当前位置:文档之家› 砂石骨料与混凝土的关系

砂石骨料与混凝土的关系

砂石骨料与混凝土的关系
砂石骨料与混凝土的关系

砂石和混凝土质量的关系

我国在传统上把砂石称作混凝土的骨料,是因为岩石强度很高,对混凝土强度起很大作用,于是对砂石的选择主要看重强度,有解理的岩石,破碎的颗粒越小,针片状颗粒越多,致使公称粒径5mm~10 mm的颗粒需水量很大,其结果,名义上的“连续级配”实际上其中5 mm~10 mm的颗粒几乎没有。由此也可以说,造成石子现状也是用户误导的结果。双方对砂石在混凝土中的作用的理解都有误。

骨料和混凝土强度的关系

过去,在主要使用塑性混凝土的情况下砂石强度确实会不同程度地影响混凝土的强度;上世纪50年代末我国曾经有构件厂使用过干硬性混凝土,水灰比低、浆体含量少,拌和物没有坍落度,用V-B稠度仪检测时,工作度为20秒以上,只能用于预制构件,在高频振动台上加压强力振捣,工人劳动强度大,噪声震耳,而且能耗很大,不久就不再生产了。这样的混凝土强度取决于石子强度和浆体-石子界面的粘接强度,石子对混凝土强度的贡献显而易见。当时,一般使用低塑性混凝土(坍落度10 mm~30mm)和塑性混凝土(坍落度30 mm~50 mm、50 mm~70mm、90 mm~90mm);上世纪初开始使用流态混凝土(坍落度100mm以上);石子对混凝土强度的作用随浆骨比的增大而减小。在泵送混凝(坍落度150mm以上,当前普遍都超过200mm),石子在混凝土中呈悬浮状态,混凝土的强度基本上与骨料强度无关。现在用颗粒强度很低的轻骨料(陶粒)已配制出高强(C50以上)泵送混凝土就是明证。在现代混凝土中,砂石在混凝土中的作用主要不是强度,但却是不可没有的关键角色。

然而,当水胶比一定时,砂石用量和粒径影响混凝土中界面过渡区的厚度和数量,因此对混凝土的强度有影响。

当水胶比很大时,石子粒径对强度的影响不显著,水胶比越低,影响越大。水胶比一定时,净浆强度高于砂浆强度,砂浆强度高于混凝土强度。

砂石在混凝土中的骨架作用主要是稳定体积

大多数混凝土用的普通岩石线胀系数为5×10-6~13×10-6/℃,而硬化硅酸盐水泥净浆线胀系数为11 ×10-6~20×10-6/℃,二者相差约1倍。如果没有骨料,水泥净浆硬化后会产生很大的收缩,稍有约束,就会严重开裂。

混凝土的收缩Sc与水泥净浆收缩Sp之比取决于骨料含量a: Sc= Sp(1-a )n ( n为经验系数,变动于1.2~1.7,与骨料弹性模量有关)。由图5可见,混凝土水灰比越大,骨料用量对混凝土收缩的影响越大。在图6中可见,对混凝土塑性收缩影响的规律也是净浆>砂浆>混凝土,而混凝土水泥用量越大(骨料越少)影响越大。骨料对混凝土自收缩影响的规律也如此。

骨料粒径和粒形对混凝土其他性能的影响

粒径的影响

骨料粒径与混凝土渗透性和抗冻性的关系。骨料水灰比越大,骨料粒径对混凝土渗透性的越大,砂浆的这种影响最小;骨料粒径大会降低混凝土的抗冻性。

粒形的影响

对于满足一定强度和密实性要求的混凝土来说,拌和物的施工性是保证混凝土最后质量的最重要性质。对混凝土施工性来说,骨料的粒形有时比级配的影响还要大。理想的骨料粒形呈等径状(即宏观球形)。表面粗糙程度相同时,等径状骨料的比表面积最小,需水量最小,可以同时满足施工性和强度等硬化混凝土性质。

骨料的粒形明显影响自密实混凝土的施工性。

我国当前的混凝土“难做”和骨料粒形有很大关系。从我国目前常用石子粒形对比可以看出质量的差距。可用其与日本和中国常用石子作比较。在日本石子中找不到针、片状颗粒,而在中国的常用石子中,则针、片状显而易见,即使在尺寸上也少见等径状。

关于骨料的级配

骨料的连续级配即不同尺寸颗粒合理搭配的比例,目的是不仅得到最小的骨料空隙率,而且也得到最小的骨料比表面积,但是在骨料的生产中只能从数量上做到级配,却无法做到整体产品级配的均匀性。因为砂石这种产品是散粒状的堆积物,在装、卸、运输等的动力作用下,原来不同大小的颗粒混合均匀的整体,会发生小颗粒向下移动而大颗粒留在表面的现象,堆积成锥形后,在表面的大颗粒会沿着锥形的斜面滚落。于是料堆的级配就失去均衡,混凝土生产中在这样的料堆所取骨料也就没有了级配。因此西方发达国家的砂石料都是分级供应,使用时按要求自行级配,按级配分级投料。规范中的连续级配不是对生产者而是对使用者规定的。为了保证满足混凝土的需要,我国砂石标准至少应当对石

子明确规定分级供应。我国已经有一些混凝土使用了用单粒级两级配或三级配后,混凝土水泥用量减少了20%左右,但是如果粒形不好,也做不出小于40%的石子空隙率。

混凝土骨料的要求规范

、粗骨料 (一)概念:凡混凝土中颗粒粒径大于5的骨料称为粗骨料。 建筑工程中常用的粗骨料一般有两种:卵石和碎石。比较同等条件下,谁配制出的混凝土强度大?答案:碎石。碎石是经过人工或机械破碎而成;卵石是天然岩石经风化而成。因为碎石的表面粗糙,与水泥石粘接度大;颗粒均匀,且坚固;不含杂质,清洁度好;针、片状含量少,所以,配制出来的混凝土强度大。 (二)混凝土用粗骨料的质量要求 1、粗骨料中含的泥块、淤泥、细屑、硫酸盐、硫化物和有机物是有害杂质。它们的危害与在细骨料中的相同。它们的含量一般应符合表6-3中规定。

2、形状:粗骨料成圆柱形或立方体的好,针、片状含量必须满足表6-3中规定

针状颗粒:凡颗粒的长度大于该颗粒所属粒级的平均粒径2. 4 倍的为针状颗粒。 片状颗粒:凡颗粒的厚度小于平均粒径0. 4 倍为片状颗粒。 平均粒径:该粒级上、下限粒径的平均值。 3 、颗粒级配 粗骨料中公称粒级的上限称为最大粒径。当骨料粒径增大时,其比表面积减小,混凝土的水泥用量也减少。因此,粗骨料的最大粒径应在满足技术要求的条件下,尽量选得大些。试验研究表明,骨料的最大粒径与构件的截面尺寸、混凝土的强度、水泥用量和施工工艺等有关。 为保证混凝土的强度要求,粗骨料都必须是质地致密、具有足够的强度。碎石或卵石的强度可用岩石立方体强度和压碎指标两种方法表示。 (1 )用岩石立方体强度表示粗骨料强度。是将岩石制成 5 c m X 5cm X 5cm的立方体(或直径与高均为5cm的圆柱体)试件,在水饱和状态下,其抗压强度(MPa)与设计要求的混凝土强度等级之比,作为碎石或碎卵石的指标,根据JG53—92 规定不应小于1. 5。 ( 2 )用压碎指标表示粗骨料的强度时,是将一定质量气干状态下10?2 0mm石子装入一定规格的圆筒内,在压力机上施加荷载到200KN,

轻骨料混凝土配合比

轻骨料混凝土配合比设计方法[1] 注:目前并没有计算轻骨料混凝土配合比强度的准确方法,也就是没有水胶比计算公式,轻骨料砼的水泥用量、净用水量都是从表中选取,初步计算出配比后,通过试配得到目标强度等级的配比。 主要原因为:轻骨料强度严重影响混凝土强度;但目前尚无广泛适用的水胶比-胶材强度-轻骨料强度-混凝土强度的关系模型,故无法预算混凝土强度。 一、基本要求 1轻骨料混凝土按其干表观密度可分为十四个等级,如表4.1.3所示 2轻骨料混凝土根据其用途可按表4.1.4 分为三大类。 3结构轻骨料混凝土的强度标准值应按表4.2.1采用

表中值乘以系数0.80

5.3.3 采用绝对体积法计算应按下列步骤进行: 1 根据设计要求的轻骨料混凝土的强度等级、密度等级和混凝土的用途,确定粗细骨料的种类和粗骨料的最大粒径; 2 测定粗骨料的堆积密度、颗粒表观密度、筒压强度和1h吸水率,并测定细骨料的堆积密度和相对密度; 3轻骨料混凝土的配合比应通过计算和试配确定。混凝土试配强度应按下式确定: (5.1.2-1) 式中,f cu,o—轻骨料混凝土的试配配制强度,MPa; f —轻骨料混凝土立方体抗压强度标准值,这里取设计混凝土强度等级值,MPa; cu,k σ—轻骨料混凝土强度标准差,MPa。 当无统计资料时,强度标准差可按表5.1.3取值。 表5.1.3 标准差σ值 (MPa) 4 按表5.2.1条选择水泥用量; 3 注:1.表中横线以上为采用32.5级水泥时水泥用量值;横线以下为采用42.5级水泥时的水泥用量值; 2.表中下限值适用于圆球型和普通型轻粗骨料,上限值适用于碎石型轻粗骨料和全轻混凝土; 3.最高水泥用量不宜超过550kg/m3。

细骨料对混凝土的影响

细骨料对混凝土和易性的影响 细骨料是混凝土的主要组分,约占混凝土体积总量的30 %?40 %,其性质的好坏将直接影 响到新拌混凝土和硬化后混凝土的性能,如和易性、强度、耐久性等。随着聚羧酸减水剂的 广泛使用,细骨料与其适应性好坏同样影响到新拌混凝土和硬化后混凝土的性能,成为业内人士关注的焦点之一。已有文献介绍,聚羧酸减水剂对混凝土中砂子含泥量十分敏感,既能影响混凝土的坍落度及坍落度损失,在砂子含泥量超过3%时还会对强度产生不利影响。事实上,除了砂子含泥量之外,砂子的其他性质也将对聚羧酸减水剂的适应性产生影响,进而影响混凝土的各项指标。 实验实例 选用两组胶凝材料及两种砂子进行试验,其中1号砂是由于不合格而被施工方否定掉 的砂子,2号砂是施工最终选用的砂子。本实验中为了对比细骨料对混凝土所产生的影响,特选用这两种砂子做了一个对比分析。 试验中发现,采用2号砂子拌制的混凝土没有出现分层、离析,也没有出现泌水现场, 黏聚性和保水性较好;而采用1号砂子拌制的混凝土出现了泌水现象,和易性欠佳。 使用同一种砂子,选取不同组胶凝材料时,混凝土的和易性基本一致,说明该工程现场使用的胶凝材料对混凝土和易性无不良影响。而在胶凝材料相同,砂子不同时,均需增加 50 %的减水剂,且W-1尚需多加2kg水才能勉强达到施工要求。此外,由表2还可以看出,1号砂子比2号砂子拌制的混凝土含气量高,含气量偏高将会影响混凝土的后期强度。 原因分析 影响混凝土和易性的因素很多,如单位用水量、水泥品种、水泥与外加剂的适应性、骨 料性质、水泥浆的数量、水泥浆的稠度、砂率,以及环境条件(如温度、湿度等)、搅拌工艺、放置时间等。我们根据以往的经验认为,在配合比一定的混凝土设计中,对混凝土和易性影响最大的是胶凝材料和外加剂,尤其是近年来外加剂的广泛使用所引起的胶凝材料水泥适应性问题层出

混凝土骨料的要求规范

混凝土骨料的要求规范集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

6.2.4粗骨料、水 一、粗骨料 (一)概念:凡混凝土中颗粒粒径大于5的骨料称为粗骨料。 建筑工程中常用的粗骨料一般有两种:卵石和碎石。比较同等条件下,谁配制出的混凝土强度大?答案:碎石。碎石是经过人工或机械破碎而成;卵石是天然岩石经风化而成。因为碎石的表面粗糙,与水泥石粘接度大;颗粒均匀,且坚固;不含杂质,清洁度好;针、片状含量少,所以,配制出来的混凝土强度大。 (二)混凝土用粗骨料的质量要求 1、粗骨料中含的泥块、淤泥、细屑、硫酸盐、硫化物和有机物是有害杂质。它们的危害与在细骨料中的相同。它们的含量一般应符合表6-3中规定。 表6-3混凝土用粗骨料的质量要求

2、形状:粗骨料成圆柱形或立方体的好,针、片状含量必须满足表6-3中规定。 针状颗粒:凡颗粒的长度大于该颗粒所属粒级的平均粒径2.4倍的为针状颗粒。 片状颗粒:凡颗粒的厚度小于平均粒径0.4倍为片状颗粒。 平均粒径:该粒级上、下限粒径的平均值。

3、颗粒级配 粗骨料中公称粒级的上限称为最大粒径。当骨料粒径增大时,其比表面积减小,混凝土的水泥用量也减少。因此,粗骨料的最大粒径应在满足技术要求的条件下,尽量选得大些。试验研究表明,骨料的最大粒径与构件的截面尺寸、混凝土的强度、水泥用量和施工工艺等有关。 为保证混凝土的强度要求,粗骨料都必须是质地致密、具有足够的强度。碎石或卵石的强度可用岩石立方体强度和压碎指标两种方法表示。 (1)用岩石立方体强度表示粗骨料强度。是将岩石制成 5c m×5c m×5c m的立方体(或直径与高均为5c m的圆柱体)试件,在水饱和状态下,其抗压强度(M P a)与设计要求的混凝土强度等级之比,作为碎石或碎卵石的指标,根据J G53—92规定不应小于1.5。 (2)用压碎指标表示粗骨料的强度时,是将一定质量气干状态下10~20m m石子装入一定规格的圆筒内,在压力机上施加荷载到200K N,卸荷后称取试样质量(m0),用孔径为2.5m m筛筛除压碎的细粒,称取试样的筛余量(m1)。 二、拌和用水与养护用水 1、宜采用饮用水。 2、其他水应经过检验才能使用。

混凝土等级与级配的关系

混凝土等级与级配的关系Newly compiled on November 23, 2020

混凝土等级与级配 ★混凝土强度等级选用范围 不同的建筑工程,不同的部位常采用不同强度等级的混凝土,在我国混凝土工程目前水平情况下, 一般选用范围如下: ①C10~C15——用于垫层、基础、地坪及受力不大的结构。②C20~C25——用于梁、板、柱、楼梯、屋架等普通钢筋混凝土结构;③C25~C30——用于大跨度结构、要求耐久性高的结构、预制构件等; ④C40~C45——用于预应力钢筋混凝土构件、吊车梁及特种结构等,用于25~30层; ⑤C50~C60——用于30层至60层以上高层建筑;⑥C60~C80——用于高层建筑,采用高性能混凝土;⑦C80~C120——采用超高强混凝土于高层建筑。将来可能推广使用高达C130以上的混凝土。 ★各种级配混凝土使用的粗骨料粒径范围:一级配:5~20mm,最大粒径20mm;二级配:5~20mm、20~40mm,最大粒径40mm;三级配:5~20mm、20~40mm、40~80mm,最大粒径80mm; 四级配:5~20mm、20~40mm、40~80mm、80~120mm,最大粒径120mm。 混凝土中有粗骨料(碎石)和细骨料(砂),混凝土的级配就是按照碎石的级配来划分的。水工建筑物中常用的应该是二级配和三级配混凝土,二级配一般是一些薄壁钢筋混凝土结构,还有 就是泵送混凝土一般要求二级配。三级配一般用于大体积混凝土。

等级是结构强度需要,级配是施工工艺、经济性、温控需要;可以采用多级配就一般不用二级配,这是强调经济性;泵送混凝土和非大体积混凝土只能采用一、二级配,这是工艺要求;混凝土重力坝、拱 坝采用四级配,这是温控和经济性要求。

轻骨料混凝土

轻骨料混凝土的发展及应用 姓名:吕浩阳 学号:g201409106 系别:建筑工程学院

轻骨料混凝土的发展及应用 摘要:轻骨料混凝土的应用具有巨大的直接和间接技术经济效益,针对国内外轻骨料混凝 土技术的应用现状,对轻骨料混凝土的性能进行了详细的分析。探讨了轻骨料混凝土应用 中存在的问题,并对解决措施予以展望。 关键词:轻骨料;混凝土;耐久性 1前言 混凝土是现代工程结构中最大宗的建筑材料之一。全世界混凝土年产量约90亿吨, 我国占40%以上,每年要用掉20亿吨以上的天然骨料。对骨料等资源的大量开采已造成了很多地方出现资源匾乏、耕地破坏、山林遭毁等问题。利用天然轻骨料、工业废料轻骨料、人造轻骨料等制成的轻骨料混凝土具有密度较小、相对强度高以及保温、抗冻性能好等优点,降低结构自重的同时也在很大程度上节约水泥、钢筋等建筑材料,具有明显的技术、 经济优势。利用工业固体废弃物如粉煤灰、锅炉煤渣、煤矸石等制备轻质混凝土,可降低 混凝土的生产成本,废物利用,减少城市或厂区的污染,减少堆积废料占用的土地用量, 可以有效地利用资源和保护环境[1]。 2轻骨料混凝土的发展及应用现状 2.1国外应用现状 美国早在1913年就研制成功了页岩陶粒(国外又称膨胀页岩),很快就用它配制成抗 压强度为30-35MPa的轻集料混凝土,并应用在了房屋建筑、船舶制造和桥梁工程中。20 世纪60年代中期,美国采用轻骨料混凝土取代普通混凝土,修建了52层218米高的休斯 顿贝壳广场大厦,所用轻骨料混凝土的干表观密度为1840 kg/m3,抗压强度32-42MPa,取 得了显著的技术经济效益。2001美国在California用轻骨料混凝土建成的Benicia-Martinez 桥,该桥总长2716米,最大跨度200米,所用轻骨料混凝土28天抗压强度为45MPa,干 表观密度1920 kg/m3。1993年以来美国每年轻骨料使用量都在350-415万m3,其中用于结 构混凝土部分占80万m3左右。 20世纪90年代初期,挪威、日本等国家研究了高性能轻骨料混凝土的配方、生产工艺、高性能轻骨料等,重点在于改善混凝土的工作性和耐久性,并取得了一定的成果。例如,英国采用高强轻骨料混凝土建造了北海石油平台;挪威已成功应用CL60级轻骨料混 凝土建造了世界上跨度最大的悬臂桥;日本则在1998年成立了一个由18家公司组成的高 强轻骨料混凝土研究委员会,专门研究粉煤灰轻骨料混凝土。

有害骨料对混凝土质量的影响.

有害骨料对混凝土强度的影响 某些成分的骨料在水的影响下,可以和水发生化学反应,使混凝土的化学成分及物理力学性质发生变化,而降低强度,使混凝土遭到破坏,这种骨料称为有害骨料。 有害骨料与水泥的反应大致可分为以下几种: 一、碱硅反应 1、反应现象 碱骨料反应是混凝土原材料中的水泥、外加剂、混合材和水中的碱(Na2O或K2O)与骨料中的活性成分反应,在混凝土浇筑成型后逐渐反应,形成了碱的硅酸盐凝胶,反应生成物吸水膨胀使混凝土产生内部应力,膨胀开裂、导致混凝土失去设计性能。由于活性骨料经搅拌后大体上呈均匀分布。所以一旦发生碱骨料反应、混凝土内各部分均产生膨胀应力,将混凝土自身胀裂、发展严重的只能拆除,无法补救,因而被称为混凝土的癌症。 2、反应机理 在最近40 年期间,观察到了骨料和周围水泥净浆之间的一些有害化学反应。最普通的反应是骨料的活性硅成分和水泥中碱之间的反应。二氧化硅的活性形式是蛋白石(无定形),玉髓(隐晶纤维),和鳞石英(结晶)。这些活性材料存在于:蛋白石或玉髓、燧石、硅质石灰石、流纹石和安山凝灰岩与千纹岩中。

活性二氧化硅的特点是所有的硅氧四面体呈任意网状结构,实际的内表面积很大,碱离子较易将其中起联结作用的硅氧键破坏使其解体,胶溶成硅胶或依下式反应成硅酸盐凝胶: 活性SiO2+2mNaOH(KOH)→mNa2O(K2O)·SiO2·nH2O 对膨胀的解释可粗分为两种理论:其一认为碱骨料反应是由水泥中的碱(Na2O和K2O)形成的碱性氢氧化物对骨料中的硅质矿物间的反应开始的,由于形成了碱-硅凝胶,骨料界面发生蚀变。这种胶体是“无限膨胀型”的,它在吸水后有增加体积的趋向。由于此胶体受到周围水泥净浆的约束,结果产生内压,最后导致水泥浆的膨胀、开裂和破坏(突然爆裂)。由此看来膨胀是由于渗透而产生的液压引起的,但碱硅反应的固态产物的膨胀压也会引起膨胀。因此,可以说坚硬骨料颗粒的膨胀对混凝土是有害的,某些较软的凝胶体是由于后来被水浸出并沉积在由于骨料膨胀而产生的裂缝中。硅质颗粒的大小影响着反应的速度,细颗粒(20~30 微米)在一两个月之内便会产生膨胀,只有比较大的颗粒要在几年之后才产生膨胀。 另一种湿渗透压理论,是指包围活性集料的水泥浆体起着半透膜的作用,使反应产物的硅酸根离子难以通过,但允许水和碱的氢氧化物扩散进来,从而认为渗透压是造成膨胀的主要原因。 3、影响因素 通常认为,只有在水泥中的总碱量较高,同时骨料中又含有活性二氧化硅的情况下,才会发生上述有害反应。 3.1 碱含量

轻骨料混凝土的配合比设计

轻骨料混凝土的配合比设计 轻骨料混凝土的配合比设计 用轻粗骨料、轻细骨料(或普通砂)和水泥配制而成的混凝土,其干表观密度不大于1950kg/m3,称为轻骨料混凝土。当粗细骨料均为轻骨料时,称为全轻混凝土;当细骨料为普通砂时,称砂轻混凝土。凡是骨料粒径为5mm以上,堆积密度小于1000kg/m3的轻质骨料,称为轻粗骨料。粒径小于5mm,堆积密度小于1200kg/m3的轻质骨料,称为轻细骨料。选择轻骨料混凝土配合比时,必须根据结构种类(保温的,结构保温的或结构的)及使用条件,使混凝土的配合比满足强度和和易性,耐久性以及经济性等方面的要求。轻骨料混凝土与普通混凝土配合比设计中的不同之处主要有三点,一是用水量为净用水量与附加用水量两者之和;二是砂率为砂的体积占砂石总体积之比值;三是配合比设计对混凝土干表观密度应满足要求。 在设计轻骨料混凝土配合比之前应具备设计上规定的最大干表观密度和设计强度等资料,应了解配筋情况,施工条件及构件混凝土所处的环境条件。 一、水泥标号和用量 用于拌制轻骨料混凝土水泥标号应随混凝土强度的增高相应提高,用低标号水泥配制高强度混凝土,不仅技术上困难,而且水泥用量多。用高标号水泥配制低强度混凝土也不经济。水泥标号的选用可按照1-1资料确定。 不同强度等级轻骨料混凝土的水泥等级和用量1-1 序号轻骨料混凝土强度等级水泥用量(Kg/m3)水泥标号 1 ﹤LC 5.0 200 32.5 2 LC7.5 200-250 3 LC10 200-320 4 LC1 5 250-350 5 LC20 280-380 6 LC25 330-400 7 LC30 340-450 8 LC40 420-500 42.5 9 LC50 410-530 10 LC60 430-550 注:1、表中:下限值适用于圆球型(如粉煤灰陶粒、粘土陶粒等)和普通型(如页岩陶粒、膨胀珍珠岩等)的粗骨料。上限适用于碎石型(浮石、膨胀矿渣等)粗骨料和全轻混凝土。 2、轻骨料混凝土的最高水泥用量不宜超过550Kg/m3。 增加水泥用量,可以提高混凝土强度,当水泥用量平均增加20%,轻骨料混凝土的强度约增高10%,但是随着水泥用量的提高,水泥用量每增加50 Kg/m3,容重增加约30 Kg/m3。水泥用量过高时,不但容重大、水化热高、收缩大,而且在经济上也不适宜。我国对高标号轻骨料混凝土的最大用量规定不宜超过550 Kg/m3。另一方面,为了保证轻骨料混凝土的耐久性最小水泥用量不宜低于200 Kg/m3。 二、用水量和水灰比 每立方米混凝土的总用水量减去干轻骨料一小时吸水量为净用水量。净用水量根据混凝土施工条件和稠度要求按表1-2选用。再根据表1-3选择附加水量。若缺乏轻砂吸水率的数据时,可增加10Kg左右的水,作为轻砂吸水率的附加水。而在试拌时,可根据工作性的要求再进行适当调整。

混凝土骨料性能要求

混凝土骨料性能要求 经长期风化侵蚀作用而形成的粒径小 0.005mm的颗粒,“淤泥”是指粒径比黏土大、比砂小的土粒,“细屑”是指其他粒径很小的细碎云母片、非矿物质杂质等。由于泥粒一般较细,增加了骨料比表面积,并且由于黏土类成分的吸水性质,当含泥量较高时,要达到预期的施工性能和强度,不仅会增加混凝土单位用水量和胶凝材料,还会对混凝土干缩、徐变、抗渗、抗冻等性能产生不利影响。当有泥块存在时,会降低混凝土密实度,成为混凝土中的薄弱成分。因此,国内外规范均严格限制}昆凝土骨料中的含泥量,如GB/T 14685-2011《建筑用卵石、碎石》规定碎石中的最大含泥量不得大于1. 5%、最大泥块含量不得大于0.5%,GB/T14684-2011《建筑用砂》规定天然砂中的最大含泥量不得大于5.0%,对于强度等级高于C60的混凝土,则最大含泥量不得大于1.0%。

人工砂中亦有粒径小于o.08mm的颗粒,这 些颗粒性质与天然骨料中粒径小于0.08mm的泥粒 有本质差异,相关规范亦规定了人工砂中的石粉 含量限值,但普遍大于天然骨料中的含泥量限值。目前,石粉对混凝土性能的影响及其机理研究已 成为热点,随着研究深入,人工砂中的石粉含量 有可能进一步放宽。 2.砂中云母含量 砂中云母一般呈薄片状,表面光滑,强度很低,且易沿节理错裂,与水泥浆的黏结力差,当 砂中云母含量超过一定限度时,混凝土拌和物和 易性、混凝土强度、耐久性等均有显著降低。因此,国家标准和许多行业标准都限定砂中云母含量,如《建筑用砂》(GB/T 14684-2011)和电力行 业标准《水工混凝土施工规范》(DL/T 5144-2001)均限定砂中云母含量不得大于2%,但与上述规范配 套的试验方法只能测试砂中粒径大于0. 3mm的游 离云母含量。天然砂中的云母颗粒粒径基本上大

粗骨料颗粒级配对混凝土强度的影响.

焦作工学院学报 (自然科学版 , 第 23卷 , 第 3期 , 2004年 5月 Journal of Jiaozuo Institute of Technology (Natural Science , Vol 123, No 13, May 2004 粗骨料颗粒级配对混凝土强度的影响 王雨利 , 管学茂 , 潘启东 , 廖建国 (焦作工学院资源与材料工程系 , 河南焦作 454000 摘要 :分析了粗骨料的最大粒径、 , 特征和颗粒形状、强度对混凝土性能的影响 . 性能有较大的影响 , , 高性能混凝 关键词 :粗骨料 : :A 文章编号:1007Ο7332(2004 03Ο0213Ο03 粒径在 5, 即石子 . 粗骨料是混凝土的主要组成材料 , 其特征和性能直接 影响和决定着混凝土的性能 . 粗骨料在混凝土中约占 70%, 是混凝土的主要组成成 分 . 本文就粗骨料的物理性质对混凝土性能的影响分析如下 . 1最大粒径 石子的粒径越大 , 其比表面积相应减小 , 因此所需的水泥浆量相应减少 , 在一 定的和易性和水泥用量的条件下 , 则能减少用水量而提高混凝土强度 , 从这个意义上说 , 石子的粒径应尽量选用大一些的 [1]. 但并不是粒径越大越好 , 一是粒径越大 , 颗粒内部缺陷存在的机率越大 ; 二是粒径越大 , 颗粒在混凝土拌合中下沉速度越 快 , 造成混凝土内颗粒分布不均匀 , 进而使硬化后的混凝土强度降低 , 特别是流动性较大的泵送混凝土更加明显 . 在普通混凝土中 , 碎石的最大粒径是根据构件的截

面尺寸和钢筋间距来确定 , 粒径的大小对强度影响不大 . 对此 , 我们做了实验 , 其实验结果如表 1. 表 1 C20级混凝土实验结果 Tab 11 The experiment result of C20 concrete 序号W ΠC 配合比 水泥∶砂∶碎石 水泥用量 Π(kg ? m -3 外加剂 Π% 砂率 Π% 粗骨料Πmm 5~20 20~40 40~60

细骨料种类对C30混凝土性能的影响

细骨料种类对C30混凝土性能的影响 摘要:针对目前天然中砂匮乏的现象,对比研究了天然中砂和不同混合比例的混合砂对C30混凝土工作性能、力学性能和收缩性能的影响。试验结果表明:机制砂和天然细砂按适当比例混合,可以配制出拌合物工作性能好、力学性能和收缩性能满足要求的C30混凝土。 关键词:机制砂;混合砂;混凝土;性能 1 前言 混凝土价格低廉、性能优良、原材料丰富易得,是当代用量最多、最普遍、最重要的土木工程材料之一[1]。从组成上看,骨料占混凝土总量的70~80%,其中,细骨料不仅占有较大比例,而且对新拌混凝土工作性和硬化后混凝土综合物理力学性能与耐久性有重要影响。一般,配制混凝土选用天然河砂作细骨料,并以优先选用中粗砂、就地取材、尽可能降低混凝土生产成本为基本原则。天然砂资源是一种地方资源,短时间内不可再生且不适合长距离运输。随着土木工程建设的蓬勃发展,对砂石开采行业及其它建材行业的需求日益增加,近年来,我国不少地区出现天然砂资源逐步短缺,甚至无天然砂可用的状况,混凝土用砂供需矛盾日益突出,砂的价格亦越来越高,供不应求的现象时有发生,影响了工程建设的进展,推行应用机制砂配置混凝土已经势在必行。针对天然中砂匮乏的现象,本文通过天然细砂与机制砂混合,讨论细骨料种类对C30混凝土性能的影响。 2 材料与方法 2.1 主要原材料 水泥:由华润水泥(龙岩曹溪)有限公司生产的P·O42.5级水泥,其主要性能见表1。 表1 水泥物理力学性能 外加剂:选用龙海市富敏混凝土外加剂有限公司生产的FM-Ⅲ缓凝高效建水剂,减水率为21%,收缩率比(28d)为65%。 粗骨料:由马坑石场生产的5-31.5mm花岗岩碎石,其性能见表2。 表2 碎石性能

混凝土骨料的要求规范

6.2.4粗骨料、水 一、粗骨料 (一)概念:凡混凝土中颗粒粒径大于5的骨料称为粗骨料。 建筑工程中常用的粗骨料一般有两种:卵石和碎石。比较同等条件下,谁配制出的混凝土强度大?答案:碎石。碎石是经过人工或机械破碎而成;卵石是天然岩石经风化而成。因为碎石的表面粗糙,与水泥石粘接度大;颗粒均匀,且坚固;不含杂质,清洁度好;针、片状含量少,所以,配制出来的混凝土强度大。 (二)混凝土用粗骨料的质量要求 1、粗骨料中含的泥块、淤泥、细屑、硫酸盐、硫化物和有机物是有害杂质。它们的危害与在细骨料中的相同。它们的含量一般应符合表6-3中规定。 表6-3混凝土用粗骨料的质量要求 最新可编辑word文档

最新可编辑word文档

2、形状:粗骨料成圆柱形或立方体的好,针、片状含量必须满足表6-3中规定。 针状颗粒:凡颗粒的长度大于该颗粒所属粒级的平均粒径 2.4倍的为针状颗粒。 片状颗粒:凡颗粒的厚度小于平均粒径0.4倍为片状颗粒。 平均粒径:该粒级上、下限粒径的平均值。 3、颗粒级配 最新可编辑word文档

粗骨料中公称粒级的上限称为最大粒径。当骨料粒径增大时,其比表面积减小,混凝土的水泥用量也减少。因此,粗骨料的最大粒径应在满足技术要求的条件下,尽量选得大些。试验研究表明,骨料的最大粒径与构件的截面尺寸、混凝土的强度、水泥用量和施工工艺等有关。 为保证混凝土的强度要求,粗骨料都必须是质地致密、具有足够的强度。碎石或卵石的强度可用岩石立方体强度和压碎指标两种方法表示。 (1)用岩石立方体强度表示粗骨料强度。是将岩石制成5c m×5c m×5c m的立方体(或直径与高均为5c m的圆柱体)试件,在水饱和状态下,其抗压强度(M P a)与设计要求的混凝土强度等级之比,作为碎石或碎卵石的指标,根据J G53—92规定不应小于 1.5。 (2)用压碎指标表示粗骨料的强度时,是将一定质量气干状态下10~20m m石子装入一定规格的圆筒内,在压力机上施加荷载到200K N,卸荷后称取试样质量(m0),用孔径为 2.5m m 筛筛除压碎的细粒,称取试样的筛余量(m1)。 二、拌和用水与养护用水 最新可编辑word文档

混凝土用细骨料定义及性能变化对混凝土的影响

混凝土用细骨料定义及性能变化对混凝土的影响 一、部分细骨料定义 1.机制砂定义 将岩石、尾矿、建筑垃圾等通过破碎、筛分形成的细骨料称为机制砂,俗称机制砂。发展机制砂产业,可以利用一些废弃采石场,有效解决我国庞大的尾矿资源再利用问题,促进建筑垃圾资源化,并可以为建筑业解决当前普遍存在的天然砂匮乏的问题。 2.尾矿砂定义 尾矿砂是铁、铜等矿山开采后的废弃物,经破碎、筛分而制成的机制砂。试验研究证明,尾矿砂MB值不大于1.4,石粉含量不大于7%,混凝土收缩并无明显增大。尾矿砂的保水性不如天然砂,因此,在配制混凝土时应注意避免泌水。 3.钢渣砂 钢渣砂是炼钢过程产生的副产品经陈化、热闷、风淬、水淬等工艺稳定化处理后,再经磁选除铁处理,具有砂级配的细骨料。因为经过热闷处理,钢渣砂中的游离氧化钙和氧化镁已被有效消解,从而消除了钢渣砂的不稳定因素。钢渣砂中存在耐磨矿物如蔷薇辉石和橄榄石等,使其具有耐磨、硬度高等特点。 根据我国目前的行业标准,钢渣砂细度模数分为粗、中、细三级。钢渣砂单粒级最大压碎指标规定为25%%大部分钢渣砂都能满足此要求。钢渣砂表观密度大于2800kg/m2,空隙率平均47%表面粗糙多棱角,可采用浸水膨胀率对钢渣砂的体积稳定性进行检查。浸水膨胀率不大于2.0%合格。钢渣砂无须测定泥土、石粉和泥块含量。 二、砂子性能变化对混凝土的影响 1.砂子过细、过粗会带来什么影响? 细度模数1.6~2.2的砂为细砂,1.5~0.7的为特细砂。砂子太细,混凝土需水量上升,当混凝土用砂从中砂变为细砂时,若保持相同流动性,则单方用水量需上调5kg。同时,用细砂配制的混凝土流动性、可泵性和保塑性都很差,混凝土强度会下降,梁板结构易开裂。 细度模数3.1~3.7的砂为粗砂。采用粗砂配制的混凝土和易性、可泵性差,不黏稠,极易泌水。此时应掺入一些细砂,将细度模数降到2.7左右。例如:粗砂细度模数为3.3,细砂细度模数为1.5,此时,可用70%

混凝土中细骨料的要求

混凝土中细骨料的要求 混凝土中粗骨料之间的空隙是由细骨料填充的。水泥同细骨料混合,形成坚硬的水泥石,它们粘裹在粗骨料的表面上,与粗骨料一起共同承担承受荷载的重任。选用的砂子如果过细,会使水泥石强度大大的降低,因此在混凝土结构中所使用的砂,应选用粗砂或中砂。 砂的粗细程度用细度模数μf来表示,它是由2.5、1.25、0.63、0.315和0.16等五种孔径的累计筛余百分率经计算而得,砂子按细度模数可分为粗砂、中砂和细砂三个等级,三级中每一级的范围是这样确定的:粗砂:μf=3.7~3.1 中砂:μf=3.0~2.3 细砂:μf=2.2~1.6 这样的确定使我们得知建筑工程用砂的粗细程度是怎样划分的,联想到建筑工程选择配制混凝土使用的砂,它的细度模数至少应在2.3以上,这是对细骨料的第一个要求。第二个要求是尽管砂的细度模数满足要求,如果砂中的含泥量过大,也会影响混凝土的强度,所谓砂的含泥量是指砂中粒径小于0.080mm的颗粒含量,特别是当设计要求混凝土强度等级较高时,对砂中含泥量的要求越发严格。 对有抗冻、抗渗或其他特殊要求的混凝土用砂,含泥量应不大于3.0%。强度等级C10及C10以下的混凝土用砂中的含泥量对混凝土强度影响不是很大,因此可以根据水泥的强度等级予以放宽。 砂中泥块含量也是一个重要的指标,因泥块对混凝土的抗压、抗渗、

抗冻及抗收缩等性能均有不同程度的影响,尤其是包裹型的泥块更为严重,泥块遇水后会形成浆状,胶结在一颗或数颗砂子的表面,影响水泥石的黏结力,需要做出限制。 对于有抗冻、抗渗或其他特殊要求的混凝土用砂,其泥块含量应不大于1.0%。对于C10和C10以下的混凝土用砂,应根据水泥的强度等级其泥块含量可予以放宽。 仅有上述的认识还是不够的,混凝土工程用砂,还有另外的要求,砂的坚固性就可以说明在气候、外力或其他外界因素作用下抵抗破碎的能力,对于有抗疲劳、耐磨、抗冲击要求的混凝土用砂或有腐蚀介质作用或经常处于水位变化地区的地下结构混凝土用砂,其坚固性重量损失应小于或等于8%,这样的要求同样适用于严寒或寒冷地区室外使用并经常处于潮湿或干湿交替状态下的混凝土。只有在其他条件下使用的混凝土,重量损失要求小于或等于10%。砂中有害物质的含量,涵盖了云母、轻物质、硫化物及硫酸盐和有机物等成分的含量,在一般混凝土结构中要求云母含量应在2%以下;对于有抗渗、抗冻要求的混凝土砂中云母含量不应大于1%。砂中如发现有颗粒状的硫酸盐或硫化物杂质时,则要进行专门的检验,确认能够满足混凝土耐久性要求时,方能采用。一般情况下砂中硫化物、硫酸盐和轻物质含量应小于或等于1%。此外,对于重要工程使用的砂,还应进行集料的碱活性检验,一旦发现有潜在的危害时,应使用含碱量小于0.6%的水泥或采用能够抑制碱—集料反应的掺合料,如果使用含钾、钠离子的外加剂时,

混凝土骨料

第4章骨料 4.1 骨料的作用 骨料(Aggregate)是粒形材料,通常不具备化学活性,分散在整个水泥浆基体中。由于骨料价格远低于水泥,因而主要用于降低混凝土成本。然而,从定量分析的角度出发,骨料也起着重要的作用:它们占去了混凝土体积的2/3~3/4 ,有利于保证混凝土的体积稳定性(第15章)和耐久性(第11章)。而且,骨料对高强混凝土的影响很大。 骨料最明显的特征是其颗粒形状,实际上骨料是由很多的松散颗粒组成(图4.1)。如果颗粒粒径小于4 ~5mm,则称之为砂(Sand);如果颗粒粒径大于4~5mm,则称之为粗骨料(Coarse Aggregate)。还可以将骨料分为砾石(Gravel,天然骨料)和碎石(Crushed Stone,人工骨料)。砾石通常从河道中开采而得,圆形、表面光滑;破碎骨料由岩石破碎而得,无规则状、表面粗糙。在没有特殊说明的情况下,术语“骨料”包含细骨料(砂)和粗骨料(砾石或碎石)。 图4.1 砂、砾石和碎石 骨料的另一个重要特征是颗粒中存在连通孔隙。骨料的孔隙率影响其吸水特性,进而影响新拌混凝土的工作性和硬化混凝土的性能,如强度和抗冻耐久性。 在随后的内容中,首先介绍骨料的选用准则,然后是骨料的级配要求及参数,最后是骨料的吸水特性。 4.2 骨料的选用准则 并不是所有的骨料(包括天然骨料和由岩石破碎加工而成的人工骨料)都适用于混凝土 结构。对于骨料,还有很多基本要求,如果满足不了这些要求,即使不是暴露在侵蚀性环境,混凝土也可能劣化。这些要求包括骨料中不能含有会减少混凝土耐久性的有害物质。 有害物质包括氯化物、硫酸盐、碱-活性硅、黏土及有机杂质。而且,骨料还必须具备良好的抗冻耐久性,这点要求骨料中的空隙要少,而隧石、页岩以及一些多孔的石灰岩往往不能满足该要求。 在骨料第一次用于混凝土或者在缺少以往经验时,至少要对骨料中有害物质和抗冻行为进行一次检测。一旦确定该骨料可以用于混凝土中,如果骨料没有其他的问题(例如骨料供应源有了改变),每年还至少要对骨料重复检测两次。 4.2.1 氯化物 骨料中氯化物(Chloride)的含量极限(0.05%)与钢筋腐蚀风险密切相关。在素混凝土(不含增强钢筋)中除非由于混凝土结构在干湿交替条件下盐沉积致使表面损伤(风化,Effiorescence),骨料即使含有氯化物也不会存在任何严重劣化风险。也有一些例外,比如被氯化物污染的骨料―海砂。理论上,海砂只有在经过一系列的清洗,将水溶性盐(如NaCl)除去之后,才能用作混凝土细骨料。 4.2.2 硫酸盐

粗骨料对混凝土性能的影响

粗骨料对混凝土性能的影响 郭福安 摘要:混凝土是目前最大宗的建筑材料,而粗骨料作为混凝土的重要组成材料之一,其性能将对混凝土性能产生不可忽略的影响。该文通过对国内外相关研究成果的整理、分析,概括总结粗骨料对混凝土性能影响的研究现状,并提出了存在的问题,为进一步改善混凝土性能提供参考和依据并为HPC配合比的优化设计奠定基础。 关键词:粗骨料;混凝土;化学成分;形貌;级配;性能影响 引言 混凝土是目前最大宗的建筑材料[1],它是一种多相复合材料,其强度取决于水泥石、粗骨料以及粗骨料与水泥石之间的界面强度。粗骨料是混凝土的骨架,据统计,粗骨料可占混凝土体积的50%~70%,它会影响新拌混凝土的流变性以及硬化混凝土的力学性能和耐久性[2]。近年来,由于天然砂资源短缺,人们加强了对细骨料的研究,使机制砂的生产与使用得到迅速发展[3],但是对于粗骨料仍然没有给予足够的重视。现在随着混凝土工程的超高层化和大型化,高强混凝土的使用越来越广泛,而在高强混凝土中,粗骨料相对来说才是薄弱环节[4-6],粗骨料本身的特征,如种类、颗粒形状及大小、表面特征和级配,无论是对新拌混凝土还是硬化后混凝土的性能都有着重要的影响。因此,有必要全面深入地探讨粗骨料的物理化学特性对混凝土性能的影响。 1粗骨料在混凝土中的作用 粗骨料是混凝土的重要组成部分,原来人们认为粗骨料是一种惰性材料,通过水泥浆的粘结作用与水泥砂浆构成混凝土。实际上粗骨料并不是没有活性的,它的物理化学性质都会对混凝土的性能产生影响[7]美国着名混凝土专家Metha曾指出:“将粗骨料作为一种惰性填充材料应画上一个问号”。我们可以将国内外学者对粗骨料在混凝土中所起的作用的研究成果归纳为以下几点。 粗骨料的刚性骨架作用 在普通混凝土配合比设计中,一般认为粗骨料抗压强度应为混凝土设计强度的2倍左右,不得低于设计强度的倍[8],粗骨料的强度和弹性模量通常要比水泥石高,其耐久性和体积稳定性也是混凝土各组分中最好的,而且粗骨料体积超过混凝土体积的一半,因此粗骨料在混凝土中起着刚性骨架的作用。在混凝土承受压荷载时,其内部由粗骨料传递应力,当混凝土在外荷载作用下发生破坏时,裂缝很难贯穿粗骨料而是绕过粗骨料在骨料周围出现,这样在一定的条件下,混凝土破坏时可能会吸收更高的

混凝土骨料的要求规范

一、粗骨料 (一)概念:凡混凝土中颗粒粒径大于5的骨料称为粗骨料。 建筑工程中常用的粗骨料一般有两种:卵石和碎石。比较同等条件下,谁配制出的混凝土强度大?答案:碎石。碎石是经过人工或机械破碎而成;卵石是天然岩石经风化而成。因为碎石的表面粗糙,与水泥石粘接度大;颗粒均匀,且坚固;不含杂质,清洁度好;针、片状含量少,所以,配制出来的混凝土强度大。 (二)混凝土用粗骨料的质量要求 1、粗骨料中含的泥块、淤泥、细屑、硫酸盐、硫化物和有机物是有害杂质。它们的危害与在细骨料中的相同。它们的含量一般应符合表6-3中规定。 表6-3混凝土用粗骨料的质量要求

2、形状:粗骨料成圆柱形或立方体的好,针、片状含量必须满足表6-3中规定。 针状颗粒:凡颗粒的长度大于该颗粒所属粒级的平均粒径倍的为针状颗粒。 片状颗粒:凡颗粒的厚度小于平均粒径倍为片状颗粒。 平均粒径:该粒级上、下限粒径的平均值。 3、颗粒级配 粗骨料中公称粒级的上限称为最大粒径。当骨料粒径增大时,其比表面积减小,混凝土的水泥用量也减少。因此,粗骨料的最大粒径应在满足技术要求的条件下,尽量选得大些。

试验研究表明,骨料的最大粒径与构件的截面尺寸、混凝土的强度、水泥用量和施工工艺等有关。 为保证混凝土的强度要求,粗骨料都必须是质地致密、具有足够的强度。碎石或卵石的强度可用岩石立方体强度和压碎指标两种方法表示。 (1)用岩石立方体强度表示粗骨料强度。是将岩石制成5c m×5c m×5c m的立方体(或直径与高均为5c m的圆柱体)试件,在水饱和状态下,其抗压强度(M P a)与设计要求的混凝土强度等级之比,作为碎石或碎卵石的指标,根据J G53—92规定不应小于。 (2)用压碎指标表示粗骨料的强度时,是将一定质量气干状态下10~20m m石子装入一定规格的圆筒内,在压力机上施加荷载到200K N,卸荷后称取试样质量(m0),用孔径为筛筛除压碎的细粒,称取试样的筛余量(m1)。 二、拌和用水与养护用水 1、宜采用饮用水。 2、其他水应经过检验才能使用。

混凝土等级与级配的关系

混凝土等级与级配的关系 This model paper was revised by the Standardization Office on December 10, 2020

混凝土等级与级配 ★混凝土强度等级选用范围 不同的建筑工程,不同的部位常采用不同强度等级的混凝土,在我国混凝土工程目前水平情况下, 一般选用范围如下: ①C10~C15——用于垫层、基础、地坪及受力不大的结构。②C20~C25——用于梁、板、柱、楼梯、屋架等普通钢筋混凝土结构;③C25~C30——用于大跨度结构、要求耐久性高的结构、预制构件等; ④C40~C45——用于预应力钢筋混凝土构件、吊车梁及特种结构等,用于25~30层; ⑤C50~C60——用于30层至60层以上高层建筑;⑥C60~C80——用于高层建筑,采用高性能混凝土;⑦C80~C120——采用超高强混凝土于高层建筑。将来可能推广使用高达C130以上的混凝土。 ★各种级配混凝土使用的粗骨料粒径范围:一级配:5~20mm,最大粒径20mm;二级配:5~20mm、20~40mm,最大粒径40mm;三级配:5~20mm、20~40mm、40~80mm,最大粒径80mm; 四级配:5~20mm、20~40mm、40~80mm、80~120mm,最大粒径120mm。 混凝土中有粗骨料(碎石)和细骨料(砂),混凝土的级配就是按照碎石的级配来划分的。水工建筑物中常用的应该是二级配和三级配混凝土,二级配一般是一些薄壁钢筋混凝土结构,还有 就是泵送混凝土一般要求二级配。三级配一般用于大体积混凝土。 等级是结构强度需要,级配是施工工艺、经济性、温控需要;可以采用多级配就一般不用二级配,这是强调经济性;泵送混凝土和非大体积混凝土只能采用一、二级配,这是工艺要求;混凝土重力坝、拱 坝采用四级配,这是温控和经济性要求。

细骨料试题及答案

细骨料培训试题 姓名:职务:成绩: 一. 填空题(每题3分,共30分) 1 .砂按细度模数分为粗、中、细三种规格,细砂、中砂、粗砂。 2.砂中的有害物质主要包括、、。 3.轻物质是指砂中相对密度小于的物质。 4.建筑用砂按技术要求分为三类:I类宜用于强度等级大于的混凝土; II类宜用于强度等级及抗冻、抗渗或其他要求的混凝土; III类宜用于强度等级为的混凝土和建筑砂浆。 5.检测细骨料的云母含量时,根据砂的粗细程度不同应称取试样克。计算的结果应精确至。 6.配制混凝土时宜优先选用中级细骨料。当采用粗级细骨料时,应提高砂率,并保持足够 的 ________________ 用量,以满足混凝土的和易性;当采用细级细骨料时,宜适当降低, 泵送混凝土、抗渗混凝土宜选用中细骨料。 7.我国混凝土质量不如欧美等发达国家的重要原因之一,在于对的不够重视和骨料的质量较差。 8.采用钻芯法对单个构件混凝土进行强度检测时,钻取的芯样直径一般不宜小于构件骨料最大粒径的倍,在任何情况下不得小于骨料粒径倍。根据构件的环境状态,可分为自然干燥状态和潮湿状态,按自然干燥状态进行试验时,芯样试件在受压前应在市内自然干燥天;按潮湿状态进行试验时,芯样试件应在的清水中浸泡小时,从水中取出后应立即进行抗压试验。 9.混凝土原材料应严格按照施工配合比要求进行准确称量,称量最大允许偏差应符合下列规定(按重量计):胶凝材料(水泥、掺合料等);外加剂;骨料;拌合用水。 10.铁路混凝土标准规定人工砂或混合砂配制时,压碎指标值应小于。 二. 单择题(每题2分,共20分) 1.在建筑用砂标准中规定了试验室的温度应保持在()。 A.10℃~25℃ B.15℃~30℃ C.18℃~22℃ D.15℃~25℃ 2.细骨料应采用砂浆棒检验其碱活性,砂浆棒的膨胀率应小于()%,否则应按补充标准要求采取技术措施。

粗骨料对混凝土性能的影响

粗骨料对混凝土性能的影响 郭福安201306225 摘要:混凝土是目前最大宗的建筑材料,而粗骨料作为混凝土的重要组成材料之一, 其性能将对混凝土性能产生不可忽略的影响。该文通过对国内外相关研究成果的整理、分析, 概括总结粗骨料对混凝土性能影响的研究现状,并提出了存在的问题, 为进一步改善混凝土性能提供参考和依据并为HPC配合比的优化设计奠定基础。 关键词: 粗骨料; 混凝土;化学成分;形貌;级配; 性能影响 引言 混凝土是目前最大宗的建筑材料[1],它是一种多相复合材料,其强度取决于水泥石、粗骨料以及粗骨料与水泥石之间的界面强度。粗骨料是混凝土的骨架,据统计,粗骨料可占混凝土体积的50%-70%它会影响新拌混凝土的流变性以及硬化混凝土的力学性能和耐久性:2:0近年来,由于天然砂资源短缺,人们加强了对细骨料的研究,使机制砂的生产与使用得到迅速发展[3],但是对于粗骨料仍然没有给予足够的重视0现在随着混凝土工程的超高层化和大型化,高强混凝土的使用越来越广泛,而在高强混凝土中,粗骨料相对来说才是薄弱环节[4-6],粗骨料本身的特征,如种类、颗粒形状及大小、表面特征和级配,无论是对新拌混凝土还是硬化后混凝土的性能都有着重要的影响0 因此,有必要全面深入地探讨粗骨料的物理化学特性对混凝土性能的影响0 1 粗骨料在混凝土中的作用 粗骨料是混凝土的重要组成部分,原来人们认为粗骨料是一种惰性材料,通过水泥浆的粘结作用与水泥砂浆构成混凝土0 实际上粗骨料并不是没有活性的,它的物理化学性质都会对混凝土的性能产生影响:门美国著名混凝土专家Metha曾指出:“将粗骨料作为一种惰性填充材料应画上一个问号”0 我们可以将国内外学者对粗骨料在混凝土中所起的作用的研究成果归纳为以下几点0 1.1 粗骨料的刚性骨架作用 在普通混凝土配合比设计中,一般认为粗骨料抗压强度应为混凝土设计强度的 2 倍左右, 不得低于设计强度的 1.5 倍[8],粗骨料的强度和弹性模量通常要比水泥石高,其耐久性和体积稳定性也是混凝土各组分中最好的,而且粗骨料体积超过混凝土体积的一半,因此粗骨料在混凝土中起着刚性骨架的作用0 在混凝土承受压荷载时,其内部由粗骨料传递应力,当混凝土在外荷载作用下发生破坏时,裂缝很难贯穿粗骨料而是绕过粗骨料在骨料周围出现,这样在一定的条件下,混凝土破坏时可能会吸收更高的能量,从而提高混凝土的强度0 粗骨料的这种作用不仅可以提高混凝土的强度,而且还可提高混凝土的弹模,减小荷载作用下的变形,改善混凝土的变形性,使得混凝土比水泥砂浆的体积稳定性和耐久性更好[9]。

相关主题
文本预览
相关文档 最新文档