当前位置:文档之家› 第7章 线性离散控制系统的分析 参考答案

第7章 线性离散控制系统的分析 参考答案

第7章 线性离散控制系统的分析 参考答案
第7章 线性离散控制系统的分析 参考答案

第七章 习题与答案

7-1 离散控制系统由哪些基本环节组成?

答:离散控制系统由连续的控制对象,离散的控制器,采样器和保持器等几个环节组成。 7-2 香农采样定理的意义是什么?

答:香农采样定理给出了采样周期的一个上限。 7-3 什么是采样或采样过程?

答:采样或采样过程,就是抽取连续信号在离散时间瞬时值序列的过程,有时也称为离散化过程。

7-4 写出零阶保持器的传递函数,引入零阶保持器对系统开环传递函数的极点有何影响? 答:零阶保持器的传递函数为s

e s H Ts

--=1)(0。零阶保持器的引入并不影响开环系统

脉冲传递函数的极点。

7-5 线性离散控制系统稳定的充要条件是什么?

答:线性离散控制系统稳定的充要条件是: 闭环系统特征方程的所有根的模1

解:3

422

5

2

5

2

)

1()1(]!2[!2][])5[()]([-+===-=---z z z T t Z z

t Z z T t Z t f Z (2) at te t f -=)(

解:令t t f =)(,查表可得

2

)1(][)(-=

=z Tz t Z z F

根据复数位移定理,有

2

)1()(][-=

=-aT aT aT

at

ze Tze ze F te

Z

7-7 求下列函数的z 反变换。 (1))

1)(5(175)(2---=z z z

z z F

解:首先将

z

z F )

(展开成部分分式,即 5

2

13)5)(1(175)(-+-=---=z z z z z z z F 把部分分式中的每一项乘上因子z 后,得

5

213)(-+

-=

z z

z z z F 查z 变换表得

1]1[

1=--z z Z ,n z z Z 5]5

[1=-- 最后可得

,2,1,0,523)(=?+=n nT f n

(2) 5

.05.1)(22

+-=

z z z z F

解:首先将z

z F )

(展开成部分分式,即

5.01

12)55.0)(1()(---=--=z z z z z z z F 把部分分式中的每一项乘上因子z 后,得

5

.012)(--

-=

z z

z z z F 查z 变换表得

1]1[

1=--z z Z ,n z z Z )5.0(]5

.0[1=-- 最后可得

,2,1,0,)5.0(2)(=-=n nT f n

7-8设z 变换函数为)

57)(1()(2

3

++-=z z z z z E ,试利用终值定理确定)(∞e 。 解:由终值定理得

13

1)

57(lim

)

57)(1()

1(lim )()1(lim )(23

1

23

1

1

=

++=++--=-=∞→→→z z z z z z z z z E z e z z z 7-9 用z 变换法求解下列差分方程。 (1) 0)(12)1(8)2(=++-+k c k c k c ,,0)0(=c ,1)1(=c

解:将差分方程取z 变换,得到

0)(12)]0()([8)]1()0()([22=+----z C zc z zC zc c z z C z

1

)()128(2

2

-=+-z z z C z z

6

10/322/15/)6)(2)(1()

128)(1()(2

22

-+---=---=

+--=

z z z z z z z z z z z z z z z C 查z 变换表,求出z 反变换得

k k k kT c )6(10

3

)2(21)1(51)(+-= ),3,2,1,0( =k

(2) )()()1(2)2(k r k c k c k c =++++,0)1()0(==c c ,k k r =)(),2,1,0( =k

解:将差分方程取z 变换,得到

2

22)1()()]0()([2)]1()0()([-=

+-+--z z z C zc z zC zc c z z C z

2

22

)1()()12(-=

++z z z C z z

]1)

1(1)1([41)1()1()(22222

++++---=+-=

z z z z z z z z z z z z C 查z 变换表,求出z 反变换得

)cos 1)(1(4

1

]cos cos 1[41)(πππk k k k k k kT c --=+--= ),3,2,1,0( =k

7-10 已知某离散控制系统的差分方程为)()1()(4)1(3)2(k r k r k c k c k c -+=++++,求该系的脉冲传递函数。

解:利用z 变换性质,在零初始条件下,可得

)()()(4)(3)(2z R z zR z C z zC z C z -=++

整理后,可得脉冲传递函数

4

31

)()(2++-=z z z z R z C 7-11设开环离散系统如图7.11 和图7.12所示,其中)/()(,/1)(21a s a s G s s G +==,输入信号)(1)(t t r =,试求两种系统的脉冲传递函数)(z G 和输出的z 变换)(z C 。

解:查z 变换表,输入)(1)(t t r =的z 变换为

1

)(-=

z z z R 对如图7.11所示系统

aT

e z az

a s a Z z G z z

s Z z G --=

+=-=

=][)(1

]1[)(21

因此

))(1()()()(2

21aT

e z z az z G z G z G ---== )

()1()()()(23

aT e z z az z R z G z C ---==

对如图7.12所示系统

)

()()(21a s s a

s G s G +=

)

)(1()1(])([)()(21aT aT e z z e z a s s a

Z z G G z G -----=+==

)

()1()1()()()(2

2aT

aT e

z z e z z R z G z C -----=

=

显然,在串联环节之间有、无同步采样开关隔离时,其总的脉冲传递函数和输出z 变换是不相同的。但是,不同之处仅表现在其开环零点不同,极点仍然一样。

7-12 已知离散控制系统的结构如图7.27所示,采样周期T =0.2s ,输入信号22

1

1)(t t t r ++=,

求该系统的稳态误差。

图7.27 题7-12图 解:1.先判定系统稳定性: 系统开环脉冲传递函数为

2

31

2)1()32

(2.1]105[)1(])15.0(101[)]([)(--=+-=+-==--z z s s Z z s s s e Z s G Z z G Ts 则闭环脉冲传递函数为

2

.08.08

.02.1)(1)()()()(2+--=+==

Φz z z z G z G z R z C z 特征方程为:

02.08.0)(2=+-=z z z D

由Z 域稳定性直接判别法,因

12.0)(<=z D 04.02.08.01)1(>=+-=D 022.0)1(8.01)1(>=+--=-D

所以系统是稳定的,可以求取系统的稳态误差。 2.求系统稳态误差

由)(z G 可知系统为II 型系统,对阶跃输入及速度输入稳态误差为零。

4.0)1()

321(2.1)

1(lim 2

2

1=---=→z z K z a 1.04

.004

.000)(=+

+=∞e

离散控制系统的分析与综合

第7章离散控制系统的分析与综合 7.3 离散系统的能控性和能观性 1、离散系统的能控性和能观性判据 ◆能控性和能观性定义: 对有限个采样周期,若能找到控制信号序列,能使任意一个初始状态转移到零状态,则系统是状态完全能控的;若根据有限个采样周期的输出序列,能唯一地确定任意初始状态,则系统是状态完全能观的。 ◆能控性和能观性判据: A B C状态完全能控的充要条件 n阶线性定常离散系统(,,) 是

1 rank rank[,,,]n c Q B AB A B n -== 状态完全能观的充要条件是 1rank rank o n C CA Q n CA -轾犏犏犏==犏犏犏臌 2、连续系统离散化后的能控性与能观性 设具有零阶保持器的n 阶连续系统以采样周期T 离散为离散系统。 定理:若连续系统不能控(不能观),则其离散系统必不能控(不能观)。若连续系统能控(能观),其互异特征值(含 重特征值)为μλλλ,, , 21,若对一切 μλλ,,2,1,,0][ ==-j i R j i e

的互异特征值满足 ,2,1,2][±±=≠-k T k I j i m πλλ 则其离散系统必保持能控(能观)性。 7.4 离散系统的稳定性 1、离散系统稳定的充要条件 1)赛尔维斯特展开定理 设n 阶系数矩阵A 具有互异特征值n λλλ,,, 21,)(A f 是A 函数,则有 i i n i A f A f )()(1λ∑== 其中 j i i n i j j i I A A λλλ--= ∏≠=,1

2)离散系统稳定的充要条件 线性定常离散系统齐次状态方程 的解为 ()(0)k x k A x = 由系统的特征方程 0zI A -= 可解得系统的特征值。 设A 的特征值n λλλ,,, 21两两互异,则由赛尔维斯特展开定理得 1n k k i i i A λA ==?

利用MATLAB进行离散控制系统模拟

实验利用MATLAB进行离散控制系统模拟本试验的目的主要是让学生初步掌握MATLAB软件在离散控制系统分析和设计中的应用。 1.连续系统的离散化。 在MATLAB软件中,对连续系统的离散化主要是利用函数c2dm( )函数来实现的,c2dm( )函数的一般格式为 C2dm( num, den, T, method),可以通过MATLAB的帮助文件进行查询。其中: Num:传递函数分子多项式系数; Den:传递函数分母多项式系数; T:采样周期; Method:转换方法; 允许用户采用的转换方法有:零阶保持器(ZOH)等五种。

2.求离散系统的相应: 在MATLAB中,求采样系统的响应可运用dstep( ),dimpulse( ),dlsim( )来实现的。分别用于求取采样系统的阶跃,脉冲,零输入及任意输入时的响应,其中dstep( )的一般格式如下: dstep( num, den, n),可以通过MATLAB的帮助文件进行查询。其中: Num:传递函数分子多项式系数; Den:传递函数分母多项式系数; N:采样点数; 3.此外,离散控制系统也可以用simulink工具箱进行仿真,仿真界面

如下图(采样周期可以在对应模块中进行设定)。 1.编制程序实现上面三个仿真程序。 2.把得到的图形和结果拷贝在试验报告上。 3.在第1个例子中,改变采样周期为0.25,重新运行程序,把结果和原来结果进行比较,并说明为什么? 4.在第2个例子中,改变采样点数为70,重新运行程序,把结果和原来结果进行比较,并说明为什么?同样,改变采样周期T,观察不同周 期下系统阶跃响应的动态性能,分析采样周期对系统动态性能的影响。 1. 1) num=10; den=[1,7,10]; t=0.1 [numz,denz]=c2dm(num,den,t,'zoh'); printsys(numz,denz,'z') 得出结果: t = 0.1000 num/den = 0.039803 z + 0.031521 ------------------------ z^2 - 1.4253 z + 0.49659 若t改为0.25: num=10;

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案

----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2+--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 211x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22 ()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+--+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制() D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。

(完整word)MIMO非线性系统的反馈线性化初步理论

第五章 MIMO 非线性系统的反馈线性化初步理论 引言: 对于多输入多输出系统仍可以用下列紧缩的形式的方程来描述: )()()(x h y u x g x f x =+=& (*) n R x ∈ 若输入的个数与输出的个数的数目相同时,可令 ) 1( )](),...,([)()1()](),...,([)()()](),...,([)() 1() ,...,() 1(),...,(11111?=?=?=?=?=m x h x h Col x h n x f x f Col x f m n x g x g x g m y y Col y m u u Col u m n m m m )(),...,(),(1x g x g x f m 均是光滑的向量场,)(),...,(1x h x h m 是光滑的函数,均定义在n R 的某个开集上。 5.1 向量相对阶和总相对阶: 一个多变量非线性系统(*),在οx 处有向量相对阶},...,{1m r r 是指: (i) 0)(=x h L L i k f g j 对所有:111-<≤≤≤≤i r k m i m j οx x ∈?的邻域 (ii) m m ?矩阵 ?? ?? ? ? ?????? ??=------)(.. ) (. ...)(..)() (.. )()(11212111 11 12211 1 1x h L L x h L L x h L L x h L L x h L L x h L L x A m r f g m r f g r f g r f g r f g r f g m m m m m 在οx x =处是非奇异的。 注意: (1)该定义涵盖了SISO 系统。 (2)整数m r r ,...,1中的某个i r 是与系统第i 个输出)(x h i 有关的。行向量: )](),...,([111x h L L x h L L i r f g i r f g i m i --,至少有一个元素是非零的,

第五章线性系统状态反馈1

第五章 线性定常系统的状态反馈和状态观测器设计 闭环系统性能与闭环极点(特征值)密切相关,经典控制理论用输出反馈或引入校正装置的方法来配置极点,以改善系统性能。而现代控制理论由于采用了状态空间来描述系统,除了利用输出反馈以外,主要利用状态反馈来配置极点。采用状态反馈不但可以实现闭环系统极点的任意配置,而且还可以实现系统解耦和形成最优控制规律。然而系统的状态变量在工程实际中并不都是可测量的,于是提出了根据已知的输入和输出来估计系统状态的问题,即状态观测器的设计。 §5-1 状态反馈与闭环系统极点的配置 一、状态反馈 1、状态反馈的概念 状态反馈就是将系统的每一个状态变量乘以相应的反馈系数反馈到输入端与参考输入相加,其和作为受控系统的输入。 设SISO 系统的状态空间表达式为: bu Ax x += cx y = 状态反馈矩阵为k ,则状态反馈系统动态方程为: )(kx v b Ax x -+= bv x bk A +-=)( cx y = 式中: k 为n ?1矩阵,即[]11 -=n o k k k k ,称为状态反馈增益矩阵。 )(bk A -称为闭环系统矩阵。 闭环特征多项式为 ) (bk A I --λ。 可见,引入状态反馈后,只改变了系统矩阵及其特征值,c b 、阵均无变化。 状态反馈系统结构图

【例5.1.1】已知系统如下,试画出状态反馈系统结构图。 u x x ?? ? ? ? ?????+??????? ???--=10020 110010 , []x y 00 4= 解:[]x k k k v kx v u 21 -=-= 其中[]21 k k k k =称为状态反馈系数矩阵或状态反馈增益矩阵。 ??? ?? ??=+-=+-==1333222142x y u x x x x x x x 说 明:如果系统为r 维输入、m 维输出的MIMO 系统,则反馈增益矩阵k 是一个m r ?维矩阵。即 m r rm r r m m k k k k k k k k k k ???? ??? ??????= 2 1 2222111211 2、状态反馈增益矩阵k 的计算 控制系统的品质很大程度上取决于该系统的极点在s 平面上的位置。因此,对系统进行综合设计时,往往是给出一组期望的极点,或者根据时域指标提出一组期望的极点。所谓极点配置问题就是通过对反馈增益矩阵k 的设计,使闭环系统的极点恰好处于s 平面上所期望的位置,以便获得期望的动态特性。 本节只讨论SISO 系统的极点配置问题,因为SISO 系统根据指定极点所设计的状态反馈增益矩阵是唯一的。

线性离散系统基础

第七章 线性离散系统基础 一.基本内容 1.了解离散控制系统基本概念、采样过程及采样定理;零阶保持器的传递函数、频率特性及应用特点。 2.掌握z 变换及z 反变换的求取方法;熟练掌握脉冲传递函的定义,开环脉冲传递函数和闭环脉冲传递函数求解方法; 3.熟练掌握离散控制系统的稳定性分析; 4.熟练掌握离散控制系统的稳态误差计算 二.重点和难点 离散控制系统与连续控制系统的根本区别,在于连续控制系统中的信号都是时间的连续函数,而离散控制系统中有一处或多处的信号是脉冲序列或数码形式的。 把连续信号变为离散信号的过程叫做采样,实现采样的装置称为采样器(采样开关)。反之,把采样后的离散信号恢复为连续信号的过程称为信号的复现。 离散控制系统的采样定理给出了从采样的离散信号恢复到原来连续信号所必须的最低采样频率(max 2ωω≥s )。 离散信号的恢复,是在系统中加入代替理想滤波器的实际保持器来实现的。按恒值外推规律实现的零阶保持器,由于其实现简单,且具有最小的相移,被广泛的应用于离散控制系统中,其传递函数为 s e s G Ts h --=1)( 1.脉冲传递函数 脉冲传递函数的定义:零初始条件下,线性定常离散系统输出离散信号的z 变换与输入离散信号的z 变换之比,称为脉冲传递函数。 比较常见的一种离散控制系统的结构形式如图7-1所示,其闭环脉冲传递函数为

) (1)()() (2121z H G G z G G z R z C += 式中 , )]()()([)(2121s H s G s G Z z H G G = )]()([)(2121s G s G Z z G G = 图7-1典型离散控制系统的结构图 其中:)(21z H G G 为系统的开环脉冲传递函数。 2.离散系统分析 (1)离散系统的稳定性 离散系统稳定的充分必要条件是:系统的闭环极点均在z 平面上以原点为中心的单位圆内。即 ),2,1(1n i z i =<。 因此,可以通过求解闭环特征方程式的根来判断离散系统的稳定性。但当系统的阶次较高或有待定常数时,采用此法不太合适,可以通过双线性变换 1 1 -+= w w z 将z 平面上的单位圆内部分映射到w 平面的左半平面,即可使用劳斯稳定判据判断离散系统的稳定性。 (2)稳态误差 单位反馈的离散系统(即图7-1中1)(=s H )的的稳态误差为: ) (1) () 1(lim )(1 z G z R z e z +-=∞→ 其中)()(21z G G z G =为开环脉冲传递函数。 通常选用三种典型输入信号,即单位阶跃信号、单位斜坡信号和单位抛物线信号,对应z 变换分别为 3 22)1(2) 1(,)1(,1 -+--z z z T z Tz z z 三.典型例题分析 )(1s G ) (s H )(s R T ) (s E ) (s C ) (2s G

线性系统理论中状态反馈综述

线性系统理论中状态反馈综述 学号:1402028 姓名:王家林 现代控制理论源于20世纪60年代,以极大值等原理为形成标志,经典理论中以单一输入变量为研究对象,主要通过频率进行控制,现在控制理论以线性空间理论为基础,在时域中研究系统,能够定量的进行系统的分析和设计,随着计算机运算能力的发展,现代控制也在更多领域得到应用。控制系统是有受控对象和反馈控制器两部分组成的闭环系统,经典控制理论通常采用输出反馈,而现代控制理论多采用状态反馈。闭环系统极点的分布情况决定于系统的稳定性和动态品质,因此,可以根据对系统动态品质的要求,规定闭环系统的极点所具备的分布情况,把极点的配置作为系统的动态品质指标。这种把极点配置在某位置的过程称为极点配置。在空间状态法中,一般采用反馈系统状态变量或输出变量的方法,来实现系统的极点配置。 20世纪50年代以后,随着航天等技术发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的问题,这就推动了线性系统的研究,于是在1960年以后从经典阶段发展到现阶段。美国学者R.E.卡尔曼首先把状态空间法应用于多变量线性系统的研究,提出了能控性和能观性两个基本概念。其研究问题的方法主要有时域状态空间分析法,线性二次型最优状态调节器法,状态观测器控制法,李雅普诺夫稳定性分析法以及极点配置法等。近年来,计算机技术的迅速发展给需要大计算量的现代控制提供了更好的发展空间,同事工业生产的告诉发

展,是的工程界对控制的要求也日益提高,由此也极大地推动了现代控制理论的发展和完善。 在控制理论与实践中的一个基本要求是设计反馈控制率,将闭环系统的极点配置在制定的位置上,从而保证闭环系统具有所要求的动态和稳态特性。由于模型的不确定因素和各种扰动的存在,使得精确极点配置的控制方式不可能得到真正的实现。世纪设计中只能将闭环系统的极点配置在指定的区域内,就可以使系统获得满意的性能。近年来,对D稳定理论的研究十分活跃,利用这一理论研究区域极点配置问题已取得一些成果,包括最优控制、鲁棒性等方面。 在对系统的分析和设计中,首先要考虑的是系统的稳定性问题,而线性系统的稳定性与其极点的位置紧密相关,因此极点配置问题在系统设计中是很重要的。为此,需要根据分析和设计的目的,将系统极点配置在指定区域内或指定某个位置。 所谓极点配置问题,就是通过反馈矩阵的选择,使闭环系统的极点,即闭环特征方程的特征值恰好处于所希望的一组极点位置上或者是某个区内。由于希望的极点具有一定的任意性,因此极点的配置也具有一定的任意性。 对于线性系统而言,其稳定性取决于状态的零输入响应,因而取决于系统极点的分布,当极点的实部小于零时,系统是稳定的;当极点分布在虚轴上时,系统是临界稳定的;当极点的实部大于零时,系统是不稳定的。同事,系统动态响应的基本特性也依赖于极点的分布,若系统极点是负实数,则系统动态响应时非周期的,按指数规律

第七章 线性离散系统的分析与校正(B

第七章 线性离散系统的分析与校正(B ) 一、填空题 1、数字控制系统是一种以数字计算机为 去控制具有连续工作状态的被控对象的闭环控制系统。 2、对于具有传输延迟,特别是大延迟的控制系统,可以引入 控制的方式稳定。 3、如果采样器的输入信号()t e 具有有限带宽,并且有直到h w 的频率分量,则使信号()t e 完满地从采样信号()t e *中恢复过来的采样周期T ,满足条件: 。 4、闭环离散系统脉冲传递函数不能从()s F 和()s e F 求变换得来,这是由于采样器在闭环系统中有 的原因。 5、z 变换是对连续信号的 进行变换,因此z 变换与其原连续时间函数并非一一对应。 6、1)(-=z z G ,在离散系统中其物理意义代表一个 环节。 7、对于任何输出)(z C 的z 反变换,)(nT c 只能代表)(t c 在 的数值。 8、采样器的引入一般会降低系统的 。 9、如要在离散系统中运用连续系统中的劳思判据,则必须 变换。 10、影响离散系统稳定性的因素中,除与开环增益K 、系统的零极点分布和传输延迟等因素有关外,还有 有关。 11、当开环增益一定时,采样周期越 ,对离散系统的稳定性及动态性能均不利,甚至可使系统失去稳定性。 12、在单位阶跃函数作用下,0型离散系统在采样瞬时存在 误差。 13、零阶保持器的 滞后降低了系统的稳定程度。 二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。) 1、采样信号的拉氏变换形式为( )。

A. 0 ()()nTs n E s e nT e ¥ -==? B. * ()()nTs n E s e n e ¥-==? C. ?¥=-=0*)()(n nTs e nT e s E D. *0 ()()Ts n E s e nT e ¥-==? 2、已知差分方程)2(6)1(5)()(---+=k c k c k r k c ,输入序列1)(=k r ,初始条件为1)1(,0)0(==c c ,则(3)c =( )。 A. 6 B. 25 C. 90 D. 301 3、用z 变换分析离散系统时,系统连续部分传递函数)(s G p 的极点数至少要比其零点数多()。 A. 1个 B. 2个 C. 3个 D. 4个 4、下列与线性定常离散系统的稳态误差无关的是()。 A. 系统本身的结构和参数 B. 系统输入 C. 采样周期 D.分析方法 5、采样器和保持器不影响()。 A. 开环脉冲传递函数的零点 B. 开环脉冲传递函数的极点 C. 闭环 脉冲传递函数零点 D 闭环脉冲传递函数极点 6、有关采样器和保持器对离散系统的动态性能影响不正确的是()。 A. 采样器可使系统的峰值时间和调节时间略有减小。 B. 在具有大延迟的系统中,误差采样会降低系统的稳定程度。 C. 零阶保持器使系统的峰值时间和调节时间都加长。 D. 零阶保持器使系统的超调量和振荡次数增加。 三、试证明 []()()d L tx t Tz X z dz éù=-êú??成立。 四、试求2()()(1)z X z z a z =--的Z 反变换。 五、用部分分式法求 10()(1)(2)X z z z = --的反Z 变换,(0)0x =。

线性离散系统的数学模型和方法分析

§10-2 线性离散系统的数学模型和分析方法 大多数计算机控制系统可以用线性时不变离散系统的数学模型来描述。对于单输入单输出线性离散系统,人们习惯用线性常系数差分方程或脉冲传递函数来表示。离散系统的线性常系数差分方程和脉冲传递函数,分别和连续系统的线性常系数微分方程和传递函数在结构、性质和运算规则上相类似。对于多变量、时变和非线性系统用状态空间方法处理比较方便。 一、线性离散系统的数学描述 1. 差分方程 对简单的单输入单输出线性离散系统,其输入)(kT u 和输出)(kT y 之间的关系可用下列线性常系数差分方程来表示 )()()()()()(101nT kT u b T kT u b kT u b nT kT y a T kT y a kT y n n -++-+=-++-+ (10.17) (10.17)式也可以写成如下紧缩的形式 ∑∑==-=-+n i n i i i iT kT u b iT kT y a kT y 1 )()()( (10.18) 如果引入后移算子1 -q ,即 )()(1T kT y kT y q -=- (10.19) 则(10.18)式可写成多项式的形式 )()()()(11kT u q B kT y q A --= (10.20) 式中 n n q a q a q A ---+++= 1111)( n n q b q b b q B ---+++= 1101)( 方程(10.17)、(10.18)和(10.20)中假设左右两端阶次相同,这并不失一般性,差分方程中最高和最低指数之差n 被称为差分方程的阶数。如果(10.17)式中右端的系数项i b ,n i ,,1,0 =,不全为零,则此方程被称为非齐次方程。方程右端又被称为驱动项。方程的阶数和系数反映系统的结构特征。用差分方程作为物理系统的数学模型时,方程中各变量代表一定的物理量,其系数有时具有明显的物理意义。如果(10.17)式右端的系数全为零,则被称作齐次方程。齐次差分方程表征了线性离散系统在没有外界作用的情况下,系统的自由运动,它反映了系统本身的物理特性。 2. 差分方程的解 线性常系数差分方程求解方法和线性代数方程的求解相类似,其全解)(kT y 由齐次方程的通解

线性控制系统(0600004)

线性控制系统(0600004) 一、课程编码:0600004 课内学时: 48 学分: 3 二、适用学科专业:控制科学与工程、控制工程 三、先修课程:自动控制原理,现代控制理论,矩阵分析 四、教学目标 通过本课程的学习, 使学生了解线性系统理论基础,掌握时变、时不变多变量系统的状态空间描述;掌握系统稳定性理论、系统可控性与系统可观测性理论;掌握线性系统反馈理论,实现系统状态反馈极点配置、状态反馈解耦、镇定等;掌握状态观测器的设计方法,掌握具有观测器的状态反馈系统设计,提升学生对控制系统分析和系统设计的能力。 五、教学方式 课堂讲授 六、主要内容及学时分配 1.系统的数学描述 6学时 1.1 输入-输出描述 1.2 状态空间描述 1.3 输入-输出描述和状态变量描述的比较 2.线性系统运动分析 4学时 2.1 线性系统的运动分析 2.2 等价动态方程 2.3 脉冲响应矩阵及其实现 3.线性动态方程的可控性和可观测性 8学时 3.1 线性动态方程的可控性 3.2 线性动态方程的可观测性 3.3 线性时不变动态方程的规范性分解 3.4 约当形动态方程的可控性和可观测性 3.5 输出可控性和输出函数可控性 4.标准型和不可简约实现 3学时 4.1 正则有理矩阵的特征多项式和次数 4.2 动态方程的可控和可观测标准型 4.3 不可简约矩阵分式描述的最小实现 5.状态反馈和状态观测器 8学时 5.1 状态反馈和输出反馈 5.2 状态反馈极点配置 5.3 状态观测器及状态观测器的设计 5.4 基于观测器的状态反馈控制系统特性 6.线性系统的镇定、解耦及最优控制 3 学时

6.1 状态反馈镇定 6.2 状态反馈解耦 6.3 线性二次型最优控制 7.系统的运动稳定性 8学时 7.1 李亚普诺夫意义下的运动稳定性 7.2 线性系统的稳定性 7.3 李亚普诺夫第二方法 8.离散时间线性系统 4学时 8.1 连续时间系统的离散化 8.2 离散时间线性系统的数学描述 8.3 离散时间线性系统的运动分析 8.4 离散时间线性系统的可控性与可观测性 8.5 离散时间线性系统的李亚普诺夫稳定性分析 8.6 离散时间线性系统状态反馈 9.组合系统 4学时 9.1 组合系统的状态空间描述和传递函数描述 9.2 组合系统的可控性和可观测性 9.3 组合系统的稳定性 9.4 单位反馈系统设计 9.5 渐进跟踪和干扰抑制 9.6 输入输出反馈系统 七、考核与成绩评定 成绩以百分制衡量。成绩评定依据:平时成绩占20%,期末笔试成绩占80%。 八、参考书及学生必读参考资料 1. 姚小兰,李保奎,耿庆波.线性系统理论[M].北京:高等教育出版社 2. 郑大钟. 线性系统理论(第2版)[M].北京:清华大学出版社,2002 3. 陈啟宗. 线性系统理论与设计[M]. 北京:科学出版社,1988 4. 段广仁.线性系统理论[M].哈尔滨:哈尔滨工业大学出版社,200 九、大纲撰写人:姚小兰、李保奎

第八章 离散控制系统

第八章 离散控制系统 8.1 引言 自动控制系统发展至今,数字计算机作为补偿装置或控制装置越来越多的应用到控制系统中。数字计算机中处理的信号是离散的数字信号。所谓离散信号,是指定义在离散的时刻点上信号,连续信号经过等间隔时间采样后就变成离散时间信号。而数字信号,是指由二进制数表示的信号,计算机中的信号就是数字信号。数字信号的取值只能是有限个离散的数值。如果一个系统中的变量有离散时间信号,就把这个系统叫做离散时间系统,简称离散系统。如果一个系统中的变量有数字信号,则称这样的系统为数字控制系统。图8-1为典型的计算机控制系统框图,计算机控制系统是最常见的离散系统和数字控制系统。计算机工作在离散状态,控制对象和测量元件工作在模拟状态。偏差信号)(t e 是模拟信号,经过A/D 变换后转换成离散的数字信号)(* t e 进入计算机。计算机按照一定的控制规律处理输入信号,完成控制器的功能。计算机的输出信号)(* t u 为离散的数字信号,经过D/A 变换后转换成模拟信号)(t u h 。)(t u h 输入到控制对象,是其按预定方式工作。将图8-1中的A/D 转换器由一个采样开关代替,D/A 转换器由采样开关和保持器代替,得到图8-2。在量化误差可以忽略的情况下,计算机控制系统可以看作是离散控制系统。 8.2 采样系统 在离散控制系统中,数字计算机只能处理离散的数字信号,而系统中其余元件则处理模拟信号,所以在数字计算机与其余元件之间需要进行信号转换。信号经过A/D 转换,变成离散的数字信号输入到计算机。而计算机输出的离散的数字信号经过D/A 转换,变成模拟信号输入到其余元件。在分析离散控制系统时,假定输入到计算机和从计算机输出的每一个 图8-1 计算机控制系统 图8-2 离散控制系统

离散控制系统分析方法

实验二离散控制系统分析方法 一、实验目的 利用MATLAB对各种离散控制系统进行时域分析。 二、实验指导 1.控制系统的稳定性分析 由前面章节学习的容可知,对线性系统而言,如果一个连续系统的所有极点都位于s平面的左半平面,则该系统是一个稳定系统。对离散系统而言,如果一个系统的全部极点都位于z 平面的单位圆部,则该系统是一个稳定系统。一个连续的稳定系统,如果所有的零点都位于s平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。一个离散的稳定系统,如果所有零点都位于z平面的单位圆,则称该系统是一个最小相位系统。由于Matlab提供了函数可以直接求出控制系统的零极点,所以使用Matlab判断一个系统是否为最小相位系统的工作就变得十分简单。 2.控制系统的时域分析 时域分析是直接在时间域对系统进行分析。它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。这是一种既直观又准确的方法。 Matlab提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。其中常用的函数列入表1,供学生参考。

例1.z z z H 5.05 .1)(2+= 试绘出其单位阶跃响应及单位斜波输入响应。 解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5]; den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd); subplot(1,2,1) plot(t,y); xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位阶跃响应') grid; u=0:0.1:1; subplot(1,2,2) [y1,x]=dlsim(num,den,u); plot(u,y1) xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位速度响应') grid 二、 实验容 1、MATLAB 在离散系统的分析应用 对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s ,被

倒立摆系统的线性二次型状态反馈控制

万方数据

万方数据

LQR控制的仿真曲线 参考文献: 【1】翁正新,王广雄,姚一新.鲁棒H一状态反馈控制【J].[2]张姝,朱善安.环形单级倒立摆起摆控制研究[J】江南控制理论与应用,1994,11(4):456—459.大学学报(自然科学版),2004,3(5):482—485. 枣木牛枣木木幸木术木木}木堆术}枣木宰木水牛术木木水木术木木水木木木枣半水幸车木丰水木木半半水率术水木木木水木术丰木木术木术半丰串水牛丰木木木术丰木冰术术水木半木木球串牢木木木毕木半半禾半半水水术水水车枣木术术木术丰木术水木木(土接劳50黄)确定各通讯数据的cANID编码规3协议编制与仿真 则。数据ID编码决定cAN通讯协议的优劣和CAN 总线能否正常工作。CAN通讯系统既有全局和局部 广播数据或点对点发送数据。各数据有不同优先级。故好的通讯协议应具备:①各数据以不同优先级 发送;②通过对屏蔽码设置,各接点只接收所需 信息;③ID值要充分表示数据各种信息(含源地 址、目的地址、数据内容和格式等);④系统应具有可扩展性。, 例如:制定10个节点CAN通信系统的通讯协 议,采用cAN2.0B标准11位ID,如表1。将ID0~ IDl0中标志符的高7位ID4~IDl0定义为地址段,标记CAN总线中不同的通讯站点;标识符的低4位IDO~ID3为指令段,标记各站点的不同数据后, 后4位用0填充,采用16进制4位描述数据标识,如0x0000;每个接点可用后4位标记不同数据。如以广播。O方式发数据的编码有GB0.1(0X0000)、GB0.2(0x0020)…GB0.16(0x01E0)。按此编码,各接点通过屏蔽码前7位的设置,使接点可接收广 播0数据。接点1、6不仅可接发按自己接点编码的 数据还可接收所有广播数据。接点2、5只接收按自己接点编码数据和广播0数据;接点3、7、10可接 收按自己接点编码数据和广播0、广播2数据;接 点4、8、9可接收按自己接点编码数据和广播0及l数据。也可通过系统的不同要求做相应改动。 表1制定10个节点cAN通信系统的通讯协议 嚣隧蹲|蘩@j馥谗莲嘲“瀑瀚j“蕊暖警曝??j|酶舔。;瓷蕊强蕊÷÷0OO0O0O0XO000GBO广播O0OO0O010X0200GBl广播1 OOO0Ol0OX0400GB2广播20OOOOl1OX0600GB3广播3OO011l1OXlEOOJDl接点1OO101OO0X2800JD2接点2O01lO1O0X3400JD3接点3O1OOlO1OX4A00JD4接点40lOlO0OOX5000JD5接点50l1OO11OX6600JD6接点61OOOl10OX8COOJD7接点71001O01OX9200JD8接点8lO1OO01OXA200JD9接点9l1OO0lOOXC400JDl0接点10?58? 确定以上通讯约束条件和编码规则后,制定通讯协议变得简单,只需按上述约束条件和编码规则对需传输的数据编码即可。协议制定后应仔细检查,在对系统进行通讯实验与仿真后,可发布到各通讯接点的研制单位进行通讯系统的设计与调试。 4结语 CAN—Bus已被广泛应用到各自动化控制系统中,好的CAN通讯协议有利提高系统通讯的速率与可靠性,充分发挥cAN—Bus自身的特点。 参考文献: [1]杨宪惠.现场总线技术及其应用[M】.北京:清华大学出版社,2001. [2】邬宽明.总线原理和应用系统设计[M].北京:北京航空航天大学出版社,1995. 对电子信息系统尽快形成作战能力的思考 徐忠杰1,李洪峰2 (1.炮兵学院,安徽合肥23003l;2.73111部队,福建厦门36lOOO)摘要:电子信息系统能否尽快形成作战能力,对做好军事斗争准备具有重要影响。我军电子信息系统存在的问题延缓了系统形成作战能力的步伐,必须从确立正确观念、加强系统需求分析、运用系统集成手段整合现役系统以及创建系统运用理论,加强系统训练等方面加以解决。 ThinkingofHowtoMakeElectronic InformationSVstemCombatCapabilitVSoon xuzhong_jiel,LIHong—fen92 (1.ArtilleryAcademyofPLA,Hefei230031,China; 2.Unit73111ofPLA,Xiamen361000,China) Abstract:Whethertheelectronicinformationsystemcanformcombatcapabilityquicklywill greatly innuencethemilitaryconflictpreparation.Theproblemsofourafmyelectronicinformationsystemdelayestablishingthecombatcapability.Theproblemscanberesolvedbyestablishingtherightidea,strengtheningthesystemrequirements,makinguseoftheintegrationmeanto confomthecurrentsystem,establishingthesystemusagetheoryandstrengtheningsystem training.  万方数据

离散线性时不变系统分析

实验六 离散线性时不变系统分析 一、 实验目的 1. 掌握离散LSI 系统的单位序列响应、单位阶跃响应和任意激励下响应的MATLAB 求解方法。 2. 掌握离散LSI 系统的频域分析方法; 3. 掌握离散LSI 系统的复频域分析方法; 4. 掌握离散LSI 系统的零极点分布与系统特性的关系。 二、实验原理及方法 1. 离散LSI 系统的时域分析 描述一个N 阶线性时不变离散时间系统的数学模型是线性常系统差分方程,N 阶LSI 离散系统的差分方程一般形式为 ) ()(0 0i n x b k n y a M i i N k k -=-∑∑== (6.1) 也可用系统函数来表示 12001212120()()()()()1M i M i i M N N k N k k b z b b z b z b z Y z b z H z X z a z a z a z a z a z ----=----=++++====++++∑∑ (6.2) 系统函数()H z 反映了系统响应和激励间的关系。一旦上式中k a ,i b 的数据确定了,系统的性质也就确定了。特别注意0a 必须进行归一化处理,即01a =。 对于复杂信号激励下的线性系统,可以将激励信号在时域中分解为单位序列或单位阶跃序列的线性叠加,把这些单元激励信号分别加于系统求其响应,然后把这些响应叠加,即可得到复杂信号作用于系统的零状态响应。因此,求解系统的单位序列响应和单位阶跃响应尤为重要。由图6-1可以看出一个离散LSI 系统响应与激励的关系。 图6-1 离散LSI 系统响应与激励的关系 (1) 单位序列响应(单位响应) 单位响应()h n 是指离散LSI 系统在单位序列()n δ激励下的零状态响应,因此()h n 满足线性常系数差分方程(6.1)及零初始状态,即 00()()N M k i k i a h n k b n i δ==-=-∑∑, (1)(2)0h h -=-== (6.3) 按照定义,它也可表示为 ()()()h n h n n δ=* (6.4) 对于离散LSI 系统,若其输入信号为()x n ,单位响应为()h n ,则其零状态响应()zs y n 为 ()()*()zs y n x n h n = (6.5) 可见,()h n 能够刻画和表征系统的固有特性,与何种激励无关。一旦知道了系统的单位响应()h n ,就可求得系统对任何输入信号()x n 所产生的零状态响应()zs y n 。 MATLAB 提供了专门用于求连续系统冲激响应的函数impz(),其调用格式有

线性离散系统的分析

§10-4 线性离散系统的分析 前面讨论了线性离散系统的数学模型:一种是输入输出模型,一种是状态空间模型。本节将要根据这些数学模型来分析线性离散系统的特性,例如稳定性、能控性和能观测性。 一、稳定性 稳定性是动力学系统的一个十分重要的性质。本节只讨论线性定常系统的稳定性,而时变系统的稳定性问题是比较复杂的。有两大类的稳定性分析方法。一类是分析离散系统极点在z 平面内的位置。一个闭环系统是稳定的充分必要条件是其特征方程的全部根都必须分布在z 平面内以原点为圆心的单位圆内。当然,我们可以用直接的方法求出特征方程,然后再求出其根(例如用贝尔斯特-牛顿叠代法)。但是在工程上希望不经过解特征方程而找到一些间接的方法,例如代数判据法,基于频率特性分析的奈奎斯特法,或通过双线性变换把z 平面问题变成s 平面的问题,再用连续系统的稳定判据。另一类研究稳定性的方法是李雅普诺夫第二方法,它规定了关于稳定性的严格定义和方法。本节只介绍代数判据法。 Routh 、Schur 、Cohn 和Jury 都研究过相类似的稳定判据。如果已知一个系统的特征多项式 ()n n n a z a z a z A +++=- 1 10 (10.87) Jury 把它的系数排列成如下的算表: 1 1 110a a a a a a a a a a n n n n n n = --α ――――――――――――――――――― 1 0111 1012 11 11 1110 --- ----------=n n n n n n n n n n n n n a a a a a a a a α ――――――――――――――――――― ――――――――――――――――――― 10 11 1110a a a a 10 11 1a a =α ――――――――――――――――――― 0a 其中

第7章线性离散系统的理论基础习题答案

第7章线性离散系统的理论基础 7.1 学习要点 1 控制系统校正的概念,常用的校正方法、方式; 2 各种校正方法、方式的特点和适用性; 3各种校正方法、方式的一般步骤。 7.2 思考与习题祥解 题7.1 思考下述问题 (1)什么叫信号的采样? (2)什么是采样控制系统?采样控制系统与连续系统的主要差别是什么? (3)试述采样过程和采样定理。 (4)什么是保持器,保持器的功能是什么? (5)零阶保持器的传递函数是什么?对应的脉冲传递函数是什么? (6)用零阶保持器恢复的连续时间信号有何显著特征? (7)常用的z变换的方法是什么?如何求系统的脉冲传递函数? (8)求Z反变换有哪几种方法?各有什么特点? (9)差分方程如何求解? (10)脉冲传递函数是如何来描述采样系统的? (11)如何求得采样系统的开/闭环脉冲传递函数? (12)对于用闭环脉冲传递函数描述的采样控制系统,系统稳定的充分必要条件是什么? (13)如何采用劳斯判据来判断采样系统的稳定性? (14)闭环极点与采样控制系统瞬态特性的关系是什么? 答: (1)采样控制系统是通过采样开关将连续的模拟量转换为离散量的,将开关闭合期间模拟量的传输称为采样。按照一定的时间间隔对连续的模拟信号进行采样,叫做信号的采样。 (2)在控制系统中,有一处或几处的信号是时间t的离散函数的控制系统称为离散控制系统。离散信号通常是按照一定的时间间隔对连续的模拟信号进行采样而得到的,故又称为采样信号。相应的离散系统亦称为采样控制系统。 连续控制系统每处的信号都是时间t的连续函数,而采样控制系统有一处或几处的信号是时间t 的离散函数。 (3)按照一定的时间间隔对连续信号进行采样,将其变换为在时间上离散的脉冲序列的过程称之为采样过程。用来实现采样过程的装置称为采样器或采样开关。

离散控制系统分析方法

实验二 离散控制系统分析方法 一、实验目的 利用MATLAB 对各种离散控制系统进行时域分析。 二、实验指导 1.控制系统的稳定性分析 由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s 平面的左半平面,则该系统是一个稳定系统。对离散系统而言,如果一个系统的全部极点都位于z 平面的单位圆内部,则该系统是一个稳定系统。一个连续的稳定系统,如果所有的零点都位于s 平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。一个离散的稳定系统,如果所有零点都位于z 平面的单位圆内,则称该系统是一个最小相位系统。由于Matlab 提供了函数可以直接求出控制系统的零极点,所以使用Matlab 判断一个系统是否为最小相位系统的工作就变得十分简单。 2.控制系统的时域分析 时域分析是直接在时间域对系统进行分析。它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。这是一种既直观又准确的方法。 Matlab 提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。其中常用的函数列入表1,供学生参考。 例1.z z z H 5.05.1)(2+= 试绘出其单位阶跃响应及单位斜波输入响应。 解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[]; den=[1 0];sysd=tf(num,den, [y,t,x]=step(sysd);

subplot(1,2,1) plot(t,y); xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位阶跃响应') grid; u=0::1; subplot(1,2,2) [y1,x]=dlsim(num,den,u); plot(u,y1) xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位速度响应') grid 二、实验内容 1、MATLAB在离散系统的分析应用 对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=,被控对 象的传递函数为 2 () s(0.11)(0.05s1) G s s = ++ ,数字控制器 0.36 () 0.98 z D z z - = + ,试求该 系统的闭环脉冲传递函数和单位阶跃响应。 图1 计算机控制系统结构图 实验步骤: 1).求解开环脉冲传递函数,运用下面的matlab语句实现:>> T=; >> sys=tf([2],[ 1 0]); %将传函分母展开 >> sys1=c2d(sys,T,'zoh'); >> sys2=tf([1 ],[1 ],; >> sys3=series(sys2,sys1) 执行语句后,屏幕上显示系统的开环脉冲传递函数为: sys3 = z^3 + z^2 - z - --------------------------------------------------

相关主题
文本预览
相关文档 最新文档