当前位置:文档之家› Java解线性方程组

Java解线性方程组

Java解线性方程组
Java解线性方程组

Java解线性方程组

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

浅析线性方程组的解法及应用

目录 摘要 ........................................................................ I Abstract.................................................................... II 第一章绪论 (1) 1.1 引言 (1) 第二章行列式与线性方程组求解 (1) 2.1 标准形式的二元线性方程组 (1) 2.2 标准形式的三元线性方程组 (2) 2.3 克莱姆法则 (3) 2.3.1逆序数 (3) 2.3.2 克莱姆法则 (4) 第三章线性方程组的理论求解 (6) 3.1 高斯消元法 (6) 3.2 线性方程组解的情况 (7) 3.3 将非齐次方程组化为齐次方程组求解方法 (8) 第四章求解线性方程组的新方法 (9) 第五章线性方程组的应用 (11) 5.1 投入产出数学模型 (11) 5.2 齐次线性方程组在代数中的应用 (14) 第六章结论 (16) 参考文献 (17) 致谢 (18)

浅析线性方程组的解法及应用 学生:陈晓莉指导教师:余跃玉 摘要:线性方程组的求解方法在代数学中有着极其重要的作用.本文介绍了有关线性方程组的一些基本求解方法,由二元到三元的线性方程组,再到n姐线性方程组,其中详细介绍了克莱姆法则。然后是对于齐次方程组和非齐次线性方程组,介绍了线性方程组的理论解法,里面介绍了消元法、解的情况、将非线性化成线性方程组来求解。并且给出了相关的例题,可以加深对线性方程组求解的方法的认识。对于线性方程组还有什么解法,本文也将有探讨。介绍了这么多解线性方程组的求解,相信在今后解线性方程组会更加方便。最后还有关于线性方程组的应用,主要介绍了关于投入产出的数学模型,在经济分析与管理中会经常用到。 关键词:线性方程组; 高斯消元法;行列式

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

线性方程组的直接法

第二章线性方程组的直接法 在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。 (2.1)其中ai j,bi为常数。上式可写成矩阵形式Ax = b,即 (2.2) 其中,为系数矩阵,为解向量,为常数向量。当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有 为系数矩阵的第列元素以代替的矩阵的行列式的值。克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。在石油勘探、天气预报等问题中常常出现成百上千阶的方程 组,也就产生了各种形式方程组数值解法的需求。研究大型方程组的解是目前计算数学中的一个重要方向和课题。

解方程组的方法可归纳为直接解法和迭代解法。从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。

迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量 而已。在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。 在数值计算历史上,直接解法和迭代解法交替生辉。一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。一般说来,对同等规模的线性方程组,直接法对计算机的要求 高于迭代法。对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。对于高阶方程组和稀疏方程组(非零元素较少),一般用迭代法求解。 §1 消元法 一、三角形方程组的解 形如下面三种形式的线性方程组较容易求解。 对角形方程组 (2.3)设,对每一个方程,。 显然,求解n阶对角方程的运算量为。 下三角方程组 (2.4)

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

Gauss-Seidel迭代法求解线性方程组

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量 ) 1(+k i x 时,用最新分量 ) 1(1 +k x , ???+) 1(2 k x ) 1(1 -+k i x 代替旧分量 ) (1 k x , ???) (2 k x ) (1 -k i x ,可以起 到节省存储空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 ) ()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=,

则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+) () 1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), ) (1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

迭代法解线性方程组

迭代法解线性方程组作业 沈欢00986096 北京大学工学院,北京100871 2011年10月12日 摘要 由所给矩阵生成系数矩阵A和右端项b,分析系数矩阵A,并用Jacobi迭代法、GS迭代法、SOR(逐步松弛迭代法)解方程组Ax=b 1生成系数矩阵A、右端项b,并分析矩阵A 由文件”gr900900c rg.mm”得到了以.mm格式描述的系数矩阵A。A矩阵是900?900的大型稀 疏对称矩阵。于是,在matlaB中,使用”A=zeros(900,900)”语句生成900?900的零矩阵。再 按照.mm文件中的描述,分别对第i行、第j列的元素赋对应的值,就生成了系数矩阵A,并 将A存为.mat文件以便之后应用。 由于右端项是全为1的列向量,所以由语句”b=ones(900,1)”生成。 得到了矩阵A后,求其行列式,使用函数”det(A)”,求得结果为”Inf”,证明行列式太大,matlaB无法显示。由此证明,矩阵A可逆,线性方程组 Ax=b 有唯一解。 接着,判断A矩阵是否是对称矩阵(其实,这步是没有必要的,因为A矩阵本身是对称矩阵,是.mm格式中的矩阵按对称阵生成的)。如果A是对称矩阵,那么 A?A T=0 。于是,令B=A?A T,并对B求∞范数。结果显示: B ∞=0,所以,B是零矩阵,也就是:A是对称矩阵。 然后,求A的三个条件数: Cond(A)= A ? A?1 所求结果是,对应于1范数的条件数为:377.2334;对应于2范数的条件数为:194.5739;对应 于3范数的条件数为:377.2334; 1

从以上结果我们看出,A是可逆矩阵,但是A的条件数很大,所以,Ax=b有唯一解并且矩阵A相对不稳定。所以,我们可以用迭代方法来求解该线性方程组,但是由于A的条件数太大迭代次数一般而言会比较多。 2Jacobi迭代法 Jacobi迭代方法的程序流程图如图所示: 图1:Jacobi迭代方法程序流程图 在上述流程中,取x0=[1,1,...,1]T将精度设为accuracy=10?3,需要误差满足: error= x k+1?x k x k+1

线性方程组解决实际问题项目

线性方程组解决实际问题项 目 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

项目名称应用线性方程组解决实际问题项目 【项目内容】营养食谱问题 高考前期一个饮食专家给即将踏入高考大门的学子准备了一份膳食计划,以此来帮助同学们提高和调节身体所摄入的大量营养,提供一定量的维生素C、钙和镁。其中用到3种食物,它们的质量用适当的单位计量。这些食品提供的营养以及食谱需要的营养如下表给出 【相关知识点】 1.线性方程组间的代数运算; 2.线性相关性之间的关系; 3.矩阵与增广矩阵之间的行最简化法; 4.其次线性方程组与非齐次线性方程组的解法; 5.向量组的线性组合以及线性相关性; 【模型假设与分析】

【解】设X1、X2、X3分别表示这三种食物的量。对每一种食物考虑一个向量,其分量依次表示每单位食物中营养成分维生素C、钙和镁的含量: 食物1:1= 食物2:2= 食物3:3=食物4:4= 需求: 【模型建立】 则X11、X22、X33、X44分别表示三种食物提供的营养成分,所以,需要的向量方程为 X11+X22+X33+X4 4 = 则有= 【模型求解】 利用矩阵与增广矩阵之间的行最简化法; = ~

则线性相关 R(A)=4=R(A,b)该线性方程组有唯一解。 【结论及分析】 解此方程组 得到: X1= X2= X3= X4=-5 因此食谱中应该包含个单位的食物1,个单位的食物2,个单位的食物3。个单位的食物4。 由此可得合理的膳食与线性方程组息息相关,由方程可知合理膳食的特解,即在一定的条件下,食物的摄入量是相对稳定的,过多或过少都不利于生理所需,唯有达到一个特解时,营养与体能的搭配才是最完美的。 【心得与体会】 通过生活中的这个小例子,我们小组总结以下发现,线性方程组在生活中的运用是普遍而广泛的,通过学习和查阅资料,让我们更真切的理解和体会到线性方程在身边的实用性,如果合理的运用,不仅对我们身体健康有所帮助,而且有益于我们全面的理解数学世界观,对我们人生有重大的指导和参考意义,线性方程组在科学研究等诸多方面有更广泛深入的应用。希望通过这次的实践和应用,努力将其联系到实际中,真正的做到领会到数学的真谛。【参考文献】 【1】刘振兴,浅谈线性代数在生活中的应用 【2】Loveyuehappy,浅析线性方程组的解法及应用 【3】

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

实验解线性方程组的基本迭代法实验

数值分析实验报告

0 a 12 K a 1,n 1 K a 2,n 1 U O M 则有: 第一步: Jacobi 迭代法 a 1n a 2n M , 则有: A D L U a n 1,n Ax b A A x D b L U (D L U)x b Dx (L U)x b x D (L U)x D b 令 J D (L U) 则称 J 为雅克比迭代矩阵 f D b 由此可得雅克比迭代的迭代格式如下: x (0) , 初始向量 x (k 1) Jx (k) f ,k 0,1,2,L 第二步 Gauss-Seidel 迭代法 Ax b (D L U )x b (D L)x Ux b x (D L) Ux (D L) b A D L U a 11 a 12 L a 1n a 11 A a 21 a 22 L a 2n a 22 M MM MO a n1 a n2 L a nn a 11 得到 D a 22 O a nn 由 a 21 0 M M O a n 1,1 a n 1,2 L 0 a nn a n1 a n2 L a n,n a 21 L M M O a n 1,1 a n 1,2 L a n1 a n2 L a n,n 1 a 12 K a 1,n 1 a 1n 0 K a 2,n 1 a 2n O M M a n 1,n 10

令 G (D L) U ,则称G 为Gauss-Seidel 迭代矩阵 f (D L) b 由此可得 Gauss-Seidel 迭代的迭代格式如下: x (0) , 初始向量 第三步 SOR 迭代法 w0 AD L U 1 ( D 1 wL ((1 w)D wU )) (D 1 wL) ((1 w)D wU ) w w w 令M w 1 (D wL), N 1 ((1 w)D wU )则有:A MN w w Ax b AM L W N M (M N )x b Mx Nx b x M Nx M b N M, 令W f Mb 带入 N 的值可有 L W ((1 w)D wU) (D wL) 1((1 w)D wU) (D wL) f 1 b w 1(D wL) 1b 1 (D wL) w 称 L W 为 SOR 迭代矩阵,由此可得 SOR 迭代的迭代格式如下: x (0) ,初始向量 二、算法程序 Jacobi 迭代法的 M 文件: function [y,n]=Jacobi(A,b,x0,eps) %************************************************* %函数名称 Jacobi 雅克比迭代函数 %参数解释 A 系数矩阵 % b 常数项 % x0 估计解向量 x (k 1) Gx (k) f ,k 0,1,2,L (k 1) f,k 0,1,2,L

浅谈线性方程组和矩阵方程

鞍山师范学院 数学系13届学生毕业设计(论文)开题报告 课题名称:浅谈线性方程组和矩阵方程 学生姓名:田鸽 专业:数学与应用数学 班级:10级1班 学号:10号 指导教师:裴银淑 2013年12月24日

一、选题意义 1、理论意义:基于线性方程组和矩阵在线性代数以及在各个领域的广泛应用,再加上计算机和计算方法的普及发展,为矩阵的应用开辟了广阔的前景.通过矩阵来解线性方程组大大简化了计算过程,为解决许多数学问题提供了一种研究途径.研究该课题的意义是为了对矩阵在解线性方程组中的广泛应用有一个更深的了解与掌握.。求线性方程组的一般解则是所有学习线性代数的人们必须掌握的基本技能。通过矩阵可以使许多抽象的数学对象得到具体的表示,并把相关的运算转化为矩阵的简单运算,使代数学的研究在一定程度上化复杂为简单,变抽象为具体,变散乱为整齐有序,矩阵是线性代数中不可或缺的处理工具,它在其它的数学理论中也有着重要的作用。 2、现实意义;大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而科学研究中的非线性模型通常也可以被近似为线性模型,,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等.另外由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学(量子力学)是建立在线性Hilbert空间的理论基础上的,没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中是不可缺少的。而矩阵是一种非常常见的数学现象,例如学校课表、成绩

解线性方程组的直接方法实验报告

解线性方程组的直接方法实验报告 解线性方程组的直接方法实验报告 1.实验目的: 1、通过该课题的实验,体会模块化结构程序设计方法的优点; 2、运用所学的计算方法,解决各类线性方程组的直接算法; 3、提高分析和解决问题的能力,做到学以致用; 4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。 2.实验过程: 实验代码: #include "stdio.h" #include "math.h" #include using namespace std; //Gauss法 void lzy(double **a,double *b,int n) { int i,j,k; double l,x[10],temp; for(k=0;k

{ if(j==k) temp=fabs(a[j][k]); else if(temp

temp=b[k]; b[k]=b[i]; b[i]=temp; } for(i=k+1;i=0;i--) { temp=0; for(j=i+1;j

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

相关主题
文本预览
相关文档 最新文档