当前位置:文档之家› 砂土液化的判别

砂土液化的判别

砂土液化的判别
砂土液化的判别

砂土液化判别基本原理

一、地震

地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。

诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。

(一)地震波按其在地壳传播的位置不同,可分为体波、面波。1、体波

在地球内部传播的波为体波。体波又可分纵波和横波,纵波又称P 波,它是从震源向四周传播的压缩波。这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。

横波又称s波,是由震源向四周传播的剪切波。这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。它主要引起地面的水平方向的振动。

2、面波

在地球表面传播的波,又称L波。它是由于体波经过地层界面多次反射、折射所形成的次生波。它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。

二、砂土液化对工程建筑的危害

地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。从而使地基土失去或降低承载能力,加剧震害程度。所以《岩土工程勘察规范》(GB50021-2001)5.7.5规定,抗震设防烈度为6度可以不考虑液化影响;但对沉陷敏感的乙类建筑可按7度进行液化判别;甲类建筑应专门进行液化勘察。

三、影响砂土液化的因素

场地土液化的因素有很多,需要根据多项指标综合分析,才能准确判别场地土是否发生液化现象。当某项指标达到一定值时,不论其它因素的指标如何,土都不会发生液化,也不会造成震害,这个指标数值称界限值。所以,了解影响液化因素及其的界限值具有实际意义。

(一)地质年代

地质年代的新老是体现土层沉积的时间长短,地质年代老的沉积土

层,经过长时间的固结作用和历经过大的地震的影响,土就很密实,胶结就愈紧密,抗液化能力就愈强,反之则差。经过宏观对震害调查,发现我国地质年代为Q3(晚更新世)或以前的饱和土层未发生液化现象。(二)土中的粘粒含量

粘粒范指粒径≤0.005mm的土颗粒,实践证明当粉土的粘粒含量超过某一界限值时,粉土就不会发生液化。这是由于土的粘聚力增大,抗液化能力加强。由此可见,当粘粒含量超过(表-1)所列数值时就不会发生液化现象。

(三)上覆盖层非液化土层厚度和地下水位深度

上覆盖层非液化层厚度指地震时能抑制可液化层喷水、冒砂的厚度,其的厚度一般从第一层可能液化层的顶面算至地表。宏观调查,砂土和粉土的上覆盖非液化土层厚度超过(表-2)列的界限值(d uj)时,未发现土层液现象;地下水位不小于(表-2)列的界限值(d wj)时,未发现土层液化现象。

(四)土的密实程度

砂土和粉土的密实程度是影响土层液化的一个主要因素。根据宏观

调查,相对密度小于50%的砂土普遍发生液化现象,而相对密度大于70%的土层则没有发生液化现象。

(五) 土层埋深

理论分析和土工试验表明,土的侧压力愈大,土层就不易发生液化,侧压力的大小反应土层埋深大小。土层液化深度很少超过15m,多浅于15m,更多发生在浅于10m埋深以上的土层。

(六)地震烈度和震级

地震烈度愈高的地区,地面运动强度愈大,持续的时间愈长,土层就愈容易发生液化,一般在6度或以下的地区很少看到砂土液化,而7

度以上的地区则相对普遍。所以,一个场地遭受到相同烈度的远震比近震更容易液化,那是因为前者对应大震持续时间比后者对应的中等地震持续时间长。

四、砂土液化的判别方法

根据《建筑抗震设计规范》(GB50011-2001)分析影响砂土液化的主要因素,给出土层液化的判别方法。

(一)初步判别

根据《建筑抗震设计规范》(GB50011-2001)饱和砂土和粉土符合以下条件之一,可初步判别为非液化土层或不考虑液化影响。

1、地质年代为第四纪晚更新世(Q3)及其以前的地层,可判别为非液化土层。

2、粉土中粘粒含量百分率符合(表-1)列的值,可判别为非液化土层。

3、采用天然地基的建筑,当上覆盖非液化土层厚度和地下水位深度

符合下列条件下之一,可不考虑液化影响。

d u >d 0+d b -2

d w >d 0+d b -3

d u +d w >1.5d 0 +2 d b -4.5

d u ——上覆盖层非液化土层厚度(m )计算时将淤泥层扣除在外; d w ——地下水位深度(m )可按近期最高水位;

d b ——基础埋深(m )不超过2m 时,应按2m 计算;

d 0——可按(表-3)取值;

(二)利用标准贯入试验判别

根据初步判别后,需要进一步进行液化判别时,应采用标准贯入试验来综合分析、计算判别砂土液化。标准贯入试验要点这里就不一一阐述,按《岩土工程勘察规范》(GB50021-2001)10.5执行。

N cr = N 0(2.4-0.1 d w )c ρ3

(20≥d s >15)

N cr = N 0[0.9+0.1 (d s +d w )]

c ρ3 (

d s ≤15)

N cr ——液化判别标准贯入锤击数临界值; N 0——液化判别标准贯入锤击数基准值按( 表-4)采用;

d s ——饱和砂土标准贯入点深度(m);

d w ——地下水位深度(m) 采用年平均水位,或近期最高水位;

ρ c ——粘粒含量百分率,当小于3的砂土时均采用3;

如果定义N 63.5为饱和土标准贯入锤击数实测值(未经杆长修正),当N 63.5 >N cr 时,砂土不产生液化。当N 63.5 <N cr 时,砂土就会产生液化。

五、地基土的液化评价

(一)液化指数(I IE )

为了鉴别场地土液化的危害严重程度《建筑抗震设计规范》(GB50011-2001)给出了液化指数这个概念,这是由于在同一个地震烈度下,液化层的厚度埋深愈浅,地下水位愈高,实测标准贯入锤击数(N 63.5)与临界标准贯入锤击数(N cr )相差愈多,液化就愈严重,震害程度就愈大,而液化指数比较全面反映这些因素的影响。

I IE =)1(1∑=-

n i cri

i N N d i w i 式中: I IE ——液化指数;

n ——每一个钻孔标准贯入试验点总数;

N i N cri ——分别为i 点标准贯入锤击数实测值和临界值、当实测值

大于临界值时应取临界值的数值;

d i ——i 所代表的土层厚度(m ),可采用与该标准贯入试验点相邻的上下两点深度的一半,但上界不小于地下水位深度,下界不大于液化深度;

w i ——i 点土层考虑单位土层厚度的层位影响权函数值(单位m -1),若判别深度为15m 的地层,当该层中点深度小于5m 时应取10;等于15m

时取0;5—10m时应按线性内插法取值。若判别深度为20m的地层,当该地层中点深度小于5m时应取10;等于20时应取0;5—20时应按线性内插法取值。

(二)地基土的液化等级判定

存在液化土层的地基,根据《建筑抗震设计规范》(GB50011-2001)(表-5)划分液化等级。

判别深度为15m时的液化指数0<I IE≤5 5<I IE≤15 I IE>15

判别深度为20m时的液化指数0<I IE≤6 6<I IE≤18 I IE>18 液化等级轻微中等严重

(三)利用标准贯入试验评价砂土液化等级的原理

例如:某场地设防地震烈度为8度,地震加速度0.20g,第一组(近震)地下水位在1.0m,其钻孔资料如下图:

1、求锤击数临界值N cri

d w=1.0m d s1=1.4m d s2=4.0m d s3=5.0m d s4=6.0m d s5=7.0m

由表-4查得N 0=10

⑴、N cr1=N 0[0.9+0.1 (d s1-d w )]= 10×[0.9+0.1 (1.4-1.0)] =9.4 ⑵、N cr2=N 0[0.9+0.1 (d s2-d w )]=10×[0.9+0.1 (4.0-1.0)] =12 ⑶、N cr3=N 0[0.9+0.1 (d s3-d w )]=10×[0.9+0.1 (5.0-1.0)] =13 ⑷、N cr4=N 0[0.9+0.1 (d s4-d w )]=10×[0.9+0.1 (6.0-1.0)] =14 ⑸、N cr5=N 0[0.9+0.1 (d s5-d w )]=10×[0.9+0.1 (7.0-1.0)] =15 其中: N cr1 >N 1 N cr3 >N 3 N cr5>N 5 为液化点

2、求液化点,标准贯入点所代表土层厚度d i 及其中点深度z i

d 1=2.1-1.0=1.1 z 1=1.0+1.1/2=1.5m

d 3=5.5-4.5=1.0 z 3=4.5+1.0/2=5.0m

d 5=8.0-6.5=1.5 z 5=6.5+1.5/2=7.25m

3、求d i 层中点所对应的权函数w i

z 1 和z 3都不超过5m ,故w 1=w 3=10m ;而z 5=7.25所对应的权函数w 5=15-7.25=7.75m

4、求液化指数(I IE )

(I IE )=)1(1∑=-

n i cri

i N N d i w i =(1-2/9.4)×1.1×10+(1-10/13)×1.0×10+(1-12/15)×1.5×7.75 =13.30

5、判别液化等级及基本方法

根据(表-5 )I IE =13.30,在5至15之间,所以该孔的液化等级为

中等液化。其判别报基本方法应按《岩土工程勘察规范》(GB2001-2001)

5.7.10规定,应逐点判别(按每个标准贯入试验点判别液化的可能性);按孔计算(按每个试验孔计算液化指数);综合评价(按照每个孔的计算

结果,结合场地的地质、地貌条件、综合确定场地液化等)。

六、结语

砂土液化判别,是岩土工程勘察中的重要工作内容之一,其结果直接影响工程的经济性、安全性、稳定性等。所以,在岩土工程勘察过程中,不仅要计算判别地基土是否发生砂土液化现象,而且还要结合当地实际经验综合分析研究,提出预防措施,为工程建设提供必须的地质资料,防止灾害的发生。在今后的岩土工程勘察工作中应特别引起重视。总之,我国是一个多地震地区的国家,区域地质条件复杂,以上只是我本人从事岩土工程技术专业学习以来,结合有关《规范》对砂土液化方面的一点见解,如有不足之处请多指正。

岩土工程中的砂土液化判别

岩土工程中的砂土液化判别 摘要:简要介绍岩土工程勘察中,砂土掖化判别与原位测试 关键词:砂土液化;原位测试;试验 引言 与河流冲洪积有关的地貌,地基土层均可能有粉土、粉砂等组成,各土层物理性质差异较大。现今,城区的建筑越来越多,结构复杂、荷载大,对地基土层的粉土、粉砂承掖化判别要求严格,岩土工程勘察工作就显得尤为重要。以下按勘察工作(详勘)的地基土层的粉土、粉砂承掖化判别各个环节应注意的问题。 1原位测试 河流冲洪积地貌有明显的沉积韵律,往往有卵石、砾砂、粗砂、中砂、细砂、粉土、粉质黏土,粘土。且砂土常有互层、隔层出现。多数地下水较浅。 1.1标准贯入试验 粉土、砂土层试验目的(用途)是判别地基液化可能性及液化等级,在粉土、粉砂层中试验时应对标贯器内的扰动土取样,做颗粒分析试验,以求得粘粒含量进行液化判别;在进行标准贯入试验时,如有卵石、砾砂塌孔应及时下如套管,确认无井内无掉块和无扰动下做实验。若多次采取率较低时也不易做试验,否则易使试验结果失真,室内试验与测试结果差异大。粉土、粉砂实验深度可根据其他钻孔编录资料确定。 1.2静力触探试验 静力触探试验已是不可缺少的测试手段,无卵石、砾砂层均适宜进行静力触探试验,试验目的(用途)包括判别土层均匀性和划分土层、选择桩基持力层、估算单桩承载力、估算地基土承载力和压缩模量、判断沉桩可能性、判别地基土液化等。应选择双桥探头,同时测出锥尖阻力qc、侧壁摩阻力fs及摩阻比Rf,利用qc值进行液化判别,据公式ps=qc+0.00641×fs计算出比贯入阻力,利用ps 值进行估算地基土承载力。 2用标准贯入试验判别砂土掖化 按规范 4.3.4条需进一步进行液化判别时,用标准贯入试验法判别, 标准贯入试验实际锤击数与临界值小于或等于临界值时,应判为液化。液化判别式:Ncr=N0β[㏑﹙0.6 ds +1.5﹚-0.1dw]√3/ρc β=1.05 在粉土、粉砂层中试验时,记录标准贯入试验锤击数后,还应对标贯器内的扰动土取样,做颗粒分析试验,以求得粘粒含量进行液化判别。按《建筑抗震设

砂土液化的判别

砂土液化判别基本原理

一、地震 地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。 诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。 (一)地震波按其在地壳传播的位置不同,可分为体波、面波。1、体波 在地球内部传播的波为体波。体波又可分纵波和横波,纵波又称P 波,它是从震源向四周传播的压缩波。这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。 横波又称s波,是由震源向四周传播的剪切波。这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。它主要引起地面的水平方向的振动。 2、面波

在地球表面传播的波,又称L波。它是由于体波经过地层界面多次反射、折射所形成的次生波。它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。 二、砂土液化对工程建筑的危害 地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。从而使地基土失去或降低承载能力,加剧震害程度。所以《岩土工程勘察规范》(GB50021-2001)5.7.5规定,抗震设防烈度为6度可以不考虑液化影响;但对沉陷敏感的乙类建筑可按7度进行液化判别;甲类建筑应专门进行液化勘察。 三、影响砂土液化的因素 场地土液化的因素有很多,需要根据多项指标综合分析,才能准确判别场地土是否发生液化现象。当某项指标达到一定值时,不论其它因素的指标如何,土都不会发生液化,也不会造成震害,这个指标数值称界限值。所以,了解影响液化因素及其的界限值具有实际意义。 (一)地质年代 地质年代的新老是体现土层沉积的时间长短,地质年代老的沉积土

砂土液化计算模板

8.2.1 砂土液化评价 小区划场地内河漫滩、Ⅰ级阶地地质时代为全新世。根据工程地质勘探结果,场地仅有钻孔ZK21揭示有粉土与粗砂层,粉土埋深在1.3~3.2m ,粗砂埋深在3.2—4.0m 。按照当地水文资料,荥河历史最高水位为751m ,相应地下水位埋深为2.15m ,部分粉土及全部粗砂层位于地下水位以下(图8.2.1-2)。 8.2.1.1 场地砂土液化判别分析方法 本次工作按照国家标准《建筑抗震设计规范》(GB 50011-2010)对饱和粉土及砂土进行液化评价。 (1)根据《建筑抗震设计规范》(GB50011-2010)第4.3.3条,符合下列条件之一的可初步判别为不液化土: 地质年代为第四纪晚更新世(Q 3)及其以前时,7、8度时可判为不液化; 粉土的粘粒(粒径小0.005mm 的颗粒)含量百分率,7度、8度、9度分别不小于10、13、16时,可判为不液化土。 根据《颗粒分析成果表》,场地内分布的粉土、粗砂,粘粒含量(粒径小0.005mm 的颗粒)百分率为3~9.97%,在7度、8度设防烈度下,初步判定为液化土。 (2)采用标准贯入试验判别法,计算液化判别标准贯入锤击数临界值,对场地内的饱和砂土进行液化判别。 在地面下20m 深度范围内,液化判别标准贯入锤击数临界值可按下式计算: () 0ln 0.6 1.50.1w cr s N N d d β=+-????N cr :液化判别标准贯入锤击数临界值; β:调整系数,设计地震第一组取0.80,第二组取0.95,第三组取1.05; N 0:液化判别标准贯入锤击数基准值(设计地震加速度0.10g 时,N 0取7, 设计地震加速度0.20g 时,N 0取12); d s :饱和土标准贯入点深度(m ); d w :地下水位(m ); ρc :粘粒含量百分率,当小于3或为砂土时,应采用3。 当饱和土标准贯入锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。 ①50年超越概率10%情况下,钻孔内饱和粉土、粗砂的标准贯入锤击数临界值计算见下表(表8.2-1): 表8.2-1 场地勘察钻孔标准贯入试验数据及粉土液化判别(50年超越概率10%)

砂土液化计算模板

821砂土液化评价 小区划场地内河漫滩、I级阶地地质时代为全新世。根据工程地质勘探结果,场地仅有钻孔ZK21揭示有粉土与粗砂层,粉土埋深在1.3?3.2m,粗砂埋深在3.2 —4.0m。按照当地水文资料,荥河历史最高水位为751m相应地下水位埋深为2.15m,部分粉土及全部粗砂层位于地下水位以下(图 8.2.1-2 )。 8.2.1.1场地砂土液化判别分析方法 本次工作按照国家标准《建筑抗震设计规范》(GB50011-2010)对饱和粉土及砂土进行液化评价。 (1)根据《建筑抗震设计规范》(GB50011-2010第433条,符合下列条件之一的可初步判别为不液化土: 地质年代为第四纪晚更新世(Q)及其以前时,7、8度时可判为不液化; 粉土的粘粒(粒径小0.005mm的颗粒)含量百分率,7度、8度、9度分别不小 于10、13、16时,可判为不液化土。 根据《颗粒分析成果表》,场地内分布的粉土、粗砂,粘粒含量(粒径小0.005mm 的颗粒)百分率为3?9.97%,在7度、8度设防烈度下,初步判定为液化土。 (2)采用标准贯入试验判别法,计算液化判别标准贯入锤击数临界值,对场地内的饱和砂土进行液化判别。 在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算: N cr N 0 In 0.6d s 1.5 0.1d w3/ c N Cr :液化判别标准贯入锤击数临界值; B:调整系数,设计地震第一组取 0.80,第二组取0.95,第三组取1.05 ; N):液化判别标准贯入锤击数基准值(设计地震加速度0.10g时,N)取7, 设计地震加速度0.20g时,N)取12); d s:饱和土标准贯入点深度(m ; d w:地下水位(m ; P:粘粒含量百分率,当小于3或为砂土时,应采用3。 当饱和土标准贯入锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。 ①50年超越概率10%青况下,钻孔内饱和粉土、粗砂的标准贯入锤击数临界值计算见下表(表8.2-1 ): 表8.2-1场地勘察钻孔标准贯入试验数据及粉土液化判别(50年超越概率10%

砂土液化判别

〈三〉地震效应分析 根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动测试报告可知:场地位于基本烈度Ⅶ度区,建筑物应按相应地震烈度进行抗震设防。设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地土类型整体为中硬土,局部区域为中软土,建筑场地类别为Ⅱ类,属于抗震不利地段。 〈四〉场地砂土液化判别 拟建场地位于基本烈度Ⅶ度区,依据《建筑抗震设计规范》(GB50011-2001)规范要求,须对场地内存在的饱和砂土进行液化判别。 根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层,松散~稍密状,顶板埋深0.00~3.90m ,局部区域位于地下水位以上,未达饱和状态;按Ⅶ度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。 依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层,再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级别。 砂土液化判别公式如下: ()[]ρ o w s o cr d d N N 3 1.09.0-+= (适用于地面以下15m 以内) [] ρ o s o cr d N N 3 1.04.2-= (适用于地面以下15~20m 以内) 式中: d s —饱和土标准贯入点深度(m ); d w —地下水位深度(m ) ρo —粘粒含量百分率,小于3或为砂土时,取3。 N cr —饱和土液化临界标准贯入锤击数;

N o —饱和土液化判别的基准标准贯入锤击数。 对于可液化土层,按下式计算的液化指数(I ie )来确定液化等级; w d N N I i i n i cri i ie ) 1(1 ∑=- = 式中: I ie :液化指数; N i :饱和土层中i 点的实测标准贯入锤击数; N cri :相应于Ni 深度处的临界标准贯入锤击数; n :每个钻孔内15m 深度范围内饱和土层中标准贯入点总数; 并按表4的标准进行砂土液化等级划分。 表4 砂土液化等级分级标准 表 5)。冲洪积含粘性土中粗砂层(层序号2-3)液化指数I lE 为<0,均为无液化土层。因此综合判定本场地无可液化地层分布。

砂土液化判别

N cr N o 2.4 0.1d s 15 ?20m 〈三〉地震效应分析 根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动 测试报告可知:场地位于基本烈度%度区,建筑物应按相应地震烈度进行抗震设 防。设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地 土类型整体为中硬土,局部区域为中软土,建筑场地类别为U 类,属于抗震不利 地段。 〈四〉场地砂土液化判别 拟建场地位于基本烈度%度区,依据《建筑抗震设计规范》(GB50011-2001 规范要求,须对场地内存在的饱和砂土进行液化判别。 根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层, 松 散?稍密状,顶板埋深0.00?3.90m ,局部区域位于地下水位以上,未达饱和状 态;按%度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。 依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以 下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层, 再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级 别。 砂土液化判别公式如下: N cr N o 0.9 0.1 d s d — 2 (适用于地面以下 15m 以内) 以内) 式中: d s —饱和土标准贯入点深度(m ; d w —地下水位深度(m P 。一粘粒含量百分率,小于3或为砂土时,取3。 N Cr 饱和土液化临界标准贯入锤击数; (适用于地面以下

N O—饱和土液化判别的基准标准贯入锤击数。 对于可液化土层,按下式计算的液化指数(l ie )来确定液化等级; 式中: l ie (1 u)d i W i i 1N cri l ie :液化指数; N :饱和土层中i点的实测标准贯入锤击数; N Cri :相应于Ni深度处的临界标准贯入锤击数; n :每个钻孔内15m深度范围内饱和土层中标准贯入点总数; 并按表4的标准进行砂土液化等级划分。 表4 砂土液化等级分级标准 表5 饱和含粘性土中粗砂层(层序2-3)液化判别及液化指数统计 根据工程勘察钻孔资料依据上述公式进行砂土液化计算(其计算结果见表 5)。冲洪积含粘性土中粗砂层(层序号 2-3)液化指数I IE为V O,均为无液化土层。因此综合判定本场地无可液化地层分布。

砂土液化的判别

砂 土 液 化 判 别 基 本 原 理 一、地震 地球内部,聚蓄的能量,在迅速释放时,使地壳产生快速振动,并以波的形式从震源向外扩散、传播称为地震。 诱发地震的因素很多,当地下岩浆活动、火山喷发、溶洞塌陷、山崩、泥石流、人工爆破、水库蓄水、矿山开采、深井注水等都会引起地震的发生。但是它们的强度和影响范围都较小,危害不太大;世界上绝大多数地震,是由地壳运动引起岩石受力发生弹性变形并储存能量(应力),当能量聚积达到一定的强度并超过岩石某一强度时,使岩层发生断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强

烈的构造地震影响范围广、破坏性大,发生的频率高,占破坏性地震的90%以上。因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作用下建筑的设防问题。 (一)地震波按其在地壳传播的位置不同,可分为体波、面波。 1、体波 在地球内部传播的波为体波。体波又可分纵波和横波,纵波又称P波,它是从震源向四周传播的压缩波。这种波的周期短、振幅小、波速快,它在地壳内传播的速度一般为200-1400m/s ;它主要引起地面垂直方向的振动。 横波又称s波,是由震源向四周传播的剪切波。这种波的周期长、振幅大、波速慢,在地壳内的波速一般为100-800m/s。它主要引起地面的水平方向的振动。2、面波 在地球表面传播的波,又称L波。它是由于体波经过地层界面多次反射、折射所形成的次生波。它是在体波到达之后(纵波P首先到达,横波S次之),面波(L波)最后才传到地面。面波与横波一样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地面的破坏最强的一种。所以在岩土工程勘察中,我们主要关心的还是面波(L波)对场地土的破坏。 二、砂土液化对工程建筑的危害 地震时由于地震波的振动,会使埋深于地下水位以下的饱和砂土和粉土,土的颗粒之间有变密的趋势,孔隙水不能及时地排出,使土颗粒处于悬浮状态,呈现液体状。此时,土体内的抗剪强度暂时为零,如果建筑物的地基土没有足够的稳定持力层,会导致喷水、冒砂,使地基土产生不均匀沉陷、裂缝、错位、滑坡等现象。从而使地基土失去或降低承载能力,加剧震害程度。所以《岩土工程勘察规范》(GB50021-2001)5.7.5规定,抗震设防烈度为6度可以不考虑液化影响;但对沉陷敏感的乙类建筑可按7度进行液化判别;甲类建筑应专门进行液化勘察。

饱和砂土及饱和粉土液化判别与计算

饱和砂土及饱和粉土液化判别与计算

液化土的判别与计算 一、判别依据 《建筑抗震设计规范》GB50011-2010: 第4.3.1条:饱和砂土和饱和粉土(不含黄土)的液化判别和处理,6度时,一般情况下可不进行判别与处理,但对液化沉陷敏感的乙类建筑可按7度的要求进行判别与处理,7~9度时,乙类建筑可按本地区抗震设防烈度的要求进行判别与处理。 第4.3.2条(本人加注:此属强制性条文):地面下存在饱和砂土和饱和粉土时,除6度外,应进行液化判别;存在液化土层的地基,应根据建筑的抗震设防类别、地基的液化等级,结合具体情况采取相应的措施。(注:本条饱和土液化判别不含黄土、粉质粘土) 第4.3.4条:当饱和粉土、或饱和砂土的初步判别认为需要进一步进行液化判别时,应采用标准贯入试验判别法判别地面以下20m范围内土的液化;但对本规范第4.2.1条规定可不进行天然地基和基础的抗震承载力验算的各类建筑可 (不经杆长只判别地面以下15m范围内土的液化。当饱和土标准贯入锤击数N 修正)小于或等于液化判别标准贯入锤击数临界值时,应别为液化土。 【第4.2.1条:1本规范规定可不进行上部结构抗震验算的建筑;2地基主要受力层[系指条形基础底面下深度3b(b为基础底面宽度)、独立基础下1.5b,且厚度不小于5m的范围]范围内不存在软弱粘性土层(指7度、8度和9度时,地基承载力特征值分别小于80、100和120kpa的土层)的建筑:1)一般的单层厂房和单层空旷房屋、2)砌体房屋、3)不超过8层且高度在24m以下的一般民用框架和框架—抗震墙房屋、4)基础荷载与“3)项”相当的多层框架房屋和多层混凝土抗震墙房屋】 二、判别方法 第4.3.3条:饱和粉土及饱和砂土的液化判别 1、地质年代为晚更新世(Q3)及以前的地层,7、8度时可判别为不液化。 2、粉土的粘粒(粒径<0.005㎜的颗粒)含量百分率:7度、8度和9度分别不小于10、13和16时可判别为不液化。 3、浅埋天然地基的建筑,当上覆非液化土层厚度和地下水位深度符合下列条件之一时,可不考虑液化影响: 1)d u>d0+d b-2 2)d w> d u +d b-3 3)d u+ d w>1.5d0+2d b-4.5 式中d u--上覆非液化土层厚度(m),计算时宜将其内淤泥及淤泥质土层扣除; d w---地下水位深度(m),宜按设计基准期内年平均最高水位采用,也可按近期内年最高水位采用;当区域地下水位处于变动状态时,应按不利的情况考虑。

砂土地震液化判别

3.4砂土地震液化的判别 初判:饱和的砂土或粉土(不含黄土),当符合下列条件之一时,可初步判别为 不液化或可不考虑液化影响: l 地质年代为第四纪晚更新世(Q3)及其以前时,7、8度时可判为不液化。 2 粉土的黏粒(粒径小于0.005mm的颗粒)含量百分率,7度、8度和9度分别不小于10,13和16时,可判为不液化土。 注:用于液化判别的黏粒含量系采用六偏磷酸钠作分散剂测定,采用其他方法时应按有关规定换算。 3 浅埋天然地基的建筑,当上覆非液化土层厚度和地下水位深度符合下列条件之一时,可不考虑液化影响: d u >do+d b -2 dw>do+d b -3 d u +dw>1.5do+2d b -4.5 式中:dw——地下水位深度(m),宜按设计基准期内年平均最高水位采用,也可按近期内年最高水位采用; d u ——上覆盖非液化土层厚度(m),计算时宜将淤泥和淤泥质土层扣除; db——基础埋置深度(m),不超过2m时应采用2m; d0——液化土特征深度(m),可按表1采用。 复判:当饱和砂土、粉土的初步判别认为需进一步进行液化判别时,应采用标准贯入试验判别法判别地面下20m范围内土的液化;但对本规范第4.2.1条规定可不进行天然地基及基础的抗震承载力验算的各类建筑,可只判别地面下15m 范围内土的液化。当饱和土标准贯人锤击数(未经杆长修正)小于或等于液化判别标准贯入锤击数临界值时,应判为液化土。当有成熟经验时,尚可采用其他判别方法。 在地面下20m深度范围内,液化判别标准贯入锤击数临界值可按下式计算:Ncr=Noβ[ln(0.6ds+1.5)-0.ldw]c ρ/ 3 式中:Ncr——液化判别标准贯入锤击数临界值; No——液化判别标准贯入锤击数基准值,可按表2采用; ds——饱和土标准贯入点深度(m); dw——地下水位(m); ρc——黏粒含量百分率,当小于3或为砂土时,应采用3; β——调整系数,设计地震第一组取0.80,第二组取0.95,第三组取1.05。

饱和砂土液化机理及液化判别方法

饱和砂土液化机理及液化判别方法 砂土液化是一种由地震引起的次生地质灾害。我国邢台、唐山和海城三地强地震,都发生了大范围的液化,造成严重损害。在当前国家加强基础设施建设、加快城镇化的背景下,砂土地震液化判别在岩土工程勘察中的重要性在不断提升。文章对砂土液化机理进行介绍,对几种常用且有代表性的判别方法进行归纳总结,并对饱和砂土液化的判别方法提出自己一些认识及看法。 标签:饱和砂土;液化机理;液化判别 1 地震液化机理及影响因素 1.1 砂土液化的概念 在动力荷载、地震、等外力作用下,饱和砂土受到强烈的振动,导致其丧失抗剪强度,并使砂粒处于悬浮状态,造成地基出现失效现象即称为砂土液化。 1.2 地震液化的机理 地震时剪切波在土体中引起交变应力,产生震动孔隙水压力。引起孔隙水压力增加的原因是水与土粒在交变应力的作用下,受强烈震动的土粒变密,而受到水的阻碍把能量传递给水。随着孔隙水压力的上升,土颗粒在自重的作用下力图向下沉落,而孔隙水在震动孔隙水压力作用下力图向上排出,导致土体结构在被破坏的瞬间,土粒向下沉落受到孔隙水向上排出的阻碍,最终有效应力减至零,土粒间无力的传递,土粒失重,使抗剪强度消失,进而砂土出现液化情况。此时土骨架崩溃,土粒可随水流动,这就是液化过程。 1.3 液化影响因素 砂土的组成:一般情况下,粗砂比细砂不容易液化,其主要原因是粗砂有良好的透水性,即使粗砂发生液化现象,孔隙水超压作用时间短,大大缩短其液化的时间。 相对密度:密砂比松砂不容易液化。由于松砂是无粘性土与粘性土之间的土壤,所以砂土的密度低容易发生液化。 土层的埋深:地震发生时,液化砂土层的深度处于10m以内。因此砂土层埋深深度越大,砂土越不容易液化。 地下水位:地下水位浅的比水位深的地方较容易发生液化现象。地下水位深度小于4m的砂类液化区域,易发生液化。粉土液化在7度至9度区内,地下水位小于1.5m、2.5m、6.0m的区域容易被液化。

进行砂土震动液化判定的原理和思路

进行砂土震动液化判定的原理和思路 (××××××) 摘要:砂土的震动液化也是一种不良地质条件,假如发生,将会对建于其上的建筑物造成严重的损失。因此,在工程选址设计中,应当首先准确得判别震动液化地点是否存在,然后尽量远离液化地,或者采取必要的设防措施。本文试从以下几个方面,简单介绍判别砂土震动液化的原理和思路。 关键字:砂土震动液化标准贯入静力触探剪切波速液化程度 饱和的疏松粉、细砂土体在振动作用下有颗粒移动和变密的趋势,对应力的承受由砂土骨架转向水,由于粉、细砂土的渗透性不良,孔隙水压力急剧上升。当达到总应力值时,有效正应力下降到0,颗粒悬浮在水中,砂土体即发生振动液化,完全丧失强度和承载能力。 在地质条件、地震强度及持续时间两方面都有可能产生砂土液化的地方,工程地质勘察时就需要判定某一地点、某一深度处沙土层液化的可能性。通常的判别程序是先按地震条件、地质条件、埋藏条件、土质条件的一些限界指标进行初步判别,经初步判别为液化的场地应进一步通过现场测试、剪应力对比或地震反应分析等方法进行定量判别。各种判别指出可能性后,还应进一步判定后果的严重程度,通常是用液化指数划分液化的严重程度,以便为设防措施提供依据。 一、震动液化初判的限界指标 1.地震条件 (1).液化最大震中距 液化最大震中距(D max)与震级(M)有如下关系: D max =0.82 × 100.862(M-5) 由此可知,当M = 5,则也hue范围限于震中附近1km之内。 (2).液化最低地震烈度 震级为5级震中烈度为VI度,故液化最低烈度为VI度。 2.地质条件 发生震动液化处多为全新世乃至近代海相及河湖相沉积平原、河口三角洲,特别是洼地、河流的泛滥地带、河漫滩、古河道、滨海地带及人工填土地带等。 3.埋藏条件 (1).最大液化深度

砂土地震液化判别的原理和思路

进行砂土地震液化判别的原理和思路1.砂土液化机理 饱和砂土在水平振动作用下,土体间位置将发生调整而趋于密实,土体变密实势必排除孔隙水。而在急剧的周期性动荷载作用下,如果土体的透水性不良而排水不畅的话,则前一周期的排水还未完成,后一周期又要排水,应排走的水来不及排出,而水又是不可压缩的,于是就产生了剩余孔隙水压力(或称超孔隙水压力)。此时砂土的抗剪强度τ为: 式中:σ为法向应力;Pw0为静孔隙水压力;Δpw为超孔隙水压力;υ为砂土的内摩擦角。 显然,此时砂土的抗剪强度大为减小。随振动时间延续,Δpw不断累积叠加而增大,最终可抵消σ而使土体的抗剪强度完全丧失,液化产生。其现象就是发生喷水冒砂、地表塌陷。 2.砂土地震液化的影响因素 根据国内震害现场调查和室内实验研究,影响饱和砂土液化的因素可以概括为以下4 点: (1)地震的强度以及动荷载作用。动荷载是引起饱和土体空隙水压力形成的外因。显然,动应力的幅值愈大,循环次数愈多,积累的孔隙水压力也愈高,越有可能使饱和砂土液化。根据我国地震文献记录,砂土液化只发生在地震烈度为6 度及 6 度以上地区。有资料显示5 级地震的液化区最大范围只能在震中附近,其距离不超过1km。 (2)土的类型和状态。中、细、粉砂较易液化,粉土和砂粒含量较高的砂砾也可能液化。砂土的抗液化性能与平均粒径的关系密切。易液化砂土的平均粒径在0.02~1.00mm 之间,在0.07mm 附近时最易液化。砂土中黏粒( d< 0.005mm)含量超过16%时很难液化。粒径较粗的土,如砾砂等因渗透性高,孔隙水压力消散快,难以积累到较高的孔隙水压力,

在实际中很少有液化。黏粒土由于有黏聚力,振动时体积变化很小,不容易积累较高的孔隙水压力,所以是非液化土。土的状态,即密度或相对密度D,是影响砂土液化的主要因素之一,所以也是衡量砂土能否液化的重要指标。砂越松散越容易液化。由于很难取得原状砂样,砂土的D 不易测定,工程中更多地用标准贯入度试验来测定砂土的密实度。调查资料表明:砂层中当标贯锤击数N<20,尤其是N<10 时,地震时易发生液化,而级配的好坏影响不大。地质形成年代对饱和砂层的抗液化能力有很大影响,年代老的砂层不易液化,新近沉积的则容易液化。 (3)初始应力状态。许多调查资料表明,饱和砂层上的有效覆盖压力σ0具有很好的抗液化作用。一般加压土层的厚度在3m 以上时,下面的砂层比较难以液化。此外在实际上,应该充分利用液化土层上的覆盖土层。 (4)土层的刚度。土层的刚度将决定场地的卓越周期。当建筑物的自振周期与场地卓越周期接近时,就会由于共振而导致震害产生。地震的震害调查结果显示周期约为0.5s 的木房屋,当建造在深厚30m 的软土层上时,破坏率高达30%;当它们建造在硬土和岩石上时,破坏率降低为1%。1988 年的墨西哥发生了强地震,首都墨西哥城距震中约400km,虽然远离震中,但市区高层建筑破坏严重,全部倒塌的房屋达400 多栋。在8 级左右的强地震下,远离震中400km 的,一般情况下不致引起破坏。墨西哥地震是远震时深厚软土层上高层建筑严重破坏的典型实例。类似的震害受土质条件影响的例子还很多。 3.砂土地震液化的判别 从工程的抗震设计要求考虑,需要解决的问题首先是正确判定砂土能否液化,其次是采用什么措施预防或减轻液化引起的层害。工程设计需要的判别内容应该包活: 估计液化的可能性②估计液化的范围;③估计液化的后果。 砂土地震液化的判别思路如下: 一、初判 按照地震条件、地质条件、埋藏条件、土质条件的一些限界指标进行初判。 地震条件方面,一般来说,震级在5级以上的才可以产生液化;也就是液化最低烈度为Ⅵ度。

相关主题
文本预览
相关文档 最新文档