧光屏或胶片的X线量有差别,就形成了黑白对比不同 的图像。X线检查首先是用于密度差别明显的骨折和体内异物的诊断,以后又逐 步用于人体各部分的检查。于此同时,各种X线设备相继出现[1]。 1.2计算机X线摄影,计算机X线摄影(CR)是使用存储荧光体技术的数字化X 线摄影技术,在传统X线机上就可以操作。它实现了X线摄影信息数字化,使数 字图像数据可用计算机处理、显示、传输和储存,优化了影像质量,突出感光趣 区的诊断信息,提高了X线利用效率。计算机体层成像,自从1972年英国工程 师Hounsfield发明了计算机体层成像(CT)并正式应用于临床以来,在近30年的时 间里,CT从最初每单层数分钟扫描、5~8分钟重建以及较小的象素、有限的图 像分辨率发展到今天的大容积多层螺旋扫描、每0.5秒旋转360度、实时图像重 建技术以及在轴、冠、矢状位上获得各向同性分辨率的图像,并从单纯的形态学 图像发展到功能性检查。 1.3后来基于人们对于质子的研究,在20世纪80年代MRI设备用于临床。 其物理基础是磁共振技术。他通过测量人体组织中的氢质子的MR信号,实现人 体任意层面成像。医学影像技术中的MRI图像,也可称为磁共振或者核磁共振成像,此项技术借助电子计算机和图像重建的功能重新建立成像的医学影像技术, 表现于灰度呈现度不同,反映相对应的组织结构情况的数字化影像技术。MRI 的 检查范围比较广,非常适合中枢神经系统、头颈部位以及心脏血管等检查,但是 对于体内有磁性物质的病人则失去检查功能,而且MRI没有CT适合对钙化的效 果检查,对肺部和骨皮质的现实也比CT的检查效果差。西门子1.5tMRI 的软组织 分辨率较高,无放射线,因而对人体的身体基本无害。扫描过程中,检查对象平 躺在检查床上以得到轴位、冠状位、矢状位以及斜位的体层图像,还可以做无创 性全身血管成像、脑弥散、等功能成像,西门子1.5tMRI具备高分辨率胰胆管水 成像、输尿管水成像等优秀的影像学检查功能,为检查者提早发现病变情况。

脑血管病影像诊断新进展.

脑血管病影像诊断新进展 高勇安 首都医科大学宣武医院放射科 100053 脑血管病( cerebrovascular disease, CVD )是一类由各种脑血管源性病因所致的脑部 疾病的总称。出血性脑血管病的发病时间规律性不强,多数患者起病急、症状明显,由于 CT 的广泛应用,能得到及时的诊治。缺血性脑血管病多数凌晨发病,起病缓慢,症状逐渐加重, 所以往往延误诊治时机。要提高缺血性脑血管病诊治水平,就要做到早期发现、及时干预脑 缺血进程和防止严重后果的发生,现代影像诊断学在此方面发挥着重要作用。 第一部分缺血性脑血管病 CT 和MRI 诊断新进展 CTA 扫描范围可从主动脉弓到颅底或全脑; 50?60ml ;选主动脉层面,使用智能触发技 MPR 曲面重组(curved planar reformation, CPR ,最大密度投影(maximumintensity projection , MIP ) 和容积重组(volume rendering , VR 。应用机器配有高级血管成像功能与计算机辅助诊断相结合的病变发现和诊断软件,全 面显示血管。 2. 头颈CTA 应用现状临床实践表 明,合理应用CTA 能提供与常规血管造影相近似的诊 断信息,且具有扫描时间短,并发症少等优势。报道显示颈动脉 CTA 和常规血管造影评价颈 动脉狭窄的相关系数达 82%?92%。颅内动脉的 CTA 能清晰显示Willis 环及其分支血管。 可以用于诊断动脉瘤、血管畸形及烟雾病或血管狭窄(图 1)。应用螺旋CT 重建显示脑静脉 系统,称脑CT 静脉血管造影(CT venography, CTV 。目前,此技术在脑静脉系统病变的诊 断上已显示出重要价值。 3. 头颈CTA 新进展-64排螺旋64排螺旋CT 扫描速度很快,可完成 3期以上外周静脉 注入对比剂的增强扫描和大范围血管增强扫描成像,如脑、颈部、肺动脉、主动脉及四肢血 管等,可采集纯粹的动脉或静脉时相数据,这些都有助于对血管的观察和分析。而且它配有 高级血管成像功能与计算机辅助诊断相结合的病变发现和诊断软件,使其在血管成像方面的 优势更加突出。总结其在头颈、脊柱 CTA 上的主要优点有以下几个方面: (1) 血管成像范围广,能很容易完成头颈部联合或长段脊柱、脊髓 CTA (图 (2) 可同时显示血管及其相邻骨结构及其关系, 如钩椎关节增生对椎动脉压迫, II 级,椎动脉受压迂曲,管腔无狭窄; 特别是在颈动脉 CTA 0.6mm ?0.625mm 层厚的 原始图 CT 值分为,富脂软板块(CT 值V 50HU )、纤维化 一、头颈动脉血管狭窄影像诊断 (一)头颈动脉 CTA 1.基本原理和方法 CT 血管造影(CT angiography, CTA )是螺旋CT 的一项特殊应用, 是指静脉注射对 比剂后,在循环血中及靶血管内对比剂浓度达到最高峰的时间内,进行螺旋 CT 容积扫描,经计算机最终重建成靶血管数字化的立体影像。 扫描方式为横断面螺旋扫描,根据需要头颈 经肘静脉以 3.5ml/s 的流速注入非离子型对比剂 术,CT 值设为 150HL ?200HU 图像后处理技术包括 2); 根据 程 III 级,椎 度可分为级: I 级,椎动脉平直,无压迫; 动脉受压,管腔狭窄(图 ( 3)可同时显示血管内硬化斑块, 像可 以清晰显示血管壁硬化斑块,并根据 3)。

医学影像学相关知识点

医学影像学相关知识点 一、名词解释 1. 螺旋CT(SCT):螺旋CT扫描是在旋转式扫描基础上,通过滑环技术与扫描床连续平直移动而实 现的,管球旋转和连续动床同时进行,使X 线扫描的轨迹呈螺旋状,因而称为螺旋扫描。 2. CTA是静脉内注射对比剂,当含对比剂的血流通过靶器官时,行螺旋CT容积扫描并三维重 建该器官的血管图像。 3. MRA:磁共振血管造影,是指利用血液流动的磁共振成像特点,对血管和血流信号特征显示的 一种无创造影技术。常用方法有时间飞跃、质子相位对比、黑血法。 4. MRS:磁共振波谱,是利用MR中的化学位移现象来确定分子组成及空间分布的一种检查方法, 是一种无创性的研究活体器官组织代谢、生物变化及化合物定量分析的新技术。(哈医大2009 年复试题) 5. MRCP:是磁共振胆胰管造影的简称,采用重T2WI水成像原理,无须注射对比剂,无创性地 显示胆道和胰管的成像技术,用以诊断梗阻性黄疽的部位和病因。 6. PTC:经皮肝穿胆管造影;在透视引导下经体表直接穿刺肝内胆管,并注入对比剂以显示胆管系统。适应症:胆道梗阻;肝内胆管扩张。 7. ERCP经内镜逆行胆胰管造影;在透视下插入内镜到达十二指肠降部,再通过内镜把导管插入十二指肠乳头,注入对比剂以显示胆胰管;适应症:胆道梗阻性疾病;胰腺疾病。 8. 数字减影血管造影(DSA):用计算机处理数字影像信息,消除骨骼和软组织影像,使血管成像清晰的成像技术。 9. 造影检查对于缺乏自然对比的结构或器官,可将高于或低于该结构或器官的物质引入器官内或其周围间隙,使之产生对比显影。 10. 血管造影:是将水溶性碘对比剂注入血管内,使血管显影的X线检查方法。 11. HRCT:高分辨CT,为薄层(1~2mm)扫描及高分辨力算法重建图像的检查技术 12. CR:以影像板(IP)代替X线胶片作为成像介质,IP上的影像信息需要经过读取、图像处理从而显示图像的检查技术。 13. T1 即纵向弛豫时间常数,指纵向磁化矢量从最小值恢复至平衡状态的63%所经历的弛豫时 间。 14. T2 即横向弛豫时间常数,指横向磁化矢量由最大值衰减至37%所经历的时间,是衡量组织 横向磁化衰减快慢的尺度。 15. MRI水成像:又称液体成像是采用长TE技术,获取突岀水信号的重T2WI,合用脂肪抑制技 术,使含水管道显影。 16. 功能性MRI 成像是在病变尚未岀现形态变化之前,利用功能变化来形成图像,以达到早期诊断为目的成像技术。包括弥散成像,灌注成像,皮层激发功能定位成像。 17. 流空现象:是MR成像的一个特点,在SE序列,对一个层面施加90度脉冲时,该层面内的 质子,如流动血液或脑脊液的质子,均受至脉冲的激发。中止脉冲后,接受该层面的信号时,血管内血液被激发的质子流动离开受检层面,接收不到信号,这一现象称之为流空现象。 18. 部分容积效应层面成像,一个全系内有两个成份,那么这个体系就是两成份的平均值重建图像不能完全真实反应组织称为部分容积效应。 19. TE 又称回波时间,射频脉冲到采样之间的回波时间。 20. TR 又称重复时间,MRI 信号很弱,为提高MRI 的信噪比,要求重复使用脉冲,两个90 度

医学影像学研究进展

深圳大学考试答题纸 (以论文、报告等形式考核专用) 二OO八?二OO九学年度第二学期 课程编号23130006 课程名称生物医学工程导论主讲教师陈思平/汪天富评分 学号2006041034姓名涂远游专业年级大三工商管理(1)班 题目:医学影像学研究进展 医学影像学是一门通过对图像的观察,分析,归纳与综合而作出疾病诊断的一门学科。随着科技的飞速发展,它已由以前单一的,传统的X射线诊断学扩展为包括X射线,CT,MRI及超声的现代医学影像诊断学和介入放射学,形成了集医学诊断和介入治疗学为一体的诊治并存的新模式一一医学影像学。至今,医学影像学科已成为医院中作用特殊。任务重大,不可或缺的重要科室,同时,医学影像学的发展也有力地促进了其它临床各学科的发展。 自从伦琴1985年发现X射线以后不久,X射线就被用于人体检查,进行疾病诊断,形成了放射诊断学这一新学科,并奠定了医学影像学的基础。至今放射诊断学仍是医学影像学中的重要内容,应用普遍。 20世纪70年代和80年代又相继出现了X射线计算机体层成像(CT), 核共振成像(MRI)和发射体层成像(ECT),包括单光子发射体层成像(SPECT)与正电子发射体层(PET)等新的成像技术。这些成像技术都是通过数字化探测器,将X射线影像直接转化为数字化信号输入计算机,并由计算机将该影像还原在显示器上,由医生观察显示器而无需拍片。现在数字成像已由CT和MRI等扩展到X射线成像,使传统的模拟X射线也改成为数字成像。数字成像改变了图像的显示方式,图像解读也由照片观察过渡到兼用屏幕观察,

到计算机辅助检测(CAD )。影像诊断也试用计算机辅助诊断(CAD ),以减轻图像过多,解读费时的压力。图像的保存,传输与利用,由于有了图像存档与传输系统(PACS)而发生了巨大变化,并使远程放射学成为现实,极大地方便了会诊工作。随着信息放射学的发展,远程放射技术作为传送图像信息的一种新方式越来越显示出其必要性和重要性。远程放射技术分别采用普通电话线,同轴电缆,光纤电缆,激光与通讯卫星相连的微波发射装置和远程通讯系统传送图像。远程放射技术的应用在今后还会有更大的发展,采用远程放射技术进行医学影像的诊断是未来发展的必然趋势。 由于图像数字化,网络和PACS 得应用,影像科学将逐步成为数字化和无胶片学科。虽然各种成像技术的成像原理与方法不同,诊断价值与限度亦各异,但都是使人体内部结构和器官成像,借以了解人体解剖与生理功能状况及病理变化,以达到诊断的目的,都属于活体器官的视诊范畴,是特殊的诊断方法。 而近几十年来,由于微电子学与电子计算机的发展以及分子医学的发展,致使影像诊断设备不断改进,检查技术也不断创新。影像诊断已从单一的形态成像诊断发展为形态成像,功能成像和代谢成像并用的综合诊断。继CT与MRI 之后,又有脑磁源图(MSI)应用于临床。分子影像学也在研究中。 影像诊断学的发展潜力是无限的,特别是近年来发展起来的图像引导手术导航系统是医学影像技术取得的重大进展。利用图像引导技术可显示出器官的内部构造,便于脑部肿瘤。动脉肿瘤和其他缺陷的诊疗,增强了诊断和治疗之间的联系。用图像引导可缩小外科计划和实施两者之间的差距,结合先进的示踪技术,可在数字化的图像上测出外科器械的精确位置,使医生能观察到内窥镜或激光纤维之类的器械在体内的部位。

医学影像学综述

肺孤立型结节影像诊断研究现状及进展 作者:沈丽娜08102412 作者单位:湖州师范学院医学院,湖州,313000 【摘要】孤立性肺结节(Solitary Pulmonary Nodule,SPN)是胸部放射线检查中最常见的病变之一。大多为胸部X片或CT偶然发现。它的诊断和评价一直是当代医学所面临的挑战。判断肺孤立性结节的良恶性质,是放射科医生面临的重要任务之一。近年来随着影像学设备和技术的发展,以及基础医学研究的深入,SPN的影像学诊断与鉴别诊断也有了长足的发展。 【关键字】孤立型肺结节层螺旋CT 体层摄影术线计算机 肿瘤血管成像数字化影像技术 CT灌注成像 肺部孤立性结节(SPN)定义肺内单发的直径2~30 mm的圆形或卵圆形的肺实质性病灶,同时不合并淋巴结肿、肺不张和肺炎对于肺部孤立性结节的处理主要在于尽早切除恶性肿瘤和尽可能少的对良性病变实施手术[14]。因此,发现SPN及鉴别其良恶性是影像学的主要任务。全世界每年通过筛查检出SPN约15万例。在检出的SPN中,恶性肿瘤占10%~70%,良性病灶中80%为炎性肉芽肿,10%为错构瘤。早期肺癌手术切除后的5年生存率可达90%以上,而中晚期的5年生存率低于5%[1]。影像学评价标准有助于提示SPN的良性或恶性可能性本文将在介绍SPN影像学诊断原则的基础上重点综述近年来的研究进展。 以往SPN主要依赖于胸部常规X线摄片和透视,CT的主要作用在于确定结节的良恶性。近年来,随着CT技术的改进和提高,低剂量螺旋CT在胸部的应用日益受到人们的重视,即在减少受检者射线照射的前提下提高肺癌结节的检出率[2]。有研究指出,低剂量螺旋CT发现的病灶数是普通X线片8倍。胸部平片正位观察时,将有20%~25%的肺野被遮盖,侧位观察时,会有15%~20%的肺野被遮盖。还有学者发现,低剂量CT发现的亚临床小肺癌,76%在X线片上无法显示。所以,许多学者认为肺癌筛查的工具应当选择CT而不是X线片。对于低剂

医学影像学重点(自己整理的)教学内容

5、骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合的年龄。(对诊断内分 泌疾病和一些先天性畸形综合征有一定价值) 6、骨质破坏:是局部骨质为病理组织所代替而造成的骨组织消失。(见于炎症、肿瘤、肉芽肿) X线: 骨质局限性密度下降,骨小梁消失,骨皮质边缘模糊。 1、骨质疏松:指一定体积单位内正常钙化的骨组织减少。即骨组织的有机成分和钙盐都减少,但故内的 有机成分和钙盐含量比例仍正常。X线:骨质局限性密度下降,骨小梁变细,间隙变宽。 2 骨质软化:骨质软化――指一定单位体积内骨组织的有机成分正常,而矿物质含量减少。X线表现为 骨密度减低,骨小梁和骨皮质边缘模糊 7、骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。形成死骨的原因主要是血液供应中断(多 见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)。 3、骨膜增生:骨膜反应是因骨膜受刺激,骨膜内层成骨细胞活动增加形成骨膜新生骨。通常有病变存在。 X线:骨骼密度上升,骨皮质、小梁增厚。 8、骨膜三角(Codman三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨,肿瘤继而破坏骨膜所形 成的骨质,其边缘残存骨质呈三角形高密度病灶,称为骨膜三角。是恶性骨肿瘤的重要征象。 9、Colles骨折:又称伸展型桡骨远端骨折,为桡骨远端2~3㎝以内的横行或粉碎骨折,骨折远端向背侧 移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。 Colles’骨折的临床和影像学特点 答:Colles’骨折为桡骨远端3cm范围内横行或粉碎性骨折,常见于中老年人,跌倒时,前臂旋前,手掌着地,引起伸展型桡骨远端骨折。观察患肢呈银叉畸形、刺枪刀样畸形。 X线表现为:桡骨骨折远端向桡侧、背侧移位,掌侧成角,可见骨折线。常合并下尺桡关节脱位和尺骨茎突骨折。 10、青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为骨小梁 和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。 11、骨“气鼓”(骨囊样结核):骨干结核初期为骨质疏松,继而在骨内形成囊性破坏,骨皮质变薄,骨 干膨胀,故称为骨“气鼓”或骨囊样结核。 12、骺离骨折:发生在儿童长骨骨折时,由于骨骺尚未与干骺端愈合,外力可经过骺板达干骺端而引起骨 骺分离,即骺离骨折。 13、肺野:充满气体的两肺在胸片上表现为均匀一致较为透明的区域称为肺野。 14、肺纹理:在充满气体的肺野,可见由肺门向外呈放射分布的树枝状影,称为肺纹理。 15、肺门角:肺门上、下部相交形成一钝的夹角,称为肺门角,而相交点称肺门点,右侧显示较清楚。 16、原发综合征:原发性肺结核(Ⅰ型),肺的原发病灶,淋巴管炎和肺门淋巴结炎。多见于儿童和青少 年,少数为成人。X线:典型表现呈“哑铃状”,包括:①原发浸润灶②淋巴管炎③肺门纵膈淋巴结肿大 17、肺实变:终末细支气管以远的含气腔隙内的空气被病理性液体、细胞或组织所代替,常见于大叶性肺 炎、肺泡性肺气肿、肺出血、肺结核、肺泡癌等。 空洞:是由肺内病变组织发生坏死后,经引流支气管排出后形成的。 空腔:是肺内生理腔隙病变扩大,肺大泡,含气肺囊肿、肺气囊都属于~。 18、龛影:钡剂涂抹的轮廓有局限性外突的影像。溃疡型食管癌可见边缘不规则的局部向外凸的龛影。 19、充盈缺损:钡剂涂抹的轮廓有局限性向内凹陷的表现。它是因管壁局限性肿块突入腔内所致。 20、憩室:食管壁向外囊袋样膨出,有正常黏膜通入,与龛影不同。 21、半月综合征:为进展期胃癌的龛影表现,多见于溃疡型癌。其表现为:形状多呈半月形,外缘平直, 内缘不整齐而有多个尖角;龛影位于为轮廓内;龛影周围绕以宽窄不等的透明带,称为环堤,其轮廓不规则而锐利,环堤上见结节状和指压迹状充盈缺损(指压迹),这些充盈缺损之间有裂隙状钡剂影(裂隙征)。 法洛四联症:肺动脉、肺动脉瓣或/和瓣下狭窄;室间隔缺损;主动脉骑跨;右心室增厚。 支气管扩张:X线:肺纹理改变粗细不规则的管状透明影。

相关主题
文本预览
相关文档 最新文档