当前位置:文档之家› 多路数据采集显示控制模块

多路数据采集显示控制模块

多路数据采集显示控制模块
多路数据采集显示控制模块

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

多路数据采集

目录 一、任务与要求 (2) 二、总体设计 (2) 1、电路原理框图 (2) 2、整体工作原理 (3) 三、各部分电路原理图 (4) 1、模拟开关部分 (4) 2、D/A转换部分 (4) 3、三态门驱动部分 (5) 3、RAM部分 (5) 4、十六位数码显示 (6) 5、A/D转换部分 (6) 6、逻辑控制与时钟电路 (7) 四、仿真结果 (7) 1、进行一路数据的采集 (7) 2、进行两路信号的采集 (8) 五:转换精度的分析 (9) 六、该电路实现的功能 (10)

多路数据采集系统的设计报告 一、任务与要求 数字电路所能处理的信号为数字信号,而生产实践中的许多信号属于模拟信号,因而,模/数变换和数/模变换就成为电子技术应用中的基本环节。本实验用数/模、模/数转换器为主设计制作一个数据采集系统。 (1) 用ADC0809或其它ADC 芯片实现对两路以上的模拟信号的采集,模拟信号 以常用物理量温度为对象,可以经传感器、输入变换电路得到与现场温度成线性关系的0~5V 电压,也可以直接用0~5V 的电压模拟现场温度。采集的数据一方面送入存储器保存(如RAM6264),同时用数码管跟踪显示。 (2) 从存储器中读出数据,经D/A 芯片0832或其它DAC 芯片作D/A 变换,观察 所得模拟量与输入量的对应情况 (3) 分析转换误差,研究提高转换精度的措施。 二、总体设计 1、电路原理框图 数据采集系统框图如图8-6-1。

图1数据采集系统框图 说明: (1)、在multisim中使用两个函数发生器产生一个Vpp为5v的正弦波和Vpp 为5V的三角波作为传感信号。 (2)、数字量显示使用的是十六进制。 (3)、在此电路中用模拟开关控制采集哪路信号。 2、整体工作原理 图1数据采集系统电路图 当电路上电开始工作时,J2处于低电位,RS触发器处于置一状态,将开关J2开到高电位时,此时RS为保持状态,控制三态门工作,并使RAM置于写状态,控制A/D不工作。D/A转换器每进行完一次转换都会使EOC’输出一高电平,当下一次转换开始时EOC’又开始变为高电平,利用EOC’给计数器提供冲击脉冲使其计数,并计数器的计数功能来控制RAM的内存单位自动加一,从而使000H--1FFH

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

多路数据采集与控制系统

1 引言 数据采集是指将温度、压力、流量、位移等模拟量采集、转换成数字量后,再由计算机进行存储、处理、显示的过程。在生产过程中,可对生产现场的工艺参数进行采集、监视和记录,为提高产品的质量、降低成本提供信息和手段。本文设计了一套多路数据采集系统,实施采集多现场的温度参数,系统通过RS485总线将采集到的现场温度数据传输至上位机,上位机对采集到的数据进行显示、存储,从而达到现场监测与控制的目的。 2 设计目的和要求 设计一由微机控制的A/D数据采集和控制系统,该卡具有对八个通道上 0-5V的模拟电压进行采集的能力,且可以用程序选择装换通道,选择ADC0809 作为A/D转换芯片。 本设计包括确定控制任务、系统总体设计、硬件系统设计、软件程序的设计等,使学生进一步学习理解计算机控制系统的构成原理、接口电路与应用程序,巩固与综合专业基础知识和相关专业课程知识,提高学生运用理论知识解决实际问题的实践技能。 3 系统设计方案 1.八路模拟信号的产生 被测电压要求为0~5V的直流电压,可通过八个滑动变阻器调节产生。 2.模拟信号的采集 八路数据采集系统采用共享数据采集通道的结构形式,数据采集方式确定为程序控制数据采集。 3.A/D转换器的选取 八位逐次比较式A/D转换器 4.控制与显示方法的选择 用单片机作为控制系统的核心,处理来自ADC0809的数据。经处理后通过串口传送,由于系统功能简单,完成采样通道的选择,单片机通过接口芯片与LED

数码显示器相连,驱动显示器相应同采集到的数据。 图3.1 总体设计图 4 硬件系统的设计 4.1芯片ADC0809的引脚功能和主要性能 ADC0809八位逐次逼近式A/D 转换器是一种单片CMOS 器件,包括8位模拟转换器、8通道转换开关和与微处理器兼容的控制逻辑。8路转换开关能直接联通8个单端模拟信号中的任意一个。 ADC0809的引脚图及51单片机引脚图: 图4.1 ADC0809管脚图及51单片机芯片管脚图 模拟输入通道1 ADC0808 单片机 LED 模拟输入通道2 模拟输入通道8

信息采集系统解决方案

信息采集系统解决方案

信息采集系统解决方案 1系统概述 信息采集是信息服务的基础,为信息处理和发布工作提供数据来源支持。信息数据来源的丰富性、准确性、实时性、覆盖度等指标是信息服务的关键一环,对信息服务质量的影响至关重要。针对交通流信息数据,包括流量、速度、密度等,目前主要是基于微波、视频、地磁等固定车辆检测器以及浮动车等移动式车辆检测器进行采集,各种采集方式都存在响应的利弊。针对车驾管以及出入境数据,包括车辆信息、驾驶人信息、出入境办证进度信息等,主要是通过和公安相关的数据库进行对接,此类信息将在信息分析处理系统进行详细介绍。 针对目前交通信息来源的多样性以及今后服务质量水平发展对信息来源种类扩展要求,需要建设一套统一的,具备良好兼容性和前瞻性的交通信息统一接入接口。一方面,本期项目的各种交通信息来源可以使用该接口进行数据接入,另一方面,当新的或第三方的交通信息来源需要加入到本系统中来时,可以使用该接口进行数据接入,不需要再次投入资源进行额外开发。 统一接入接口建成后,根据各种数据来源系统的网络环境、系统技术特性和交通流信息数据特点,开发相应的交通信息数据对接程序,逐一完成微波采集系统、浮动车分析系统、人工采集等来源的交通信息数据采集接入。 2系统架构及功能介绍 2.1统一接入接口 统一接入接口的建设的关键任务包括接口技术规范制定、路网路段编码规则约定及交通信息数据结构约定等多个方面。

2.1.1接口技术规范 一方面由于本系统接入的交通信息数据来源多样,开发语言和系统运行的环境均存在差异,不具备统一的技术特性;另一方面,考虑到以后可能需要接入更多新的或第三方的信息系统作为数据来源,应当选择较成熟和通用的接口实现技术作为本项目的交通流信息采集统一接入接口实现技术。 根据目前信息系统建设的行业现状,选择Web Service和TCP/UDP Socket 作为数据传输接口的实现技术是较优的选择。Web Service和TCP/UDP Socket 具有实时性强、通用性强、应用广泛、技术支持资源丰富等优势,可以实现跨硬件平台、跨操作系统、跨开发语言的数据传输和信息交换。 项目实施时需要根据现有的信息采集系统的技术特点来具体分析,以选定采用Web Service或TCP/UDP Socket作为接口实现技术,必要时可以两种方式并举,提供高兼容度的接口形式。 为了保护接入接口及其数据传输的安全性,避免恶意攻击访问,避免恶意数据窃取,可以使用身份认证、加密传输等技术来加以保证。 统一数据采集接口的工作流程可以如下进行:

ADC0809和51单片机的多路数据采集系统设计方案

ADC0809和51单片机的多路数据采集系统设计方案 “数据采集”是指将温度、压力、流量、位移等模拟物理量采集并转换成数字量后,再由计算机进行存储、处理、显示和打印的过程,相应的系统称为数据采集系统。 本文的主要任务是对0~5V的直流电压进行测量并送到远端的PC机上进行显示。由于采集的是直流信号,对于缓慢变化的信号不必加采样保持电路,因此选用市面上比较常见的逐次逼近型ADC0809芯片,该芯片转换速度快,价格低廉,可以直接将直流电压转换为计算机可以处理的数字量。同时选用低功耗的LCD显示器件来满足其在终端显示采集结果的需求。终端键盘控制采用尽可能少的键来实现控制功能,为了防止键盘不用时的误操作,设计时还设置了锁键功能,在键盘的输入消抖方面,则采用软件消抖方法来降低硬件开销,提高系统的抗干扰能力。软件设计方面则采用功能模块化的设计思想;键盘模数转换等采用中断方式来实现,从而大大提高了单片机的效率以及实时处理能力。1 数据采集系统的硬件结构数据采集系统的硬件结构一般由信号调理电路、多路切换电路、采样保持电路、A/D转换器以及单片机等组成。本文主要完成功能的系统硬件框图。 图1 数据采集系统硬件设计框图2 ADC0809模数转换器简介2.1 ADC0809的结构功能本数据采集系统采用计算机作为处理器。电子计算机所处理和传输的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号后,需要模/数转换将其变成数字信号才可以输入到数字系统中进行处理和控制,因此,把模拟量转换成数字量输出的接口电路,即A/D转换器就是现实信号转换的桥梁。目前,世界上有多种类型的A/D转换器,如并行比较型、逐次逼近型、积分型等。本文采用逐次逼近型A/D转换器,该类A/D转换器转换精度高,速度快,价格适中,是目前种类最多,应用最广的A/D转换器。逐次逼近型A/D转换器一般由比较器、D/A转换器、寄存器、时钟发生器以及控制逻辑电路组成。ADC0809就是一种CMOS单片逐次逼近式A/D转换器,其内部结构。该芯片由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近寄存器、三态输出锁存器等电路组成。因此,ADC0809可处理8路模拟量输入,且有三态输出能力。该器件既可与各种微处理器相连,也可单独工作。其输入输出与TTL兼容。 ADC0809是8路8位A/D转换器(即分辨率8位),具有转换起停控制端,转换时间为100μs 采用单+5V电源供电,模拟输入电压范围为0~+5V,且不需零点和满刻度校准,工作温度范围为-40~+85℃功耗可抵达约15mW。ADC0809芯片有28条引脚,采用双列直插式封装,图3所示是其引脚排列图。各引脚的功能如下: 图3 ADC0809的引脚排列图IN0~IN7:8路模拟量输入端;D0~D7:8位数字量输出端;ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路;ALE:地址锁存允许信号,输入,高电平有效;START:A/D转换启动信号,输入,高电平有效;EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平);OE:数据输出允许信号,输入,高电平有效。当A/D转换结束时,此端输入一个高电平才能打开输出三态门,输出为数字量;CLK:时钟脉冲输入端。要求时钟频率不高640kHz;REF(+)、REF(-):基准电压;Vcc:电源,单一+5V;GND:地。ADC0809工作时,首先输入3位地址,并使ALE 为1,以将地址存入地址锁存器中。此地址经译码可选通8路模拟输入之一到比较器。START 上升沿将逐次逼近寄存器复位;下降沿则启动A/D转换,之后,EOC输出信号变低,以指示

数据采集模块和PLC区别

数据采集模块与PLC的区别 数据采集模块 数据采集是计算机与外部物理世界连接的桥梁。数据采集模块由传感器、控制器等其它单元组成。数据采集卡,数据采集模块,数据采集仪表等,都是数据采集工具。 简介 数据采集模块基于远程数据采集模块平台的通信模块,它将通信芯片、存储芯片等集成在一块电路板上,使其具有发送通过远程数据采集模块平台收发短消息、语音通话、数据传输等功能。远程数据采集模块可以实现普通远程数据采集模块手机的主要通信功能,也可以说是一个“精简版”的手机。电脑、单片机、ARM可以通过RS232串口与远程数据采集模块相连,通过AT指令控制模块实现各种语音和数据通信功能。 远程数据采集模块技术相对于GSM是一种更先进的移动通信技术,除远程数据采集模块辐射小外;在数据传输方面,远程数据采集模块2000 1X 也与GPRS 在技术上有明显不同,在传输速率上1X 几乎是GPRS速度的3-4倍。 应用 因此,主要用于数据传输的工业模块应用领域,远程数据采集模块模块比

GPRS模块在速率上有明显优势。但是远程数据采集模块在工业领域的运用要远远落后于GPRS模块的应用。主要原因一方面远程数据采集模块网络的覆盖和建设不如GSM网络完善,另一方也是因为远程数据采集模块模块的成本早期远远高于GSM模块至少2-4倍,使得生产成本高很多。 国内初期,远程数据采集模块主要是韩国和欧洲公司提供,例如AnyData 和Wavecom公司;近两年,国内的华为和中兴业推出了自己的高质量远程数据采集模块模块,才使得整体价格下浮。目前,常见的型号包括华为的EM200、Anydata 的DTGS-800和Wavecom的Q2358/2438等模块。这些模块都具有远程数据采集模块 1X的数据传输功能,也都内置了TCP/IP通信协议栈。由于中国电信运营远程数据采集模块平台后,带动了业务迅猛增长,使得整个远程数据采集模块市场也迅速发展起来。 目前,远程数据采集模块主要应用于移动数据传输领域,包括车辆导航监控、智能抄表、远程数据采集等领域,尤其是在带宽要求比较高的多媒体传输领域,远程数据采集模块具有明显的带宽优势。 PLC(可编程逻辑控制器) 可编程逻辑控制器是种专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。

基于ADC0809和51单片机的多路数据采集系统设计

基于ADC0809和51单片机的多路数据采集系统设计 “数据采集”是指将温度、压力、流量、位移等模拟物理量采集并转换成数字量后,再由计算机进行存储、处理、显示和打印的过程,相应的系统称为数据采集系统。本文的主要任务是对0~5V的直流电压进行测量并送到远端的PC机上进行显示。由于采集的是直流信号,对于缓慢变化的信号不必加采样保持电路,因此选用市面上比较常见的逐次逼近型ADC0809芯片,该芯片转换速度快,价格低廉,可以直接将直流电压转换为计算机可以处理的数字量。同时选用低功耗的LCD显示器件来满足其在终端显示采集结果的需求。终端键盘控制采用尽可能少的键来实现控制功能,为了防止键盘不用时的误操作,设计时还设置了锁键功能,在键盘的输入消抖方面,则采用软件消抖方法来降低硬件开销,提高系统的抗干扰能力。软件设计方面则采用功能模块化的设计思想;键盘模数转换等采用中断方式来实现,从而大大提高了单片机的效率以及实时处理能力。1 数据采集系统的硬件结构数据采集系统的硬件结构一般由信号调理电路、多路切换电路、采样保持电路、A/D转换器以及单片机等组成。本文主要完成功能的系统硬件框图。 2 ADC0809模数转换器简介2.1 ADC0809的结构功能本数据采集系统采用计算机作为处理器。电子计算机所处理和传输的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号后,需要模/数转换将其变成数字信号才可以输入到数字系统中进行处理和控制,因此,把模拟量转换成数字量输出的接口电路,即A/D转换器就是现实信号转换的桥梁。目前,世界上有多种类型的A/D转换器,如并行比较型、逐次逼近型、积分型等。本文采用逐次逼近型A/D转换器,该类A/D转换器转换精度高,速度快,价格适中,是目前种类最多,应用最广的A/D转换器。逐次逼近型A/D转换器一般由比较器、D/A转换器、寄存器、时钟发生器以及控制逻辑电路组成。 ADC0809就是一种CMOS单片逐次逼近式A/D转换器,其内部结构。该芯片由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近寄存器、三态输出锁存器等电路组成。因此,ADC0809可处理8路模拟量输入,且有三态输出能力。该器件既可与各种微处理器相连,也可单独工作。其输入输出与TTL兼容。 ADC0809是8路8位A/D转换器(即分辨率8位),具有转换起停控制端,转换时间为100μs采用单+5V电源供电,模拟输入电压范围为0~+5V,且不需零点和满刻度校准,工作温度范围为-40~+85℃功耗可抵达约15mW。 ADC0809芯片有28条引脚,采用双列直插式封装,图3所示是其引脚排列图。各引脚的功能如下: IN0~IN7:8路模拟量输入端; D0~D7:8位数字量输出端; ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路; ALE:地址锁存允许信号,输入,高电平有效; START:A/D转换启动信号,输入,高电平有效; EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平); OE:数据输出允许信号,输入,高电平有效。当A/D转换结束时,此端输入一个高电平才能打开输出三态门,输出为数字量; CLK:时钟脉冲输入端。要求时钟频率不高640kHz; REF(+)、REF(-):基准电压; Vcc:电源,单一+5V; GND:地。 ADC0809工作时,首先输入3位地址,并使ALE为1,以将地址存入地址锁存器中。此地址经译码可选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位;下降沿则启动A/D转换,之后,EOC 输出信号变低,以指示转换正在进行,直到A/D转换完成,EOC变为高电平,指示A/D转换结束,并将结果数据存入锁存器,这个信号也可用作中断申请。当OE输入高电平时,ADC

实时数据采集系统方案

实时数据采集系统项目解决方案

目录 1、背景 (2) 1. 1、引言 (2) 1.2、项目目标 (2) 2、应用系统体系结构 (3) 2.1、实时数据采集系统的原理构架 (3) 3、实时数据采集系统的主要功能….. .............................................................. .3 4、实时数据采集系统主要技术特征 (4) 4.1、数据传输方面 (5) 4.2、数据存储方面 (5) 4.3、历史数据 (5) 4.4、图形仿真技术 (5) 5、实时数据采集系统性能特征 (5) 5.1、数据具有实时性 (6) 5.2、数据具有稳定性 (6) 5.3、数据具有准确性 (6) 5.4、数据具有开放性 (6) 6、DCS及实时数据采集机连接说明 (6) 7、系统运行环境说明 (7) 7.1系统网络环境说明 (8) 7.2硬件环境说明 (8)

1、背景 1. 1、引言 随着国家大力推进走新型工业化道路,以信息化带动工业化,以工业化促进信息化。电力企业面临着日趋激烈的竞争。降低成本,提高生产效率,快速响应市场,是电力企业不断追求的目标。要实现上述目标,必须把企业经营生产中的各个环节,包括市场分析、经营决策、计划调度、过程监控、销售服务、资源管理等全部生产经营活动综合为一个有机的整体,实现综合信息集成,使企业在经营过程中保持柔性,因此,建立全厂统一的生产实时数据平台,就成了流程企业今后生产信息化的关键。 1.2、项目目标 “实时数据采集系统”是为生产过程进行实时综合优化服务信息系统提供数据基础。 企业信息化建设的关键问题是集成,即在获取生产流程所需全部信息的基础上,将分散的控制系统、生产调度系统和管理决策系统有机地 集成起来,不同业务和系统间能够实时的交换和共享数据。 ?建立统一的企业数据模型。 ?解决分期建设的不同应用系统、不同电厂之间彼此隔离、互不匹配、 互不共享的“信息孤岛”问题。 ?保证数据来源一致性,提高数据经过层层抽取之后的可信度。 ?汇总、分析和展示企业历史的业务数据。 ?企业管理层能够直接根据各个电厂的真实数据进行统计数据、分析 逐步钻取直到数据根源。 ?透明底层的数据,监督统计分析数据的准确性。

通道隔离型AD数据采集模块

通道隔离型AD数据采集模块 数据采集输入通道隔离后不会产生地线环流和相互干扰 产品特点典型应用 ● 各输入信号通道之间全隔离,隔离电压3000VDC ● 工业设备运行测量、监视和远程控制 ● 数据采集隔离转换成RS485/232支持Modbus RTU通讯协议 ● 智能楼宇控制、安防工程等自动化系统监控 ● 测量精度优于0.05%,可以程控校准模块精度 ● RS232/485总线工业自动化系统远程监测 ● 信号输入 / 输出之间隔离耐压3000VDC ● 传感器信号隔离转换及长线传输 ● 低成本、小体积模块化设计方便桌面或导轨安装使用 ● 模拟信号A/D转换、调整及远程变送 ● 宽电源供电范围:8 — 50VDC ● 工业现场多路运行数据的获取与记录 ● 可靠性高,编程方便,易于安装和布线 ● 医疗、工控产品开发 ● 用户可编程设置目标模块地址、波特率等 ● 模拟量4-20mA/0-10V采集隔离及变送 ● 可直接根据现场数据采集显示结果进行监控 第一章 概述 Sunyuan ISO AD系列全隔离型模拟量转数字量产品(亚当模块)可实现多个传感器和主机之间的信号安全 隔离和高精度数据采集、隔离转换、监控与传输。产品广泛应用于RS-232/485总线工业自动化控制系统,4-20mA / 0-10V信号测量、监视和控制,小信号的测量以及工业现场信号隔离及长线传输等远程监控场合。通过软件的配置,可接入多种传感器类型,包括电流输出型、电压输出型等等。 ISO AD系列产品按工业标准设计制造,各输入通道之间信号完全独立隔离(不共地)。每一路独立通道中信号输入 / 输出之间也是隔离的,隔离电压3KVDC,抗干扰能力强,可靠性高。工作温度范围- 45℃~+80℃。 产品内部包括模拟信号隔离放大器、电源隔离,信号隔离、线性化,A/D转换和RS-485串行通信等模块。每个串口最多可接256只ISO AD系列模块,通讯方式采用ASCII码字符通讯协议或MODBUS RTU通讯协议,其指令集兼容于ADAM模块,波特率可由用户设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于主机编程。 ISO AD系列AD产品是基于单片机的智能监测和控制系统,所有用户设定的校准值,地址,波特率,数据格式,校验和状态等配置信息都储存在非易失性存储器EEPROM里。 图1ISO AD 02A 两通道隔离型AD数据采集模块产品原理框图

实时数据采集系统方案

实时数据采集系统方案
实时数据采集系统《项目解决方案》 实时数据采集系统 项目解决方案 0 实时数据采集系统《项目解决方案》 目录 1、背 景 ..................................................................... .................................... 2 1. 1、引 言 ..................................................................... ..................... 2 1(2、项目目 标 ..................................................................... ............. 2 2、应用系统体系结 构 ..................................................................... .............. 3 2.1、实时数据采集系统的原理构架…………………………………..3 、实时 数据采集系统的主要功 能….. ........................................................... .3 3 4、实时数据采集系统主要技术特 征 .............................................................. 4

4.1、数据传输方面……………………………………………………..5 4.2、数据存储方面……………………………………………………..5 4.3、历史数据…………………………………………………………...5 4.4、图形仿真技术……………………………………………………..5 5、实时 数据采集系统性能特 征 ...................................................................... 5 5.1、数据具有实时性…………………………………………………..6 5.2、数据具有稳定性…………………………………………………..6 5.3、 数据具有准确性…………………………………………………6 5.4、数据具有开放性…………………………………………………..6 6、DCS 及实时数据采集机连接说 明 ............................................................. 6 7、系 统运行环境说 明 ..................................................................... ................ 7 7.1 系统网络环境说明………………….……………………………....8 7.2 硬件环境说明……………………………………………………….8 1 实时数据采集系统《项目解决方案》 1、背景 1. 1、引言 随着国家大力推进走新型工业化道路,以信息化带动工业化,以工业化促进信 息化。电力企业面临着日趋激烈的竞争。降低成本,提高生产效率,快速响应市

最新多路数据采集系统方案

多路数据采集系统方 案

`数据采集系统1、系统方案选择和论证 1.1题目要求 1.1.1基本要求 1.1.2发挥部分 1.2系统基本方案 1.2.1各模块电路的方案选择及论证 1.2.2系统各模块的最终方案 2、系统硬件设计与实现 2.1系统硬件模块关系 2.2 主要单元电路的设计 2.2.1正弦信号发生器设计 2.2.2F/V变换部分设计 2.2.3信号采集部分处理 2.2.4通信模块部分设计 2.2.5数据地址显示电路设计 3、系统软件设计 3.1主单片机程序 3.1.1主机发送子程序 3.1.2主机数据处理子程序 3.1.3主机显示子程序 3.1.4主机主程序

3.2从单片机程序 3.2.1数据采集子程序 3.2.2从机中断接受子程序 3.2.3从机子程序 4、系统测试 附录1:产品使用说明 附录2:元件清单 参考文献 1. 系统方案选择和论证 1.1.1基本要求 设计一个八路数据采集系统,系统原理框图如下:

主控器能对50米以外的各路数据,通过串行传输线(实验中用1米线代替)进行采集的显示和显示。具体设计任务是: (1)现场模拟信号产生器。 (2)(2)八路数据采集器。 (3)(3)主控器。 二、设计要求 1.基本要求 (1)现场模拟信号产生器:自制一正弦波信号发生器,利用可变电阻改变振荡频率,使频率在200Hz~2kHz范围变化,再经频率电压变换后输出相应1~5V直流电压(200Hz对应1V,2kHz对应5V)。 (2)八路数据采集器:数据采集器第1路输入自制1~5V直流电压,第2~7路分别输入来自直流源的5,4,3,2,1,0V直流电压(各路输入可由分压器产生,不要求精度),第8路备用。将各路模拟信号分别转换成8位二进制数字信号,再经并/串变换电路,用串行码送入传输线路。 (3)主控器:主控器通过串行传输线路对各路数据进行采集和显示。采集方式包括循环采集(即1路、2路……8路、……1路)和选择采集(任选一路)二种方式。显示部分能同时显示地址和相应的数据。 2.发挥部分 (1)利用电路补偿或其它方法提高可变电阻值变化与输出直流电压变化的线性关系; (2)尽可能减少传输线数目; (3)其它功能的改进(例如:增加传输距离,改善显示功能)。 1.2系统基本方案 根据题目要求系统模块分可以划分为:现场信号发生模块,V/F 变换模块,信号采集处理模块,通信控制模块,显示模块。系统的框图如图1.2.1 所示。为实现各模块的功能,分别做了几种不同的设计方案并进行了论证。 下图为系统基本模块图:

多路数据采集器设计报告

多路数据采集器设计 1.设计要求 所设计的数据采集器,共有16路信号输入,每路信号都是直流0~20mV信号,每秒钟采集一遍,将其数据传给上位PC计算机。本采集器地址为50H。要求多路模拟开关用4067,A/D转换用ADC0809,运算放大器用OP07,单片机用89C51,通信用RS232接口,通信芯片用MAX232。 与PC机的RS232串口进行通信。 设计采集器的电原理图,用C51语言编制采集器的工作程序。 2.方案设计 按要求,设计数据采集器方案如下所示: 数据采集器采用AT89C51单片机作为微控制器,模拟开关4067的地址A、B、C、D分别与P1.0~P1.3连接,通过控制P1口输出来选择输入信号,将直流信号依次输入ADC0809的模拟信号输入端,ADC0809共有8路输入通道,在使用模拟开关时,仅将模拟开关的输出端连接到ADC0809的1路输入通道即可,本方案中使用0通道。ADC0809的转换结果通过P0口传给单片机,单片机将采集结果通过串行通信RS232接口上传给上位PC机,实现数据的采集。 数据采集器方案示意图

3.电路原理图 a)AT89C51单片机电路 本实验中选取8位单片机AT89C51作为微控制器,需要片外11.0592MHz的振荡器,4K字节EPROM,128字节RAM,与51单片机有很好的兼容性。在本此实验中程序及数据不多,故无需另加外部程序存储器。单片机部分的电路如下所示: AT89C51单片机电路 b)数据输入部分

数据输入部分由模拟开关4067实现多路信号的切换。CD4067是单16路(单刀16位)模拟开关,各开关由外部输入二进制的地址码A、B、C、D来切换。其中脚10、11、14和13是地址码A(LSB)、B、C、D(MSB)的输入端;脚2~9和16~23是开关的输入/输出端(开关位);脚1是开关的输出/输入公共端(开关刀);脚15为控制端,低电平有效(选通),高电平禁止(开关开路)。 输入脚A、B、C、D分别与单片机P1.0~P1.3相连,改变P1输出即可切换输入通道,控制脚与P2.4相连。输出脚1后接电压放大电路。 c)电压调理放大电路 电压调理电路 由于输入信号均为0~20mV的微弱电压信号,而模数转换器ADC0809的输入量要求为0~5V 直流电压,所以必须后接电压放大电路。放大器选用OP07,将0~20mV电压放大到0~5V,其放大倍数为250倍,一般情况下,放大器的放大倍数最好小于200倍,安全起见,选用两个OP07进行两级放大,前级放大25倍,后级放大10倍,放大电路如上图所示。 d)模数转换部分 ADC0809数模转换电路 模数转换元件选用ADC0809,其主要特性有: 8路8位A/D转换器,即分辨率8位;

光伏电站数据采集系统与远程通讯系统

光伏电站数据采集系统与远程通讯系统 一、项目简介 1、项目名称:巨力新能源10MW太阳能光伏屋顶发电项目 2、建设单位:中国巨力集团有限公司 3、建设规模:10MWp屋顶光伏发电项目 4、项目地址:中国巨力集团 5、电站范围:中国巨力集团厂区 6、单位屋顶:8处 二、监控系统说明 如图2.1所示,光伏综合监控系统具备就地和远程监控功能,监控软件由本地监控与远程监控相结合。本地监控由中央控制器(包括数据采集、控制算法、网关等功能、通讯链路、本地显示组成,主要功能是负责本地发电设备数据采集、控制、数据存储、能量调度、通讯等功能。远程监控由广域网通讯链路、路由器、数据库服务器、网络服务器、上位机展示平台组成,主要功能是负责将各个电站数据进行收集,电站状况调查,数据存储、处理、分析,发电经济性分析等等。 传统光伏电站监控系统主要由逆变器厂商随设备提供,从本厂逆变器出发,对电站运行的一些参数进行监测,难以或不能直接控制逆变器的运行状态,无法获取电站中的其它设备的信息及控制这些设备,也无法满足电网调度系统对电站的实时监控要求。而且该项目将采用不同厂商的设备,电源厂商自有的监控系统一般对其他厂家的设备兼容性差,容易造成一个个“孤岛”系统,无法形成统一的监控体系。

大型光伏电站必须配备自动运行、功能完善的监控系统。这种监控系统不同于传统发电厂监控系统或变电站综合自动化系统,相对来说,大型光伏电站内设备种类不及传统电厂丰富,生产控制流程也不太复杂。但其典型特点是装机容量 大(10MW以上、占地面积广(150亩以上,且地理位置偏僻、维护人员很少,这就要求生产运行、设备监控、环境监测、安保技防等各环节集中统一起来,且能够适应其位置分散、配置灵活的特点。基于现场总线设计的大型光伏电站监控系统可以满足这些要求。 因此,需要搭建一个统一的本地集中监控中心,该监控中心位于巨力索具园区,能够对不同厂商、不同类别、不同型号的光伏发电电源设备及计量表计、直/交流柜及其它电力设备进行统一监控,实现对该项目所包含的光伏电站完整、统一的实时监测和控制。 网线交换机 VGA/网口 转换器 通讯网关 RS485 网线 逆变器 VGA

DO数据采集模块DAM-3014D(v6.14)

DAM-3014D说明书★端子分布图 ★主要指标 16路隔离集电极开路输出模块 ■ 数字量输出:16路集电极开路 ■ 最大负载:30V,100mA ■ 隔离电压:3750V ■ 直接驱动功率继电器 ■ 支持双看门狗 ■ LED指示输出状态 ■操作温度:-10℃~+70℃ ■存储温度:-20℃~+85℃ ■ 电源: 未调理 +10~+30VDC ■ 功耗: 0.7W @ 24VDC

★信号接线图 复位连接: 将INIT*端与GND端短接,在+Vs端和GND端间加+10~+30VDC电压,上电后,模块指示灯快速闪烁3次,待指示灯闪烁停止后,再断电,将INIT*端与GND端断开,此时模块已经完成复位。 复位成功后,模块恢复出厂默认值: 模块地址:1 波特率: 9600 集电极开路输出连接: ★结构框图

★代码配置表 ■波特率配置代码表 代码 00 01 02 03 04 05 06 07 波特率 1200 2400 4800 9600 192003840057600 115200★端子定义表 端子 名称 说明 1 OUT13 数字量输出13通道 2 OUT14 数字量输出14通道 3 OUT15 数字量输出15通道 4 EXTPWR 外部电源正端 5 OUTCOM 外部电源负端 6~8 未连接 9 INIT* 复位端,与(B)GND脚短接后上电使复位 10 (Y)DATA+ RS-485接口信号正 11 (G)DATA- RS-485接口信号负 12 (R)+Vs 直流正电源输入,+10~+30VDC 13 (B)GND 直流电源输入地 14 OUT0 数字量输出0通道 15 OUT1 数字量输出1通道 16 OUT2 数字量输出2通道 17 OUT3 数字量输出3通道 18 OUT4 数字量输出4通道 19 OUT5 数字量输出5通道 20 OUT6 数字量输出6通道 21 OUT7 数字量输出7通道 22 OUT8 数字量输出8通道 23 OUT9 数字量输出9通道 24 OUT10 数字量输出10通道 25 OUT11 数字量输出11通道 26 OUT12 数字量输出12通道

数据采集系统设计

目录 摘要 (1) 1 引言 (2) 1.1 数据采集系统的简介. (2) 1.2 课程设计内容和要求 (3) 1.3 设计工作任务及工作量的要求 (3) 2 内容提要 (3) 3 系统总体方案 (3) 3.1 系统设计思路 (3) 3.2 系统总体框图 (4) 4 硬件电路设计及描述 (4) 4.1 8253芯片及工作原理 (4) 4.1.1 基本组成及工作原理 (4) 4.1.2 8253与系统连接 (5) 4.2 ADC0809内部功能与引脚介绍 (5) 4.2.1 引脚排列及各引脚的功能 (6) 4.2.2 ADC0809工作方式 (7) 4.2.3 ADC0809与系统连接 (8) 4.3 单片机89C51的引脚与功能介绍 (8) 4.4 8255并行口芯片基本组成及工作原理 (10) 4.4.1 8255的内部结构 (11) 4.4.2 8255的工作方式 (12) 4.2.3 8255与系统连接 (12) 4.5 LED显示部分接线及工作原理 (13) 4.5.1 LED显示工作原理 (13) 4.5.2 LED显示部分接线 (14) 4.6 总体电路图 (14) 5 软件设计流程及描述 (15) 5.1 主程序设计思路 (15)

5.2 部分程序设计流程图 (16) 5.2.1 8253程序流程图 (16) 5.2.2 8255程序流程图 (17) 5.2.3 数据处理流程图 (17) 5.2.4 LED显示流程图 (17) 5.3 汇编语言程序清单 (18) 5.4 仿真结果 (21) 6 课程设计体会 (21) 参考文献 (23)

摘要 数据采集是从一个或多个信号获取对象信息的过程。随着微型计算机技术的飞速发展和普及,数据采集监测已成为日益重要的检测技术,广泛应用于工农业等需要同时监控温度、湿度和压力等场合。数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。 本课程设计采用89C51系列单片机,89C51系列单片机基于简化的嵌入式控制系统结构,具有体积小、重量轻,具有很强的灵活性。设计的系统由硬件和软件两部分构成,硬件部分主要完成数据采集,软件部分完成数据处理和显示。数据采集采用AD0809模数转换芯片,具有很高的稳定性,采样的周期由可编程定时/计数器8253控制。完成采样的数据后输入单片机内部进行处理,并送到LED显示。软件部分用Keil软件编程,操作简单,具有良好的人机交互界面。程序部分负责对整个系统控制和管理,采用了汇编语言进行了判别通道、数据采集处理、数据显示、数据通信等程序设计,具有较好的可读性。 随着计算机在工业控制领域的不断推广应用,将模拟信号转换成数字信号已经成为计算机控制系统中不可缺少的重要环节,因此数据采集系统有着重要的意义。

相关主题
文本预览
相关文档 最新文档