当前位置:文档之家› 列车制动讲义

列车制动讲义

列车制动讲义
列车制动讲义

高速列车制动技术综述_彭辉水

高速列车制动技术综述 (1、株洲南车时代电气股份有限公司技术中心,高级工程师,彭辉水,湖南株洲,412001) (2、株洲南车时代电气股份有限公司技术中心,高级工程师,倪大成,湖南株洲,412001) 摘要:本文首先阐述了制动系统与高速列车安全性的关系,然后综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况。同时介绍了高速列车制动力的控制模式,并就各种模式的优缺点进行对比,然后概述了高速列车的防滑再粘着控制技术并给出了其应用实例,最后论述了高速列车制动技术的发展趋势。 关键词:高速列车 制动 控制模式 防滑行再粘着控制 中图分类号:U260.35 文献标志码:A Braking Technology of the High-speed Trains Peng Hui-shui, Ni Da-cheng (Technology Center , Zhuzhou CSR Times Electric Co.,Ltd.,Zhuzhou,Hunan 412001,China) Abstract: This paper firstly presents the strong relationship between the braking system and the security of the high-speed trains, supplies the comparative analysis about the brake modes and the corresponding Braking performance, and reviews their applications in the high-speed trains. Then introduces the control mode of braking force in the high-speed trains and gives out the comparative analysis about their pros and cons. This paper reviews the technologies of Anti-skid re-adhesion control and supplies their application cases. Finally prospects the development trend of the braking technology of the high-speed trains. Keywords: High-speed Trains; Braking; Control Mode; Anti-skid Readhesion Control 高速铁路是新兴产业、战略性产业、带动性产业,是世界轨道交通发展的潮流。我国高速铁路异军突起,迅猛发展,打破了世界高速铁路技术的相对垄断格局,截止2011年1月底,我国高速铁路总里程达8358公里;规划到2012年底,总里程达到13000公里。高速铁路快速发展国人翘首以盼,但其安全性也备受瞩目!高速列车制动技术对于列车安全运行至关重要,在意外情况下,高速列车紧急制动距离越短,高速列车才能越安全,旅客安全系数越高,本文将对当前高速列车制动技术领域的关键技术及其进展进行综合论述。 作者简介:1、彭辉水,男,1979年生,2001年毕业于北方交通大学电气学院,高级工程师.现主要从事机车粘着控制理论研究及应用与高速列车牵引制动系统研究。2、倪大成,男,197年生,2001年毕业于湖南大学电气学院,高级工程师.现主要从事机车整流逆变控制理论研究及应用与高速列车牵引制动系统研究。

城市轨道交通列车制动系统的特点及发展趋势初探

城市轨道交通列车制动系统的特点及发展趋势初探 发表时间:2018-06-07T11:18:32.193Z 来源:《基层建设》2018年第11期作者:刘艳虎 [导读] 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 苏州市轨道交通集团有限公司运营分公司江苏苏州 215000 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 关键词:城市轨道交通;车辆制动系统;空气压塑;制动盘;控制系统 城市轨道交通站间距短,列车制动频繁,其制动系统的可靠性决定了车辆运行安全,是现阶段城市轨道交通研究的重要内容这一。在科技快速发展的背景下,轨道交通车辆制动系统技术也得到很大程度的改进,为轨道交通发展奠定了坚实基础。 1空气压缩 1.1技术背景 如今,铁路对用气质量提出越来越高的要求,压缩气体必须达到较高的无水和无油条件,这使无油空压机进入快速发展时期。尽管现阶段铁路领域的无油空压机实际应用仍有限,但依靠其无油这一显著特征,将很快在市场占据主导地位。 若按压缩方式,可对无油空压机做以下分类:回转形式的无油空压机以及循环往复形式的无油空压机。后者与活塞式空压机相对应,前者则与最常用的螺杆形式的空压机相对应。从活塞式空压机的角度讲,主要有两种不同的润滑形式,即干式润滑及水润滑。 活塞与螺杆空压机常用于铁路领域,螺杆适合低压和中小流量,而活塞适合高压与多种压力范围。采用水润滑形式的无油螺杆,不仅结构复杂,而且对环境有严格要求,在铁路这种复杂环境下并不适用;采用干式的无油螺杆,其排量超过3m3/min,但仍未能达到出口压力,同样在铁路中不适用。从目前的铁路行业发展看,其对空压机有下列几项特殊要求:经久耐用;耐冲击、污染和高温;振动与噪声较低;维护难度与成本较低。 1.2技术原理 活塞式空压机进入随曲轴联动旋转状态后,在连杆提供的传动作用下促使活塞进行往复运动,此时活塞的顶部表面、气缸的内部表面和气缸盖三者形成的容积必定产生具有周期性特点的变化。活塞由气缸盖做运动后,容积不断增加,此时气体在进气管中推开进气阀门到达气缸,到容积不再增加为止,阀门关闭;活塞进入反向运动状态后,上述容积开始减少,但压力持续增大,超出排气压力以后,阀门打开,气体开始向外部不断排出,当活塞运动到最大行程后,阀门将自动关闭。活塞再次进入反向运动状态后,重复以上过程。 1.3特殊结构 对全无油形似的活塞空压机,其原理和油润滑形式的活塞空压机大致相同,区别为将油润滑换成自润滑。其中,气缸采用铝合金加工而成,表面做特殊处理,减小摩擦以延长使用寿命;活塞也采用铝合金加工而成,各活塞上设置导向环与密封环,二者都采用自润滑材料,能使摩擦达到最小;连杆和活塞由特殊销进行连接,配有全封闭式轴承,无需维护,并在设计过程中考虑了防超温使用。曲轴和各连杆间同样使用这种轴承;气阀为长寿命阀,能满足特殊的实际使用要求。 1.4优缺点 1.4.1优点 压缩空气输出更为洁净,只有极少量水和污染物,下游净化单元能直接去除,无油蒸汽和油滴,能防止下游管路被污染;压力范围较广,任何一种流量情况下,都能提供所需压力;具有很高的热效率,耗电省;具有较强的适用性,表现为排气范围广,受压力影响小等方面;可大幅降低维护成本,减少工作量;无润滑油方面的输出,过滤部件可长时间使用,负担小;由于不使用润滑油,所以还能解决低温启动方面的问题,而且对运转率也没有太高的要求。 1.4.2缺点 排气的连续性较差,存在一定气流脉动;在运转过程中可能产生较大的振动。 2制动盘 在当前的轨道交通车辆中,铝合金制动盘得到广泛应用,其优点有: 第一,自重轻,密度比铸钢与铸铁都小,能减轻车辆自重,尤其是簧下质量,若能减轻簧下质量,则能减小振动和噪音。此外,车辆自重减轻其能耗必定有所降低,能提高节能减排指标。 第二,有良好的耐磨性及导热性,且摩擦系数保持稳定,将钢铁替换为铝合金,能在减轻质量的同时,延长寿命,降低成本,保证可靠性与安全性。此外,出色的导热性能还能使制动盘适应反复变化的热负荷,降低了热疲劳裂纹产生率。 我国从九十年代起有相关院校开始研究铝基复合材料在列车制动盘中的应用,提出很多方法,如喷溅法和粉末冶金法等。然而,因研制难度相对较大,加之制造工艺十分复杂,所以成果主要为样件,要实现批量化生产的目标,还需要进一步的研究。 近几年,我国很多企业在广泛调研这项技术的前提下,对该行业现有技术能力进行综合,提出一套制造工艺,并通过一段时间的摸索与总结,初步掌握批量生产办法。制动盘摩擦副现已完成各项分析实验,其所有性能指标都达到要求,且优于同类产品。 3基于模块化的新制动系统 3.1系统特点 采用以CAN总线为基础的分布式控制,各控制单元均能在CAN总线的支持下构成整个控制网络。EP09/S能提供防滑控制与电空制动两项功能,仅存在紧急制动对应的输入输出接口,需由总线提供常用指令;对EP09/G而言,不仅具有EP09/S全部功能,而且还有列车总线接口及扩展接口,能起到类似网关的作用,并对制动力进行管理。 3.2性能要求 控制单元可提供的防滑控制与电空制动等功能都相对固定,具有实现模块化与小型化目标的条件。实际应用要求对于系统提出了很高的要求,集中在接口能力方面,如各模拟量实际扩展和不同接口方式等,而且对系统测试、故障诊断与时间存储也有着越来越高的实际要求,因受到架控单元机箱等因素的限制和影响,当前的网关单元在扩展能力上还有待于进一步提高。

高速列车制动方式分类

高速列车制动方式分类 从能量的观点来看,制动的实质就是将列车动能转变成其他能量或转移走;从作用力的观点来看,制动就是让制动装置产生与列车运行方向相反的外力,使列车产生较大的减速度,尽快减速或停车。 (1)根据列车动能转移方式的不同,列车制动可分为如下几种方式: ①盘形制动。 ②电阻制动。 ③再生制动。 ④磁轨制动。 ⑤轨道涡流制动。 ⑥旋转涡流制动。 ⑦风阻制动。 上述制动方式中的盘形制动和磁轨制动也可称为摩擦制动,都是通过机械摩擦来消耗高速列车动能的制动方式。其优点是制动力与列车速度无关。无论列车是高速运行还是低速运行,都有制动能力,特别是在低速运行时能对列车施行制动直至停车。可以说摩擦制动始终是高速列车最基本的制动方式。摩擦制动的缺点是制动力有限,因受散热限制而使制动功率增大。电阻制动、再生制动、轨道涡流制动和旋转涡流制动等也可称为动力制动,都是利用某种能量转换装置将运行中列车的动能转换为其他形式的能量,并予以消耗的制动方式。其特点是制动力与列车速度有很大关系,列车速度越高,制动力越大,随着列车速度的降低,制动力也随之下降。 (2)根据制动力的形成方式不同,制动方式可分为黏着制动和非黏着制动。车轮在钢轨上滚动时,轮轨接触处既非静止,也非滑动,在铁路术语中用“黏着”来说明这种状态。黏着制动是指依靠黏着滚动的车轮与钢轨黏着点之间的黏着力来实现列车制动的方式。黏着制度包括闸瓦制动、盘形制动、电阻制动、再生制动及电磁涡流转子制动等。以闸瓦制动为例,车轮、闸瓦和钢轨三者之间有3种可供分析的状态:第一种是难以实现的理想的纯滚动状态;第二种是应极力避

免的“滑行”状态;第三种是实际运用中的黏着状态。在上述3种情况中,纯滚动状态为最理想的轮轨接触状态,但实际上是不可能实现的;为避免车轮踏面擦伤、制动距离延长,需要防止“滑行”;黏着状态介于两者之间,它可以随气候与速度等条件的不同有相当大的变化。 由于列车的制动能量和速度的平方成正比,因此高速列车的动能很大,需要足够大的制动功率和更灵敏的制动操纵系统。而传统的空气制动装置要受制动热容量和机械制动部件磨耗寿命的限制,以及摩擦材料性能对黏着利用的局限性,因此,高速列车要采用能提供强大制动能力并更好利用黏着的复合制动系统。虽然考虑到乘座舒适度,但是制动距离随列车速度的提高而适当延长是不可避免的。高速列车制动的总目标是控制制动距离,因此制动距离不会随车速的提高而增长太多。复合制动系统通常由制动控制系统、动力制动、摩擦制动(如盘形制动和踏面制动等)系统、微机控制的防滑器和非黏着制动装置等组成。复合制动力的产生分别来自电气(动力制动)、机械(盘形制动或踏面制动)和非黏着力(磁轨制动或涡流制动)。高速列车的复合制动模式包括不同车辆在不同制动作用工况和各种速度下的制动能量分配关系,应根据列车的动力方式和编组条件进行设计并通过微机进行控制。

列车制动系统

自动式空气制动系统的组成及其作用 自动式空气制动系统如下图所示: 各部分作用如下: 1.空气压缩机(1)、总风缸(2):原动力系统。空气压缩机:制 造压缩空气;总风缸: 储存压缩空气,供全列车系统使用。 2.给风阀(4):将总风缸的压缩空气调至规定压力,经自动制动阀 (5)充入制动管。 3.自动制动阀(5):操纵部件。通过它向制动管充入压缩空气/将 制动管压缩空气排向大气。 4.制动管(14):贯通全列车的压缩空气导管。向列车中各车辆的制

动装置输送压缩空气。通过自动制动阀(5)控制管内压缩空气压力变化实现操纵各列车制动机。 5.三通阀(8):车辆空气制动装置的主要部件,控制制动机产生不 同作用。和制动管联通,由制动管压力的变化产生作用位置。制动机缓解:制动管连通副风缸,制动缸连通大气。向副风缸充入压缩空气,把制动缸内压缩空气排向大气。制动机制动:制动管通大气,副风缸通制动缸。副风缸内压缩空气充入制动缸,产生制动作用。 6.副风缸(11):缓解储存的压缩空气,为制动时制动缸的动力源。 7.制动缸(10):制动时,把从副风缸送来的压缩空气转变为机械推 力。 8.基础制动装置(17):制动时,将制动缸推力放大若干倍传递到闸 瓦,使闸瓦夹紧车轮产生制动;缓解时,靠闸瓦自重使闸瓦离开车轮实现缓解。 9.闸瓦、车轮和钢轨:实现制动三大要素。制动时,闸瓦压紧转动 的车轮踏面后,闸瓦与车轮间的摩擦力借助钢轨,在与车轮接触点上产生与列车运行方向相反(与钢轨平行)的反作用力,即制动力。(黏着效应) 制动缸压力计算 1空气制动机的工作过程就是利用空气受压缩后体积与压力的自动变化来实现的。

地铁车辆再生制动能量利用方案

地铁车辆再生制动能量利用方案 摘要:目前,节能减排已成为我国的基本国策,建设低碳型交通基础设施、推广应用低碳型交通运输装备是城市轨道交通建设者责任。地铁由于站间距比较短,制动频繁、列车起动,考虑各钟车型、站距、编组、发车间隔等差异,列车电制动时产生的再生能量可达到牵引能量的40%以上。充分利用列车再生能量将节约大量能量,产生效益可观,为节能减排做出贡献。西安市地铁已经运营1、2号线,在建3、4、5、6号线,如何在保证线路运行安全的前提下,提高供电水平,同时为城市节能减排做出贡献,是我们必须考虑的问题。 关键词:轨道交通;列车制动;能量回馈 1 传统列车车载制动电阻方案存在的问题 目前国内外城市轨道交通动车组列车均采用VVVF牵引/制动系统,采用交流电机驱动列车,制动系统普遍采用空气制动和电制动混合的形式。列车在运行时,牵引系统将电能转为机械能,使机车启动加速;在制动时,一部分采用电制动,将机械能转为电能使列车制动,另一部分采用空气制动,通过刹车闸瓦与车轮踏面摩擦而产生制动使列车减速。传统列车上设置了车载制动电阻。当列车制动时,首先采用再生制动方式,列车电机从电动机状态转换为发电机状态,将机械能转换为电能返回到牵引网系统,返回到牵引网系统的能量部分被相邻列车吸收,由于线路的行车密度等多种因素,很大部分能量不能被回馈,此时大量电能量得不到释放,将会使系统供电网电压

急剧上升,为此列车上设置了制动电阻,将这部分能量通过电阻变成热能吸收,稳定系统电压。电阻所转化的热能,车站环控专业通过隧道活塞风、车站轨顶排风和车站轨底排风,将热量排出车站外。 车载制动电阻使用虽然方便,但也有缺点:(1)列车制动电阻吸收再生制动能量转换为热能白白消耗了,没有起到节能减排作用。(2)列车制动电阻吸收再生制动能量转换为热能散于隧道内,虽然部分可以通过隧道活塞风排出隧道,但还有部分遗留在隧道,这部分热量使隧道温升逐步上升;(3)列车制动电阻重量大,列车运行时,不仅没有节能,还增加列车牵引能耗。(4)制动电阻体积大,而且考虑制动电阻散热需在列车上安装通风设备,这样会使列车底部其他设备安装布局困难;(5)制动电阻发热会对车体底板形成烘烤效应,有引发火灾危险。(6)列车采用车空气制动,增加闸瓦的损耗,加大车辆维修工作量,提高了运营成本,摩擦闸瓦产生大量金属粉尘,造成环境污染。 2 国内外现状 在国外城市轨道交通运输系统中,再生制动能量吸收技术发展历程主要有车载电阻耗能式、逆变回馈式、超级电容储能式以及飞轮储能式吸收等。其中最先发展的车载电阻耗能式因其可靠、结构简单等优点应用最为广泛,相对较少的是能量回馈式和能量存储式的应用。国外轨道交通研究制动能量吸收技术较早,已有成熟产品,而国内在这方面的研究刚起步,使用车载电阻耗能式较多,不能够很好的把再生制动能量充分利用起来。 图1 2.1 车载电阻耗能型吸收

电力机车的制动方式及其原理

电力机车的制动方式及其原理 1、制动技术概念 列车制动就是人为地制止列车的运动,包括使它减速、不加速或停止运行。对已制动的列车或机车解除或减弱其制动作用,则称为“缓解”。为施行制动和缓解而安装在机车、车辆、列车上的一整套设备,总称为“制动装置”。“制动”和“制动装置”俗称为“闸”。施行制动常简称为“上闸”或“下闸”,施行缓解则简称为“松闸”。“列车制动装置”包括机车制动装置和车辆制动装置。不同的是,机车除了具有像车辆一样使它自己制动和缓解的设备外,还具有操纵全列车制动作用的设备。 2、机车制动方式 1)闸瓦制动:铁路机车车辆采用的制动方式最普遍的是闸瓦制动。用铸铁或其他材料制成的瓦状制动块,在制动时抱紧车轮踏面,通过摩擦使车轮停止转动。在这一过程中,制动装置要将巨大的动能转变为热能消散于大气之中。而这种制动效果的好坏,却主要取决于摩擦热能的消散能力。使用这种制动方式时,闸瓦摩擦面积小,大部分热负荷由车轮来承担。列车速度越高,制动时车轮的热负荷也越大。如用铸铁闸瓦,温度可使闸瓦熔化;即使采用较先进的合成闸瓦,温度也会高达400~450℃。当车轮踏面温度增高到一定程度时,就会使踏面磨耗、裂纹或剥离,既影响使用寿命也影响行车安全。可见,传统的踏面闸瓦制动适应不了高速列车的需要,需要一种新型的制动装置以满足要求。 2)盘形制动:它是在车轴上或在车轮辐板侧面安装制动盘,用制动夹钳使以合成材料或者粉末冶金制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,使列车停止前进。由于作用力不在车轮踏面上,盘形制动可以大大减轻车轮踏面的热负荷和机械磨耗。另外制动平稳,噪声小。盘形制动的摩擦面积大,而且可以根据需要安装若干套,制动效果明显高于踏面制动,尤其适用于时速120公里以上的列车,这正是各国普遍采用盘形制动的原因所在。但不足的是车轮踏面没有闸瓦的磨刮,将使轮轨粘着恶化;制动盘使簧下重量及冲击振动增大,运行中消耗牵引功率。踏面制动和盘形制动都要通过轮轨之间的粘着来实现,因此都属于粘着制动。 3)再生制动:是将牵引电动机变为发电机,将电能反馈回电网使用,从而产生制动作用。用于电网供电的电力机车和电动车组。 4)电阻制动:用于电力机车、电动车组和电传动内燃机车。在制动时将原来驱动轮对的牵引电动机改变为发电机发电,并将电流通往专门设置的电阻器,采用强迫通风,使电阻器发生的热量消于大气,从而产生制动作用。 5)线性涡流制动:是把电磁铁悬挂在转向架侧架下面同侧的两个车轮之间。制动时电磁铁不与钢轨接触。利用电磁铁与钢轨相对运动使钢轨感应出涡流,产生电磁吸力作为制动力,把列车动能转化为热能,消散于大气。线性涡流制动既不受粘着限制,也没有磨耗问题。 6)盘形涡流制动:是在车轴上装金属盘,制动时金属盘在电磁铁形成的磁场中旋转,盘的表面被感应出涡流,产生电磁吸力并发热消散于大气,从而起制动作用。盘形涡流制动要通过轮轨粘着才能产生制动力,因此也要受粘着限制。

动车组制动技术综述

动车组制动技术综述 列车制动的一般概念是指对行进中的列车施行减速或使在规定的距离内停车。制动的重要性不仅在于它直接关系到运输安全,还在于它是进一步提高列车运行速度的决定因素。列车速度越高,对制动的要求也就越高。因而,动车组的制动技术成为其高速运行的关键技术之一。 一、动车组制动方式分类 1.按动能消耗方式分: (1)摩擦制动:闸瓦制动、盘形制动、磁轨制动等; (2)动力制动:电阻制动、再生制动、轨道涡流制动、旋转涡流制动等。 2.按制动形成方式分: (1)粘着制动:闸瓦制动、盘形制动、电阻制动、再生制动、旋转涡流制动等; (2)非粘着制动:磁轨制动、轨道涡流制动等; 3.按动力的操作控制方式分:空气制动、电空制动、电磁制动。 二、高速动车组制动系统的基本要求 1.制动能力的要求 制动能力表现为停车制动时对制动距离的控制。在同样的制动装置、操纵方式和线路条件下,其制动距离基本上与列车制动初速度的平方成正比关系,所以随着列车速度的提高,必须相应地改进其制动装置和制动控制方式才能满足缩短制动距离的要求。 通过国外主要国家高速列车制动能力比较得知:国外300km/h高速列车的紧急制动距离均在3000~4000m之间。根据制动粘着利用和热负荷等理论计算的结果,我国动车组在初速300km/h条件下的复合紧急制动距离可保证在3700m

以内。 2.舒适性的要求 从列车动力学的观点出发,旅客的乘坐舒适性包括横向、垂向和纵向三方面的指标,高速动车组纵向运动的特点除起动加速度较快以外,主要是制动作用的时间和减速度远大于普通旅客列车,因此必需有相应措施来控制旅客纵向舒适性的指标,包括对制动平均减速度、最大减速度和纵向冲动的要求,均应高于普通旅客列车。 为满足纵向舒适性的高要求,动车组制动系统必须采用下述关键技术:(1)采用微机控制的电气指令制动系统以实现制动过程的优化控制,并在提高平均减速度的同时尽量减少减速度的变化率; (2)对复合制动的模式进行合理设计,使不同型式的制动力达到较佳的组合作用; (3)减少同编组列车中不同车辆制动力的差别,以缓和车辆之间的纵向动力作用; (4)采用摩擦性能良好的盘型制动装置和强有力的动力制动装置,以提供足够的制动力。 3.安全可靠性 制动系统作用的可靠性是列车行车安全的基本保证。特别是高速运行时制动系统失灵的后果将不堪设想。为此,动车组制动系统的安全可靠性设计涉及有下列四个方面: (1) 制动控制方式设计。动车组一般设有空气制动、微机控制的电空制动和计算机网络三种制动控制方式。在正常运行状况下由计算机网络控制并传递全列车各车辆的制动信息。当该控制系统发生故障时能自动转换为电空制动作用。

列车再生制动能量回收的方法及分析

列车再生制动能量回收的方法及分析 城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题: (1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。 (2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗; (3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观; (4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。 目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 首先介绍储能型回收装置 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。

列车制动装置简介

现代轨道车辆列车制动装置简介

摘要:制动系统是列车的一个重要组成部分,它直接影响列车运行的安全性。本文重点介绍了各种制动装置的原理、结构及其在动车组上的应用情况。 关键词:制动装置电动制动电气制动再生制动动车组 引言:随着铁路现代化运输的发展,列车的运行速度和牵引重量不断提高,我们除了要加大牵引力外还务必要提高机车、车辆的制动性能。支撑着所有铁道车辆安全运行的基本要素就是制动装置,“安全制动停车”是铁道车辆必须具备的功能。制动装置的性能不仅是保障行车安全的必要手段,同时也是提高列车速度和铁路通过能力的重要因素。 一、制动的概论 人为地使列车减速,停车或防止停留的车辆移动所采取的措施,称为制动。在铁路机车、车辆上,产生制动的方法比较多,目前我国主要采用以压缩空气为动力,利用基础制动装置上的闸瓦紧压转动着的车轮踏面,使其相互间产生摩擦力,将机车、车辆动能转变为热能逸散,从而使列车减速或停车的方法。 二、制动装置的组成、分类及比较 (一)制动装置组成 制动装置一般可分为两大组成部分: (1)“制动机”——产生制动原动力并进行操纵和控制的部分。(2)“基础制动装置”——传送制动原动力并产生制动力的部分。(二)制动装置分类 1.按动能的转移方式分 (1)踏面制动 踏面制动,又称闸瓦制动,是自有铁路以来使用最广泛的一种制动方式。它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着

的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。现在的货车采用的是单闸瓦的踏面摩擦制动,而普通客车采用的是双闸瓦的踏面摩擦制动。 (2)盘形制动 盘形制动是在车轴或轮辐板侧面安装的制动盘,一般为铸铁圆盘,制动时用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,将动车组动能转变成热能消散于大气。 (3)电阻制动 电阻制动是在制动时将原来驱动轮对的牵引电机转变为发电机,由轮对带动发电,并将电流通过专门设置的电阻器,采用通风散热将热量消散于大气,从而使动轮产生制动作用。电阻制动装置可以取消压缩空气供给源,实现车辆轻量化,简化制动系统 (4)再生制动 再生制动也是将牵引电机转变为发电机运行,不同的是,它是将电能反馈回电网,使本来由电能变成的动车组动能再生为电能,而不是变成热能消散掉。 2.按用途分 (l)常用制动 常用制动是正常条件下为调节、控制列车速度或进站停车施行的制动。特点是作用比较缓和,且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。

列车再生制动方法条件

条件 再生反馈电压必须高于直流牵引电网电压 再生制动能量可被本列车的辅助设备吸收利用,也可提供相邻列车使用 再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有 蓄 电池储能、电容储能、飞轮储能 3种;而能量回馈所采用的技术主要是逆变至 中压网 络和低压网络两类。 ⑴蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中, 当供电 区 间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充 放电 电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电 状态将 影响其使用寿命,储能容量相对较少。 (2)飞轮储能型 采用飞轮储能方式的吸收装置由储能飞轮电机、IGBT 斩波器、直流快速断 路 器、电动隔离开关、传感器和控制模块等组成。该装置直接接在变电所正负母 线间 或接触网和回流轨间,其核心技术是利用核物理工业的物质分离衍生技术而 制造的 飞轮,该装置设置在真空壳体内,飞轮经过特殊材料和加工工艺制成的轴 支撑在底 部结构上。 (f rt Loa * 电sftifa 圧 pi ,EAT :粗 1 ? SWfV} -压3 -雷)?诵电f 苗 軌】 、亦此戦E +亓I ?豐厦 FB 繰电趟辭能鼻競贬理不厲厲

近几年,英国UPT电力公司生产的成熟运营的飞轮储能型产品,在香港电力系统、香港巴士公司、英国、纽约部分地铁均有应用。国内北京大学某实验室有类似的小功率产品研制,但飞轮的机械参数难以达到国外的水平,无法在工程中投入使用。该产品的优点:有效利用了再生制动能量,节能效益好;并可取消(或减少)车载制动电阻,降低车辆自重,提高列车动力性能;直接接在接触网或变电所正负直流母线间,再生电能直接在直流系统内转换,对交流供电系统不会造成影响。该产品的缺点:飞轮是高速转动的机械产品,对制造工艺要求很高,需采用真空环境和特殊轴类制造技术,成本较高。使用寿命是否能满足要求,维护维修是否方便,另外国内无成熟技术和产品等都成为制约其推广的因素。 (3)超级电容储能 以已经投入运行的北京地铁5号线为例简单说明超级电容储能的应用。 当具有再生制动能力的车辆在变电站能量存储系统附近释放能量时,牵引网网压上升,能量存储系统的调节器可探测到这种情况,并将牵引网系统中暂时多余的能量存储到电容器中,使牵引网网压保持在限定范围内。若车辆在变电站能量存储系统附近起动或加速,牵引网网压下降,此时,能量存储系统的调节器将能量从存储系统输送回牵引网系统中,保持牵引网网压稳定。在直流牵引网的空载状态下,能量存储系统从牵引系统吸收一部分能量,通过这种方式可以帮助车辆起动。

[0]德国高速列车综述

文章编号:100227610(2005)0620001206 德国高速列车综述 李瑞淳1,王 马矣2 (1.长春轨道客车股份有限公司研发中心,吉林长春130062; 2.四川东方电力设备联合公司,四川成都610041) 摘 要:介绍了德国ICE系高速列车的车型与基本结构,归纳了其技术特点。 关键词:高速列车;技术特点;德国 中图分类号:U271.91 文献标识码:B Survey of High Speed T rains in G ermany L I Rui2chun1,Wang Ai2 (1.Development Center of Changchun Rail Passenger Car Co.,Ltd.,Changchun130062,China; 2.Sichuan Dongfang Electric Corporation,Chengdu610041,China) Abstract:The types and f undamental structure of ICE series high speed trains in Germany are described. The technical features are summed up. K ey w ords:high speed trains;technical features;G ermany 德国ICE系高速列车是世界上最为成功的高速列车之一,以速度高、功能完备、技术等级高、性能稳定、车辆总体布置结构合理、内装档次高、运用维护性好等诸多优点而闻名于世。其中的多项技术被许多国家广为引用或借鉴,推动了世界铁路技术的进步。 1 主要车型与基本结构 德国ICE系高速列车主要有ICE1、ICE2、ICE3 (ICE212)、ICT(ICE2T、ICE2TD)等,还包括目前正在处于试验阶段的Velaro E高速列车。各型高速列车的概况如下。 1.1 ICE1和ICE2 ICE1是德国20世纪80年代中期开始开发、1991年投入运用的动力集中型高速动车组。该车组共计生产了60列,有2M14T、2M12T、2M10T三种不同的编组形式,额定牵引功率均为9600kW,其中2M14T编组列车的最高运营速度为250km/h; 2M12T、2M10T编组列车的最高运营速度为280 km/h,2M14T、2M12T编组形式列车的定员分别为759人、669人。 ICE2是德国于1995年开发、1997年投入运用的动力集中型高速动车组。车组是8辆车组成的1M7T 的短编组列车,其中1辆拖车为单端带驾驶室的控制车,共计生产了44列。其最高运营速度为280km/h,收稿日期:2005205231 作者简介:李瑞淳(19562),男,吉林长春人,教授级高级工程师。额定牵引功率为4800kW,列车定员391人。 ICE1、ICE2高速列车的动车均采用不锈钢车体,拖车均采用铝合金车体、带磁轨制动器的高速转向架、分装式空调机组、故障技术诊断系统,以及Schaku 半自动密接式车钩缓冲装置和可以包容车钩缓冲装置的Hübner高密封性双包波纹折棚风挡、由透明车窗与不透明盲窗组成的窗带、德国格来默高档座椅。1.2 ICE3(ICE212) ICE3是德国1997年开发、2000年投入运用的动力分散型高速动车组,在最初开发之时曾被称为ICE 212,正式投入运用时称为ICE3。该车组是8辆车组成的4M4T的短编组列车,迄今为止,共生产了两代67列。第一代ICE3有54列,其中37列是交流单电压制车组;17列是交、直流四电压制车组,其中有两个分别为AC15kV16#.Hz与AC25kV50Hz的交流受电电压制和两个分别为DC3000V与DC1500V的直流电压制。车组的最大牵引功率与最高运行速度,在交流电压制下为8000kW与330km/h;在直流电压制下为4300kW/3600kW与220km/h。第二代ICE3生产了13列,全部为适应德国运用的AC15 kV16#.Hz交流单电压制列车。无论哪一种ICE3列车,均由两个牵引动力单元组成,每个单元均为2M2T 的结构。对应于第一代的单电压制、四电压制ICE3和第二代ICE3,列车的定员分别为415人、404人和458人。 与ICE1、ICE2高速列车一样,ICE3采用了铝 1  综述?述评

浅谈汽车列车的行车安全(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅谈汽车列车的行车安全(标准 版)

浅谈汽车列车的行车安全(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 汽车列车俗称汽车挂车,通常由一台主车和一至二个挂车组成。目前在汽车运输中较为常见,因为汽车列车能提高他们的经济效益。但是,汽车列车在性能上与单车相比差别较大,所以在驾驶当中应引起注意,以防操作不当而发生交通事故。 一、汽车列车的运行特点 1、操纵稳定性变差。因为汽车列车加挂挂车后车身变长,而且大多是载重行驶,所以车重量增加很多,惯性较大,行车中挂车在横向力的作用下容易发生摆动,严重影响了主车,致使主车容易发生侧滑,降低了汽车行驶的稳定性。特别是在制动时更是如此,由于车超长、超重,所以其制动距离加长,在挂车有制动的条件下,列车的制动距离将增加20%左右,在挂车无制动的条件下,列车的制动距离将要延长一倍以上。而且在制动时稍有不慎就有可能引起车辆侧滑,制动的稳定性有较大幅度地下降。另外列车在转向、倒车时,其操作过程也较单车困难得多。

高速动车组转向架的发展与研究方法综述

科技论文写作与文献检索题目:高速动车组转向架的发展与研究方法综述 学生姓名: XXX 学生学号: XXXXX 专业名称:车辆工程(学) 所属学院: XXXXX学院 201X年X月

高速动车组转向架的发展与研究方法综述 XXX,XXXX,XXXX学院 摘要:本文主要介绍了国内高速动车组转向架的发展历程及其结构组成,从多个层面论述了转向架的研究方法和内容。探讨了有限元法在高速动车组转向架的研究领域的应用。 关键词:高速动车组;转向架;发展历程;研究方法;综述 1 绪论 20世纪60年代,日本开发了第1代0系新干线动车组用DT200型动力转向架,其一系悬挂采用IS拉板双圆簧模式,中央悬挂由空气弹簧、液压减振器等组成[1]。随着研究的不断深入,又先后开发了300系动车组用DT203型、500系用WDT9101/9102/9103型等20余种转向架[2-3]。这些转向架结构不断简化,通过采用轻量化焊接构架、铝合金轴箱、铸铝齿轮箱和空心车轴等技术使转向架质量和簧下质量得到降低;驱动单元除采用常规的牵引电机架悬、通过齿式联轴节补偿相对位移的模式外,还在试验转向架上对牵引电机半体悬、平行万向轴驱动和牵引电机体悬、纵向万向轴-锥齿轮传动等模式进行了试验;对于轴箱定位方式,新干线动车组则通过多方案对比确定最优模式[4];500系、N700系等动车组分别采用了半主动控制横向减振器、主动控制空气弹簧等新技术,以改善车辆动力学性能,提高车辆运行速度。 随着铁路运行速度的不断提高,我国在设计动力分散型动车组时先后设计了多种动力和非动力转向架,其中较具代表性的有“春城”号动车组用CW—D/T型,“长白山”号动车组用CW—200D型,“中原之星”动车组用DDB—1型、DTB—2型,“中华之星”动车组用SW—300型、CW—300型和“先锋”号动车组用PW—250M/ T型转向架[5-7]。 近年来,为了满足我国高速动车组发展需求,我国通过以高速动车组技术换取中国市场的政策,引进国外先进技术,与其共同设计研发了高速动车组CRH系列[8]。CRH1型是与加拿大共同开发的200公里级别(营运时速200 km,最高时速250 km)高速动车组,其转向架采用了无摇枕空气弹簧结构,一系悬挂和二系悬挂分别为单组钢簧加单侧拉板定位及空气弹簧和橡胶堆,基础制动装置为直通式电控制动等技术[9]。CRH2型是与日本共同开发的200公里级别高速动车组。其转向架为无摇枕式,H型构架,一系悬挂为转臂式定位结构,轴箱弹簧为双圈钢圆簧,并采用了空心车轴和小轮径车轮;二

再生制动设备在轨道交通中的应用

再生制动吸收装置在城市轨道交通工程的应用 1.再生制动吸收装置的作用 2.吸收装置原理及特点 3.吸收方式及产品应用 4.节能效果 5.应用展望 引言 列车制动方式主要有两种: 空气制动:列车的基础制动或紧急制动,通过闸瓦或制动盘摩擦,将机械能转换为热能。有磨耗成本。 电制动:列车的常用制动,在接触网电压低于一定的限值条件下,将列车动能转换成电能回馈至直流接触网,通过能量的转换可实现电能的再利用。 今天我们主要讨论的是电制动方式及应用情况。 1.再生制动吸收装置的作用 在城市轨道交通系统中,再生制动吸收装置是一种为电客车再生制动提供电能吸收的设备,一般安装于牵引变电所,与直流母线并联。 城市轨道交通车辆采用750VDC、1500VDC两种电压制式供电,当车辆进行再生制动时,会向直流电网反馈能量,若此时接触网上不能提供与制动列车回馈的电能相匹配的电流通道,则会造成接触网母线电压的抬升,影响列车电制动性能的发挥。由于整流机组是单向导电的,回馈电流不能通过整流器回馈至交流电网,因此再生制动电能的吸收通道只能有如下几种: 制动列车自身消耗(车载电阻); 接触网上的邻近牵引列车消耗; 变电所再生制动吸收装置。 再生制动吸收装置的作用就是为列车电制动回馈的电能提供功率相匹配的通道,当吸收装置的功率大于列车制动功率时,直流网压下降,可能会消耗整流器提供的电能,当吸收装置的功率小于列车制动功率时,直流网压上升,可能造成列车过压保护,切除电制动。

2.吸收装置原理及特点 在供电区间内,当车辆进行再生制动时,如果在线有其他车辆运行,其再生能量被牵引车消耗,稳定了电网电压。如果线路不具备吸收条件,电网电压将被抬高,此时吸收装置经判断自动投入,将再生能量吸收,确保电网电压的稳定。 2.1车载电阻吸收方式 车载电阻吸收方式主电路示意图如图1所示,在正负母线之间并联了斩波回路,当车辆制动母线电压升高时Sb1开通,电能通过Rb电阻释放。

高速列车制动新技术及其发展

高速列车制动技术的最近研究进展 周大海0703010702 摘要:和普通列车相比.高速列车无论是对制动控制系统还是对具的制动方式,都提出了更高的技术要求。本文介绍了高 速列车对制动系统的特殊要求和其解决方法以及国内外 高速列车制动系统的技术现状. 关键词:高速列车制动方式复合制动系统制动基础制动1.高速列车对制动系统的特殊要求 随着列车运行速度的提高,机车车辆对制动系统的要求也越来越高。从能量的角度考虑.由于列车的动能与其运行速度的平方成正比,列车所具备的制动功率也至少应与其最高速度的平方成正比一从粘着利用与防滑的角度考虑.为了在规定的距离内停车.高速列车在制动时必须具有较大的减速度.对粘着的利用率也相应较高,而粘着利用率的提高必须有相应的高性能防滑装置来保障列车运行的安全;为了提高乘坐舒适度,对制动力的控制精度必须也有更高的要求。综合多方面的因素考虑,高速列车制动系统必需具备以下条件: (I)尽可能缩短制动距离以保障行车安全 ①减少列车空走时间

表1为几种制动控制方式的列车空走时间值。从表中可以看出.电气指令式电空制动机的列车空走时间最短 ②采用大功率的盘形制动机,并作为高速列车制动系统的主体 [1]铁系材料 铁系材料经几十年的发展,现已形成了铸铁、铸钢、铸铁一铸钢组合材料和锻钢材料等几个体系。目前使用在高速列车制动盘上的铁系金属材料则主要是铸铁一铸钢组合材料和锻钢材料。铸铁一铸钢组合制动盘是以铸铁作为摩擦材料而以铸钢作为补强材料。2种材料相互组合制成的制动圆盘,从整体上兼顾了铸铁稳定且较高的摩擦性能和铸钢较好的耐热龟裂性,在日本、法国和德国的高速列车上都使用过这种材料,锻钢具有良好的强度和韧性等力学性能,同时还具有较高的抗热龟裂性、良好的耐磨性和耐疲劳性,使用寿命长,目前已广泛应用于日本新干线列车上。法国TGV—A列车上使用的一种Cr-Mo-V低合金锻钢制动盘,在时速300 km停车时每个制动盘可散失约18 MJ的制动能量,显示出锻钢材料的良好制动效果。国内对锻钢材料也进行了大量研究。以中碳、低合金钢为盘体材料,经纯净化处理、优化锻造等制成的制动盘,具有良好的综合性能和优异的抗热疲劳性,并认为其可满足国内时速300 km高速列车的制动要求。从国内外高速列车制

相关主题
文本预览
相关文档 最新文档