当前位置:文档之家› AgBr/ZnO纳米复合材料的制备及其光催化性能研究

AgBr/ZnO纳米复合材料的制备及其光催化性能研究

AgBr/ZnO纳米复合材料的制备及其光催化性能研究
AgBr/ZnO纳米复合材料的制备及其光催化性能研究

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

Tio2的光催化性能研究

TiO2的光催化性能研究 摘要:主要介绍二氧化钛的光催化原理,基本途径,以及光催化剂的结构特性和影响因素,还讲述了关于二氧化钛的光催化应用。 关键字:二氧化钛光催化光催化剂 二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。 1 TiO2的基本性质 1.1结晶特征及物理常数 物性:金红石型锐钛型 结晶系:四方晶系四方晶系 相对密度:3.9~4.2 3.8~4.1 折射率: 2.76 2.55 莫氏硬度:6-7 5.5-6 电容率:114 31 熔点:1858 高温时转变为金红石型 晶格常数:A轴0.458,c轴0.795 A轴0.378,c轴0.949 线膨胀系数:25℃/℃ a轴:7.19X10-6 2.88?10-6 c轴:9.94X10-6 6.44?10-6 热导率: 1.809?10-3 吸油度:16~48 18~30 着色强度:1650~1900 1200~1300 颗粒大小:0.2~0.3 0.3 功函数:5.58eV

2TiO2的光催化作用 2.1光催化作用原理 二氧化钛是一种N型半导体材料,锐钛矿相TiO2的禁带宽度Eg =3.2eV,由半导体的光吸收阈值λg与禁带宽度E g的关系式: λg (nm)=1240/Eg(eV) 可知:当波长为387nm的入射光照射到TiO2上时,价带中的电子就会发生跃迁,形成电子-空穴对,光生电子具有较强的还原性,光生空穴具有较强的氧化性。在半导体悬浮水溶液中,半导体材料的费米能级会倾斜而在界面上形成一个空间电荷层即肖特基势垒,在这一势垒电场作用下,光生电子与空穴分离并迁移到粒子表面的不同位置,还原和氧化吸附在表面上的物质。除了上述变化途径外,光激发产生的电子、空穴也可能在半导体内部或表面复合,如果没有适当的电子、空穴俘获剂,储备的能量在几个毫秒内就会通过复合而消耗掉,而如果选用适当的俘获剂或表面空位来俘获电子或空穴,复合就会受到抑制,随后的氧化还原反应就会发生。在水溶液中,光生电子的俘获剂主要是吸附在半导体表面上的氧,氧俘获电子形成O2-;OH-、水分子及有机物本身均可充当光生空穴俘获剂,空穴则将吸附在TiO2表面的OH-和H2O氧化成具有高度活性的?OH自由基,活泼的?OH 自由基可以将许多难以降解的有机物氧化为CO2和H2O。其反应机理如下: TiO2 + hv → h+ + e- h+ + e- →热量 H2O → H+ + OH- h+ + OH- → HO? h+ + H2O + O2- → HO?+ H+ + O2- h+ + H2O → HO?+ H+ e- + O2→ O2- O2- + H+ → HO2? 2HO2?→ O2 + H2O2 H2O2 + O2- → HO?+ OH- + O2 H2O2 + hv → 2HO? 从上述光催化作用原理分析可知道,光催化过程实际上同时包含氧化反应和还原反应两个过程,分别反映出光生空穴和光生电子的反应性能,同时二者又相互影响,相互制约。

纳米材料在光催化中的应用

纳米材料在光催化中的应用 姓名:杨明学号:5400209157 班级:工管093班 摘要: 纳米技术是当今世界最有前途的决定性技术。以半导体材料为催化剂光催化氧化水中有机污染物在近年来受到广泛关注,许多研究工作者在有机物光催化氧化方面进行了大量研究工作,发现卤代芳香烃、卤代脂肪烃、有机酸类、染料、硝基芳烃、取代苯胺、多环芳烃、杂环化合物、烃类、酚类、表面活性剂、农药等都能有效地进行光催化反应,除毒、脱色、生成无机小分子物质,最终消除对环境的污染。纳米材料是晶粒尺寸小于100 nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等(1)。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。 引言: 此法能处理多种污染物,适用范围广,特别是对难降解有机物具有很好的氧化分解作用;还具有反应条件温和,设备简单,二次污染小,易于操作控制,对低浓度污染物及气相污染物也有很好的去除效果;催化材料易得,运行成本低;可望用太阳光为反应光源等优点,是一种非常有前途的污染治理技术。 关键字:纳米纳米材料纳米材料光催化纳米TiO2 水热合成法 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃(2)。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米TiO2在光催化领域已经显示出广阔的应用前景.但是,由于TiO2仅仅能吸收5%紫外区附近的太阳光而限制了它的广泛应用,许多研究试图通过表面改性与掺杂来扩大它的光谱响应范围和提高它的催化活性。有选择性的进行掺杂已被证明是一种提高半导体氧化物光催化活性的极其有效的方法,掺入一定的金属阳离子能极大的提高TiO2的光催化效率,最近有大量的关于通过掺杂来提高TiO2的光催化性能的报道,掺杂的半导体光催化材料由于其物理和光学性质的改变,通过扩展光响应范围和提高光生电荷的分,从而提高了光催化性能(2)。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景(3)。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

NiCr-LDHs的制备及光催化性能研究

化学工程学院 新产品开发训练报告 2014-12 课题名称: CoCr-LDHs的制备及光催化性能研究 课题类型:论文 班级:应化 1102 姓名:周柳 学号: 1112083076 指导教师:薛莉 (使用说明:设计/论文请选一使用,左侧装订)

第一部分文献综述 1.1 水滑石的定义及研究背景 层状双金属氢氧化物(Layered Double Hydroxide,LDH)是水滑石(Hydrotalcite,HT)和类水滑石化合物(Hydrotalcite-Like Compounds,HTLCs)的统称,由这些化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs)[1]。 水滑石材料属于阴离子型层状化合物。层状化合物是指具有层状结构、层间离子具有可交换性的一类化合物,利用层状化合物主体在强极性分子作用下所具有的可插层性和层间离子的可交换性,将一些功能性客体物质引入层间空隙并将层板距离撑开从而形成层柱化合物。水滑石类化合物(LDHs) 是一类具有层状结构的新型无机功能材料, LDHs的主体层板化学组成与其层板阳离子特性、层板电荷密度或者阴离子交换量、超分子插层结构等因素密切相关。 LDHs的发展已经历了一百多年的历史,但直到二十世纪六十年代才引起物理学家和化学家的极大兴趣。1842年,Hochstetter首先在片岩矿层中发现了天然水滑石矿物。[2]后来又相继在挪威的Sunarum地区以及俄罗斯的Ural地区发现了少量的天然水滑石矿。在二十世纪初,人们发现了LDH对氢加成反应具有催化作用,并由此开始了对LDH结构的研究。1942年,Feitknecht等首次通过金属盐溶液与碱金属氢氧化物反应人工合成出了LDH,并提出了双层结构模型的设想。1966年,Kyowa公司首先将LDH的合成工业化。1969年,Allmann等通过测定LDH单晶结构,首次确认了LDH的层状结构。[3,4]七八十年代时,Miyata等对其结构进行了详细研究,并对其作为新型催化材料的应用进行了探索性的工作。在此阶段,Taylor和Rouxhet 还对LDH热分解产物的催化性质进行了研究,发现它是一种性能良好的催化剂和催化剂载体。Reichle等研究了LDH及其焙烧产物在有机催化反应中的应用,指出它在碱催化、氧化还原催化过程中有重要的价值。 进入二十世纪九十年代,人们对LDHs的研究更为迅速。随着现代分析技术和测试手段的广泛应用,人们对LDHs结构和性能的研究不断深化,对LDHs层状结构的认识加深,其层状晶体结构的灵活多变性被充分揭示。特别是近年来,基于超分子化学定义及插层组装概念,有关LDHs的研究工作获得了更深层次上的理论支持,在层状前体制备、结构表征、超分子结构模型建立、插层组装动力学和机理、插层组装体的功能开发等诸方面得到了许多具有理论

浅谈纳米材料光催化技术研究现状

龙源期刊网 https://www.doczj.com/doc/7e13458050.html, 浅谈纳米材料光催化技术研究现状 作者:林雪牛文成 来源:《神州》2012年第29期 摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。 关键词:纳米材料,光催化 一、纳米材料的分类 人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正 式创刊标志着纳米科技从此正式开山立派。而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。 人们对于一门新学科——纳米材料学的研究已经有一定的进展。通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类: 1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。 2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。 3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。 二、纳米光催化技术的研究现状

影响纳米材料光催化性能的因素教学文案

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值入g 与Eg有关,其关系式为:入g=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种? OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一o TiO2主要有两种晶型一锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙( 3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

改性纳米氧化锌的光催化性能研究

改性纳米氧化锌的光催化性能研究 改性纳米氧化锌的光催化性能研究 摘要:本文考察了光降解时间、亚甲基蓝溶液的PH值、亚甲基蓝溶液的初始浓度、催化剂的用量等对亚甲基蓝光催化降解率的影响。实验结果表明,纳米ZnO具有荧光性,掺入不同的金属离子能够改变纳米ZnO对亚甲基蓝溶液的降解效果,其中掺铈纳米ZnO降解效果最好;掺铬纳米ZnO的降解率最低。 关键词:纳米ZnO 掺杂光降解亚甲基蓝溶液 氧化锌,俗称锌白,属六方晶系纤锌矿结构,白色或浅黄色晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中能吸收二氧化碳和水。ZnO是具有较大能隙及优良光学性质的n-型半导体材料,常被用于制备场发射显示器及阴极射线发射装置,光催化材料,紫外半导体激光的发生介质,这些应用主要利用了纳米ZnO粒子吸收紫外光后发出荧光的特点。所吸收与发出的荧光波长取决于其能隙大小。如何降低纳米氧化锌等材料的制备成本、也是纳米氧化锌能否应用于环境污染物治理的关键因素之一,因此探讨氧化锌的光催化性能具有十分重要的意义。 一、实验试剂和实验装置图 (一)仪器试剂 79-1磁力加热搅拌器(江苏金坛市中大仪器厂);UV751GD紫外可见分光光度计(重庆医药股份有限公司化玻分公司);真空干燥箱(重庆银河试验仪器有限公司);高硼紫外线杀菌灯管(ZGZ30W启东市海联有限公办公司);水浴锅;电子天平;马弗炉 乙酸锌、二乙醇胺、四水硫酸铈、硝酸镍、硫酸铬、硝酸铁、无水乙醇、亚甲基蓝均为国产分析纯。 二、纯纳米ZnO和掺杂纳米ZnO的制备 量取50ml无水乙醇置于烧杯中,开始搅拌。称取二水乙酸锌约4.39g(0.02mol),搅拌下加入,缓慢滴加二乙醇胺约2ml。在二乙醇胺溶解之后室温下反应3h,静置陈化24h,水浴锅中控制水温在蒸

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

纳米光触媒材料

新材料论文 论文题目:纳米光触媒材料的应用和发展

1、摘要 进入21世纪环境保护问题成了人们关注的热点。如何解决经济增长与保证环境无污染的社会问题,已迫在眉睫。是时,环保材料的研发和发展已成为世界各国的重要课题。 2、纳米光触媒材料定义 光触媒是以纳米级二氧化钛为代表的具有光催化功能的光半导体材料的总称。这种材料在紫外线的照射下可产生游离电子及空穴,因而具有很强的光氧化还原功能,可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和固化病毒的蛋白质,具有极强的防污、杀菌和除臭功能。 3、纳米光触媒材料的发展历史和原理简介 光触媒就是在光参与下发生反应的催化剂。1972年,A.Fujishima 和K.Honda在n一型半导体TiO2电极上发现了水的光电催化分解作用,以此为契机,开始了多相光触媒研究的新纪元,最近以来,由于光触媒在净化气相和水中有机污染物方面的卓越表现,已成为光触媒应用的一个非常重要的领域。 二氧化钛作为一种光触媒,在光作用下能产生具有超强氧化能力的空穴/电子对,能把有机物彻底氧化为CO2和H2O,从而彻底消除污染,由于细菌和病毒也都为有机微生物,故也能将之彻底杀灭。

而本公司纳米光触媒由于其粒子在小于10nm左右,具极大的反应表面积及量子效应,氧化能力更加强大。 人们还发现,二氧化钛光触媒纳米涂层在光的作用下具超级亲水性,接触角接近为零,从而又赋予了光触媒涂层的亲水防污功能,使被涂面始终保持崭新状态,而不受污染。 光触媒就是在光的照射下(自然光,灯光),会产生类似与光合作用的光催化反应,产生出氧化能力极强的氢氧自由基和活性氧,具有很强的氧化还原功能,可氧化分解各种有机化合物和部分无机物,能破坏细菌的细胞膜和病毒的蛋白质,把有机污染物分解成二氧化碳和水,因而光触媒具有极强的杀菌,除臭,防霉,防污自洁等功能。氧化钛光触媒薄膜通常采用钛盐溶于乙醇溶液或溶于有机溶剂之中。用惰性气体为载体的高压喷射法,喷在经热处理后的玻璃、墙面、建材、灯罩及其他基质上形成大面积的均匀薄膜。该薄膜在阳光及紫外光的照射下产生的触媒效果。光触媒可应用于环境的净化。将氧化钛与敏化剂喷在墙壁涂料表面或喷在窗框玻璃上形成膜层,利用太阳光或室内照明光源,具有强氧化能力的氧化钛不仅可使室内污浊的空气物质分解、净化空气,尤其对医院、宾馆、候车室等空气流动性差的场所能有效杀死大肠杆菌和流感病菌。不只可以处理恶臭,而且从地板、建材、防虫剂、灭壁虫剂、福尔马林等散发出的溶剂造成的住宅综合症状群。甚至防止医院内的病毒感染、以及具有光触媒性能的照明器具、光触媒人工观叶植物、人造花、窗纸等,皆出现在市面上。连窗帘、百叶窗、壁纸、隔门、厨余用的除臭处理装

TiO2及其光催化剂的活性评价综述

TiO2及其光催化剂的活性评价 实验报告 指导老师: 翁永根 组别: 1 1 组 姓名: 薛尚韬 200921501438 杨昆昊 200921501439 杨丽萍 200921501440

TiO2及其光催化剂的活性评价 [实验目的] 1.了解纳米二氧化钛的制备方法及其应用。 2.熟练掌握用溶胶-凝胶法制备纳米二氧化钛的步骤。 3.学会对纳米二氧化钛产品进行紫外和可见光下的性能评价。 [实验原理] 二氧化钛俗称钛白粉,最初作为颜料用于涂料工业,是一种化学稳定性强、无毒的半导体氧化物。 本实验采用成熟的溶胶-凝胶法,溶胶-凝胶法是制各纳米粒子的一种湿化学法。胶体是一种分散相粒径很小的分散系统,分散相粒子的重力可以忽略,粒子之间的相互作用主要是短程作用力.溶胶是具有液体特征胶体体系,分散的粒子是固体或者大分子.凝胶是具有固体特征的胶体体系被分散的物质连成连续的网状骨架,骨架空隙中充有液体或者气体. 制备溶胶所用的原料为钛酸四丁脂Ti(O-C4H9)4、水、无水乙醇(C2H5OH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速,使Ti(O-C4H9)4在无水C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐钛型二氧化钛。 在以C2H5OH为溶剂,Ti(O-C4H9)4和水发生不同程度的水解反应,钛酸四丁脂在酸性条件下,在乙醇介质中水解反应是分步进行的,总水解反应表示为下式,水解产物为含钛离子溶胶。 Ti(O-C4H9)4+4H2O Ti(OH)44C4H9OH + 一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定

二氧化钛的光催化性能

二氧化钛的光催化性能 摘要:以廉价易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛,工艺 过程简单、易控制、污染少,是一种制备二氧化钛的理想方法。同时研究了催化剂用量和时间对TiO2 光催化降解甲基橙的降解率的影响,实验结果表明当催化剂用量为4 g/L,光催化时间为60 min时,降解率可达到90%以上。 关键词: 二氧化钛,制备,甲基橙,光催化 TiO2 具有化学性质稳定、催化活性高、催化简单有机物彻底、不引起二次污染等优点,在污水处理、空气净化等领域被广泛研究。它利用半导体氧化物材料在光照时表面能受激活化的特性,利用光能可有效地氧化分解有机物、还原重金属离子、杀灭细菌和消除异味,无二次污染,不仅经济,而且自身无毒、无害及无腐蚀性,还可反复使用,并可望用太阳光为反应光源等特点而被广泛地应用到光催化降解有机污染物,是一种具有广阔应用前景的绿色环境治理技术。 目前,制备二氧化钛的方法很多,分类方法也有所不同。根据物理性质,分为气相法、固相法和液相法。气相法制备出的TiO2纯度高、分散性好、团聚少、比表面活性大,但是气相法的反应要求在高温条件下瞬间完成,对反应器的选择、设备的材质,加热方法等均有很高的要求,欲达到工业化生产还要解决一系列工程问题和设备材质问题。与气相法相比,液相法具有原料廉价、无毒、常温下可以反应、工艺过程简单、易控制、污染少、产品质量稳定等优点。因此,以廉价、易得的四氯化钛为原料,利用溶胶一凝胶法制备二氧化钛是一种具有工业发展潜力的理想方法。其他实验方法 1实验部分 1.1实验试剂 99.9%的四氯化钛(分析纯)(天津市科密欧化学试剂有限公司),28%的氨水,97%的乙醇(洛阳市化学试剂厂),0.1mol/L的浓硫酸,0.1mol/L的氢氧化钠,0.1mol/L的硝酸银溶液,去离子水,二次蒸馏水 1.2 实验仪器 抽滤器烘箱 1.3 实验原理 将四氯化钛加入乙醇的水溶液中,让TiCl4水解后再加入含羟基或可释放出羟基的化合物(本实验用氨水),使其缩合,逐渐凝胶化后经干燥和煅烧可得二氧化钛粉末,反应如下: 水解反应: TiCl4 + 4C2H5OH = Ti(OC2H5)4 + 4HCl Ti(OC2H5)4 + 4H2O = Ti(OH)4↓+ 4C2H5OH 煅烧反应:

TiO2光催化性能的研究

本科生课程设计 课题:TiO2光催化性能的研究院系:理学院化学系 班级:材料化学 姓名:饶倩蓝 学号: 1100700209 指导教师:陈刚教授 设计时间: 2013 年05 月24 日

摘要 TiO 以其无毒、催化活性高、稳定性好以及抗氧化能力强等优点而备受青睐,2 制备、表征、性能,重点对溶胶-凝胶法,进行了深入研本文主要讲述纳米TiO 2 究。 ,溶胶-凝胶法 关键词:光催化, TiO 2

1、TiO2光催化材料简介 自从1972年两位日本学者在TiO 单晶电极上发现水的光电催化分解制氢以 2 来【1】,多相光催化技术引起了科技工作者的极大关注. 目前, 在多相光催化反应 以其无毒、催化活性高、稳定性好以及抗氧化能所应用的半导体催化剂中,TiO 2 力强等优点而备受青睐【2】。 在自然界有三种形态,分别是金红石(Rutile),锐钛矿(Anatase)以TiO 2 及无定型TiO 。其中,板钛矿型在自然界中很稀有,属斜方晶系,是不稳定的晶型, 2 因而没有工业价值。但是锐铁矿和金红石相在自然界普遍存在,在光催化领域有广泛的应用。金红石和锐钛矿两者均为四方晶系,晶型结构均可由相互衔接的Ti0 八面体表示。两者的差别在于八面体的畸变程度和八面体间相互衔接的方式6 不同,如图1所示。在金红石相中,晶体结构表现为氧离子近似六方最紧密堆积, ]八面体,铁离子的配位数为六,氧离钛离子位于变形的八面体空隙中,构成[Ti0 6 子的配位数为三,[Ti0 ]配位八面体沿C轴共棱成链状排列,链间由配位八面体共 6 八面体有稍微的畸变,金红石型中每个八面体与周围10个八面体角顶相连,Ti0 6 相连(其中两个共边,八个共顶角),而锐铁矿型中每个八面体与周围8个八面体相连(四个共边,四个共顶角)。这些结构上的差异导致了两种晶型有不同的质量密度和电子能带结构。锐钛矿型的质量密度(3.894 g*cm_3)略小于金红石型(4.250g*cm_3),带隙(3.2eV)略大于金红石型(3.0 eV)。通常,锐钛矿相Ti0 在高 2 温热处理下会逐渐转变成金红石相。金红石TiO 具有很高的热稳定性 2 因此锐钛矿由于其低的介电常数和质量密度以及高的电子迁移率是公认具有较高光催化活性的光催化材料。 图1 金红石和锐钛矿的结构

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛 TiO 2 光触媒的广泛应用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象, 然而未能对其进行理论解释。直到1955 年, Brattain 和Gareet才对光电现象进行了合理的解释, 标志着光电化学的诞生。1972 年, 日本东京大学Fu jishmi a和H onda研究发现[ 3] , 利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30 年里, 人们在光催化材料开发与应用方面的研究取得了丰硕的成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对的分离效率, 提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步, 然而受认知手段与认知水平的限制, 目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面, 现有光催化材料的光响应范围窄, 量子转换效率低, 太阳能利用率低, 依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件, 也是光催化材料研究者所需要解决的首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形

二氧化钛的制备与光催化性能研究

合肥学院学生专题训练实验报告 合肥学院化学与材料工程系 二氧化钛光催化剂的制备及光催化性能的研究实验 实验目的: 让化学本科生尽早了解和掌握光催化原理,熟悉光催化剂的制备和光催化反应,在大量研究工作的基础上,设计涉及纳米光催化剂的制备、催化剂的简单表征和催化活性评价的综合性实验。让学生能够对光催化具有较好的了解。 实验原理: 当光子能量高于半导体带隙能(如TiO2,其带隙能为3.2eV)的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带。从而使导带产生高活性的电子(e),而价带上则生成带正电的空穴(h+),形成氧化还原体系,挤在表面产生具有高活性的羟基自由基。具有很强的氧化性,可以氧化很多难降解的有机化合物(R)。 粉体的制备可采用许多方法,如溶胶-凝胶法,水热合成法等。 本次试验采用溶胶-凝胶法。 仪器与试剂: 表1 实验药品 药品名称化学式纯度生产厂家 浓硝酸HNO3AR 上海化学试剂有限公司

无水乙醇CH2CH2OH AR 上海中试化工总公司 钛酸丁酯(TBT)[CH3(CH2)3O]4Ti AR 天津市光复精细化工研究所冰醋酸CH3COOH AR 上海振企化学试剂有限公司亚甲基蓝 表2 实验仪器 仪器设备名称型号生产厂家主要用途磁力加热搅拌器85-2 江苏金坛市精达仪器制造厂搅拌反应液电子天平ER-180A 广州市艾安得仪器有限公司准确称量 超声波清洗器KQ-400K DE 昆山市超声仪器有限公司超声分散 高速离心机TG16G 盐城凯特实验仪器有限公司高速离心 电热恒温鼓风干燥箱DHG-902 3A 上海市精宏实验设备有限公司样品干燥 紫外可见分光光度计TU-1901 北京普析通用仪器有限责任公司性能测试 图1 实验装置图 实验过程: 一:TiO2的制备 量取17mL钛酸丁酯,在磁力搅拌器搅拌下滴加入到22mL的无水乙醇中,制得钛酸丁酯/乙醇溶液(A);将22mL无水乙醇和一定量蒸馏水混合,并加入一定量的浓硝酸和冰醋酸,调节pH值在2~3之间(B)。将B以2d/s的速度在磁力搅拌器快速搅拌下滴入A中;滴完后继续搅拌,形成均匀溶胶之后,持续快速搅拌至反应器中无气泡产生;将混合后的溶胶抽虑;所得样品至于电热恒温鼓风干燥箱中于95℃干燥三个小时。将干燥后的样品研磨放入马弗炉中于500℃下煅烧处理,升温速率为3℃/min,保温时间为2h,自然冷却至室温,研磨,即得所需产品,待用。二:实验现象

相关主题
文本预览
相关文档 最新文档