当前位置:文档之家› 基于两级模糊控制的单交叉路口信号配时研究

基于两级模糊控制的单交叉路口信号配时研究

基于两级模糊控制的单交叉路口信号配时研究
基于两级模糊控制的单交叉路口信号配时研究

模糊控制系统的发展现状

模糊控制系统的发展现状 一、模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。1974 年英国的Mamdani首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域。从信息技术的观点来看, 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 相对传统控制, 包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型,应用CRI等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制。

模糊控制具有以下特点: (1) 模糊控制是一种基于规则的控制。它直接采用语言型控制规则, 出发点是现场操作人员的控制经验或相关专家的知识, 在设计中不需要建立被控对象的精确数学模型, 因而使得控制机理和策略易于接受与理解, 设计简单, 便于应用; (2) 由工业过程的定性认识出发, 比较容易建立语言控制规则, 因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用; (3) 基于模型的控制算法及系统设计方法, 由于出发点和性能指标的不同, 容易导致较大差异; 但一个系统的语言控制规则却具有相对的独立性, 利用这些控制规律间的模糊连接, 容易找到折中的选择, 使控制效果优于常规控制器; (4) 模糊控制算法是基于启发性的知识及语言决策规则设计的, 这有利于模拟人工控制的过程和方法, 增强控制系统的适应能力, 使之具有一定的智能水平; (5) 模糊控制系统的鲁棒性强, 干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 除此, 模糊控制还有比较突出的两个优点: 第一, 模糊控制在许多应用中可以有效且便捷地实现人的控制策略和经验; 第二, 模糊控制可以不需被控对象的数学模型即可实现较好的控制,

信号配时设计说明书

东二环路--六合路交叉口信号配时 设计说明书

目录 1交叉口现状调查与分析 (2) 1.1交叉口现状车道分布 (2) 1.2交叉口几何尺寸调查 (2) 1.3交叉口现状信号相位及配时 (3) 1.4各进口道各流向的交通量 (3) 1.5交叉口现状的延误 (6) 1.6问题分析 (6) 1.7解决问题 (7) 2渠化设计与信号配时 (7) 2.1第一次试算 (7) 2.2第二次试算 (13) 2.3第三次试算 (20) 3方案确定,完成信号配时设计 (25) 3.1渠化后的交叉口 (25) 3.2相位图 (26) 3.3延误与服务水平 (26)

1交叉口现状调查与分析 1.1交叉口现状车道分布 金鸡路口位于桂林市七星区,路口为东二环路与金鸡路、六合路的十字交叉,设计形状畸形。其现状车道分布如下图: 北 东 西 南 1.2交叉口几何尺寸调查 由实地测量的交叉口现状的几何尺寸得:

1.3交叉口现状信号相位及配时 由实际测量的交叉口现状的信号相位及其配时方案得: 1.4各进口道各流向的交通量 由调查的某日交叉口17:00至18:00高峰小时流量,通过车辆换算系数,将各类机动车型换算成标准小汽车,将各类非机动车车型换算成自行车,得到各进口道各流向的机动车高峰小时Qmn以及各进

口道自行车交通量,车辆换算系数如下: 各类机动车型换算成标准小汽车的系数: 各类非机动车换算成自行车的系数: 由此得到配时时段中各进口道各流向的高峰小时中最高15min 的流率,由公式: q dnm=4*Q15mn 得到各进口道各流向的机动车最高15min流率换算的小时交通量,以及各进口道自行车最高15min交通量的平均流率。

交通管理与控制课程设计十字交叉口信号配时优化设计

交通管理与控制课程设 计十字交叉口信号配时
优化设计
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

《交通管理与控制》课程设计
---------十字交叉口信号配时优化设计
姓名: xxxxxx 专业: 交通工程 班级: 08 级交通 2 班 学号: 08xxxxxxxx

1 基础资料收集 道路几何条件调查
红线宽度 每条机动车道宽度 绿化带宽度 非机动车道宽度 人行道宽度
红线宽度
每条机动车道宽度
绿化带宽度
每条非机动车宽度
人行道宽度
绿化道宽度
红线宽度
每条机动车宽度
非机动车道宽度
人行道宽度
绿化带宽度
说明: 1. 本图为学院北路与滏河大 街交叉口平面图 2. 比例
红线宽度 每条机动车道宽度 每条非机动车宽度 人行道宽度 绿化道宽度
学院北路与滏河大街交叉口平面图 交叉口现状图
图例 车行道 入口引道 绿化带 中央分隔带 机非分隔带

东西方向
南北方向
现状信号配时图
项目
单位
道路等级 断面形式 设计车速 路幅宽度 车道数 单车道宽
Km/h m
车道功能划 分
非机动车道 宽
m
人行道宽
m
交通条件调查
(1)交通量调查
平峰小时流量表 进口
交叉口几何条件调查表
东 进出 口口 次干道 一块板
35 25 12
进出口方向
西

进出进出
口口口口
次干道 主干道
三块板 一块板
35
50
35
45
2244
北 进出 口口 主干道 三块板
50 50 44
直 左 右
1个 直 行
直 左 直 右
2个 直 行
直 行 直 右 左
3个 直 行
直 行 直 左 直 右
3个 直 行
2
3
3
机动车
自行车
行人

交叉口优化设计

xxx交叉口现状分析和改造方案 摘要 通过对xxx交叉口的道路、交通和控制现状,主要是对其机动车通行能力,行车延误,行车速度,信号周期,和高峰小时的交通需求等进行定量和定量的分析,寻找干扰机动车通行的原因,以得到xxx交叉口拥堵的根本原因,提出综合性的改造措施,相应的改造方案和有关效益评价。近期尚未进行路口立交改造,但交通矛盾特别突出,为此设计尝试从交通需求管理和运输供应改善两个方面着手,以求比较合理的改善该交叉口的拥堵现状,提高该路段的服务水平。 关键词:交通量通行能力延误效益评价

Abstract This arti cl e t ri es t o fi nd out t he m ain reason wh y the m ot or vehi cl es travel t hrough t he art eri a t hrough t he anal ysi s of the runni ng and cont rolli ng st at us of the i nt ersecti on xxx, m ai nl y t he quali t ati ve and quantit ati ve anal ys i s of t he capacit y, t raffi c del a ys, speed, si gnal c ycl es, and the peak-hour t raffi c of t he road. Then we can get t he root caus es of j am s, the reasonabl e reform m eas ures, t he corresponding transform at i on program and the effect i veness eval uat ion. As the recent i nt ersecti on h as not yet been opt im iz ed and the t raffi c cont radi cti ons are serious t his art i cl e l a ys it s em phasis on the im provem ent of t raffi c dem and m anagem ent and t raffi c suppl y m anage m ent and im prove the l evel of servi ce of t he road i n hence. Key word:traffic quantity traffic capacity delays effectiveness evaluation

交通管理系统与控制课程设计-十字交叉口信号配时优化设计

实用标准文案
《交通管理与控制》课程设计
---------十字交叉口信号配时优化设计
姓名: xxxxxx 专业: 交通工程 班级: 08 级交通 2 班 学号: 08xxxxxxxx
精彩文档

1 基础资料收集
1.1 道路几何条件调查
交叉口现状图
红线宽度 每条机动车道宽度 绿化带宽度 非机动车道宽度 人行道宽度
实用标准文案
红线宽度 每条机动车道宽度 绿化带宽度 每条非机动车宽度 人行道宽度 绿化道宽度
红线宽度 每条机动车宽度 非机动车道宽度 人行道宽度 绿化带宽度
说明: 1. 本图为学院北路与滏河大 街交叉口平面图 2. 比例
红线宽度 每条机动车道宽度 每条非机动车宽度 人行道宽度 绿化道宽度
学院北路与滏河大街交叉口平面图
图例 车行道 入口引道 绿化带 中央分隔带 机非分隔带
精彩文档

实用标准文案
东西方向
南北方向
现状信号配时图
项目
单位
道路等级 断面形式 设计车速 路幅宽度
车道数 单车道宽
Km/h m
车道功能划分
非机动车道宽
m
人行道宽
m
1.2 交通条件调查
(1)交通量调查
平峰小时流量表
进口





西


左 南

交叉口几何条件调查表

进口 出口
次干道
一块板
35
25
1
2
3.0 3.0
直左 1 个 右 直行
3.5 2
进出口方向
西

进口 出口 进口 出口
次干道
主干道
三块板
一块板
35
50
35
45
2
2
4
4
3.0 3.0 3.0 3.0
直 左 2个 直右 直行
直行 直右

3个 直行
3.5
4.5
3.5
3

进口 出口
主干道
三块板
50
50
4
4
3.0 3.0
直行 直左 直右
3个 直行
4.5
3
机动车 15 154 43 245 485 311 292 672
自行车 24 99 12 43 93 143 18 142
行人 ---44 ------87 ------78
精彩文档

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

信号配时计算过程

本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。四个交叉口均属于定时信号配时。国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规》推荐方法、停车线法、冲突点法共六种方法。本次设计运用的是比较经典的英国的TRRL 法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。对单个交叉口的交通控制也称为“点控制”。本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要容。在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。 柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。 其公式计算过程如下: 1.最短信号周期C m 交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。因此,C m恰好等于一个周期损失时间之和加上全部到达车辆以饱和流

量通过交叉口所需的时间,即: 1212 n m m m m n V V V C L C C C S S S =+ +++ (4-8) 式中:L ——周期损失时间(s ); ——第i 个相位的最大流量比。 由(4-8)计算可得: 111m n i L L C Y y = = --∑ (4-9) 式中:Y ——全部相位的最大流量比之和。 2.最佳信号周期C 0 最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式: 1 22(25) 32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+--- (4-10) 式中:d ——每辆车的平均延误; C ——周期长(s ); λ——绿信比。 则总延误时间为: D=qd (4-11) 若使总延误最小,则: ()0d D dC = (4-12) i i V S

模糊控制发展前景分析

《冶金自动化工程案例分析》课程论文 模糊控制的发展前景分析 电子与信息工程学院 自动化094班 张宇 120093101091

模糊控制的发展前景分析 电子与信息工程学院自动化094班张宇 摘要:模糊控制方法是智能控制的重要组成部分。本文简要介绍了模糊控制的概念和特点,并对模糊控制的原理作了说明,较详细的介绍了对于常规模糊控制方 法的改进,包括Fuzzy-PIS复合控制、三位模糊控制器、Smith-Fuzzy控制器、专家模糊控制器等,对模糊控制系统与传统PID控制作了简单比较,最后对模糊控制的优缺点进行分析并对模糊控制未来发展作出了展望。 关键字:模糊控制;原理;模糊PID控制;展望; 一.模糊控制简介 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。模糊控制主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来,建立一种适用于计算机处理的输入输出过程模型,是智能控制的一个重要研究领域。从信息技术的观点来看, 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、家用电器自动化领域和其他很多行业中解决了传统控制方法无法或者是难以解决的问题,取得了令人瞩目的成效,引起了越来越多的控制理论的研究人员和相关领域的广大工程技术人员的极大兴趣。 相对传统控制,包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型( 如状态方程或传递函数等),它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识,从中提炼出控制规则,用一系列多维模糊 条件语句构造系统的模糊语言变量模型, 应用CRI等各类模糊推理方法,可以得 到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制。 二. 模糊控制的原理 基本模糊控制系统包括模糊化处理、模糊推理和清晰化控制三个环节。 图1模糊控制系统框图 模糊化处理就是将模糊控制器输入量的确定值转换为相应模糊语言变量值的过程, 此相应语言变量值均由对应的隶属度来定义。通过这样一个把输入变量映射到合适的响应论域量程的过程,精确的输入数据就变换成适当的语言值或模

发展战略-模糊逻辑与模糊控制技术的发展 精品

模糊逻辑与模糊控制技术的发展 宁廷群1 肖英辉1任惠英2 (1山东科技大学机电学院山东青岛 266510 2山东兖矿集团机械制修厂山东邹城 273500)The Development of Fuzzy Logic and Fuzzy Control Technology 摘要:针对现代工业控制领域的模糊控制技术的新发展,综合介绍了当代该领域的基本理论和发展现状,展望了未来的发展应用。 关键词:模糊控制;应用发展;自适应控制。 Abstract: This paper introduces the development of fuzzy logic and fuzzy control technology in modern control domain, and discusses the basic theory and main development in integration. At last it gives some prospects. Key words: fuzzy control, development and application, adaptive control 一、引言 在现代工业控制领域,伴随着计算机技术的突飞猛进,出现了智能控制的新趋势,即以机器模拟人类思维模式,采用推理、演绎和归纳等手段,进行生产控制,这就是人工智能。其中专家系统、模糊逻辑和神经网络是人工智能的几个重点研究热点。相对于专家系统,模糊逻辑属于计算数学的范畴,包含有遗传算法,混沌理论及线性理论等内容,它综合了操作人员的实践经验,具有设计简单,易于应用、抗干扰能力强、反应速度快、便于控制和自适应能力强等优点。近年来,在过程控制、建摸、估计、辩识、诊断、股市预测、农业生产和军事科学等领域得到了广泛应用。为深入开展模糊控制技术的研究应用,本文综合介绍了模糊控制技术的基本理论和发展状况,并对一些在电力电子领域的应用作了简单介绍。 二、模糊逻辑与模糊控制 1、模糊逻辑与模糊控制的概念 1965年,加州大学伯克利分校的计算机专家Lofty Zadeh提出“模糊逻辑”的概念,其根本在于区分布尔逻辑或清晰逻辑,用来定义那些含混不清,无法量化或精确化的问题,对于冯˙诺依曼开创的基于“真-假”推理机制,以及因此开创的电子电路和集成电路的布尔算法,模糊逻辑填补了特殊事物在取样分析方面的空白。在模糊逻辑为基础的模糊集合理论中,某特定事物具有特色集的隶属度,他可以在“是”和“非”之间的范围内取任何值。而模糊逻辑是合理的量化数学理论,是以数学基础为为根本去处理这些非统计不确定的不精确信息。 模糊控制是基于模糊逻辑描述的一个过程的控制算法。对于参数精确已知的数学模型,我们可以用Berd图或者Nyquist图来分析家其过程以获得精确的设计参数。而对一些复杂系统,如粒子反应,气象预报等设备,建立一个合理而精确的数学模型是非常困难的,对于电力传动中的变速矢量控制问题,尽管可以通过测量得知其模型,但对于多变量的且非线性变化,起精确控制也是非常困难的。而模糊控制技术仅依据与操作者的实践经验和直观推断,也依靠设计人员和研发人员的经验和知识积累,它不需要建立设备模型,因此基本上是自适应的,具有很强的鲁棒性。历经多年发展,已有许多成功应用模糊控制理论的案例,如Rutherford,Carter 和Ostergaard分别应用与冶金炉和热交换器的控制装置。 2、分析方法探讨 工业控制系统的稳定性是探讨问题的前提,由于难以对非线性和不统一的描述,做出判断,因此模糊控制系统的分析方法的稳定性分析一直是一个热点,综合近年来各位学者的发表的论文,目前系统稳定性分析有以下集中: 1、李普亚诺夫法:基于直接法的离散时间(D-T)和连续时间模糊控制的稳定性分析和设计方法,相对而言起稳定条件比价保守.

模糊控制技术现状及研究热点

模糊控制技术发展现状及研究热点 摘要:综合介绍丁模糊控制技术的基本原理和发展状况,重点总结丁近年来该研究领域的热点问题,并对今后的发展前景进行了展望。 关键词:模糊控制结构分析稳定性白适应控制 1模糊控制的热点问题 模糊控制技术是一项正在发展的技术,虽然近年来得到了蓬勃发展,但它也存在一些问题,主要有以下几个方面: (1)还投有形成完挫的理论体系,没有完善的稳定性和鲁棒性分析,系统的设计方法(包括规则的获取和优化、隶属函数的选取等); (2)控制系统的性能小太高(稳态精度牧低,存在抖动及积分饱和等问题): (3)自适应能力有限。目前,国内外众多专家学者围绕着这些问题展开了广泛的研究,取得了一些阶段性成果,下面介绍一下近期的主要研究热点。 2模糊控制系统的稳定性分析 任何一个自动控制系统要正常工作,首先必须是稳定的。由于模糊系统本质上的非线性和缺乏统一的系统描述,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和设计。因此,模糊控制理论的稳定性分析一直是一个难点课题,未形成较为完善的理论体系。正因为如此,关于模糊系统的稳定性分析近年来成为众人关注的热点,发表的论文较多,提出了各种思想和分析方法。目前模糊控制系统稳定性分析方法主要有以下几种:(1)李亚普诺夫方法 (2)基于滑模变结构系统的稳定性分析方法 (3)描述函数方法 (4)圆稳定性判据方法 模糊控制系统的稳定性分析还有相平面法、关系矩阵分析法、超稳定理论、Popov判据、模糊穴——穴映像、数值稳定性分析方法以及最近出现的鲁棒控制理论分析方法和LMI(矩阵不等式)凸优化方法等。

3自适应模糊控制器的研究 为了提高模糊控制系统的自适应能力,许多学者对自适应模糊控制器进行了研究,研究方向主要集中在以下方面。 (1)自校正模糊控制器 自校正模糊控制器是在常规模糊控制的基础上,采用加权推理决策,并引入协调因子,根据系统偏差e和偏差变化ec的大小,预测控制系统中的不确定量并选择一个最佳的控制参数或控制规则集,在线自动调整保守和大胆控制的混合程度,从而更全面确切地反映出入对诸因素的综合决策思想,提高系统的控制精度和鲁捧性能。目前这种变结构的自校正模糊控制器是根据被调量e和ec在线选取最佳控制规则及控制决策的,而对于一些复杂的生产过程,其生产工艺和环境因素都较为复杂,往往不能只考虑系统的偏差和偏差变化率来确定其控制策略。难于总结出比较完整的经验,此时模糊控制规则或者缺乏,或者很粗糙,并且当被控对象参数发生变化或受到随机干扰影响时,都会影响模糊控制的效果。 (2)自组织模糊控制器 自组织模糊控制器能自动对系统本身的参数或控制规则进行调整,使系统不断完善,以适应不断变化的情况,保证控制达到所希望的效果。它根据自动测量得到的实际输出特征和期望特征的偏差,确定输出响应的校正量并转化控制校正量,调整模糊控制规则,作用于被控对象。其基本特征是:控制算法和规则可以通过在线修改,变动某几个参数可以改变控制结果。它不仅仅是局限于某个对象,而是通过自组织适应几类对象。有代表性为以下三种类型: ①为自校正模糊控制器:在常规模糊控制中增加系统辨别和修正控制功能。通过使用一个较为粗糙的初期模型,经过模糊控制器的自组织功能,达到在线修正模糊控制规则,完善系统性能,使其达到灿期的要求; ②自调整比例因子模糊控制器:通过调整系统偏差及偏差变化率的比例因子来控制模糊控制器中的输出量的比例系数,即改变系统的增益。它充分体现了操作者手动控制的思维特点和控制策略,保证了系统有良好的动态性和稳态精度; ③模糊自整定PID参数控制器:应用模糊集理论,根据系统运行状态,在线整定控制器PID 参数(KP、KI、KD)。由于模糊自整定参数KP、KI,KD与偏差e变化率ec间建立起在线自整定函数关系,且这种关系是根据人的经验和智慧积累起来的,使系统在不同的运动状态下能对

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

(完整版)模糊控制技术的发展及前景展望

模糊控制技术的发展与 前 景 展 望

模糊控制技术发展现状与前景展望 1.引言 人的手动控制策略是通过操作者的学习,实验以及长期经验积累而形成的,他通过人的自然语言来叙述。由于自然语言具有模糊性,所以,这种语言控制也被称为模糊语言控制,简称模糊控制。 近年来,对于经典模糊控制系统稳态性能的改善,模糊集成控制,模糊自适应控制,专家模糊控制与多变量模糊控制的研究,特别是对复杂系统的自学习与参数自调整模糊系统方面的研究,受到各国学者的重视。人们将神经网络和模糊控制技术相结合,形成了一种模糊神经网络技术,他可以组成一组更接近于人脑的智能信息处理系统,其发展前景十分广阔。 2.模糊控制的热点问题 模糊控制技术是一项正在发展的技术,虽然近年来得到了蓬勃发展,但它也存在一些问题,主要有以下几个方面 (1) 还没有有形成完整的理论体系,没有完善的稳定性和鲁棒性分析、系统的设计方法(包括规则的获取和优化、隶属函数的选取等); (2) 控制系统的性能不太高(稳态精度较低,存在抖动及积分饱和等问题); (3) 自适应能力有限。目前,国内外众多专家学者围绕着这些问题展开了广泛的研究,取得了一些阶段性成果,下面介绍一下近期的主要研究热点。 2.1 模糊控制系统的稳定性分析 任何一个自动控制系统要正常工作,首先必须是稳定的。由于模糊系统本质上的非线性和缺乏统一的系统描述,使得人们难以利用现有的控制理论和分析方法对模糊控制系统进行分析和设计,因此,模糊控制理论的稳定性分析一直是一个难点课题,未形成较为完善的理论体系。正因为如此,关于模糊系统的稳定性分析近年来成为众人关注的热点,发表的论文较多,提出了各种思想和分析方法。目前模糊控制系统稳定性分析方法主要有以下几种: (1) 李亚普诺夫方法 基于李亚普诺夫直接方法,许多学者讨论了离散时间和连续时间模糊控制系统的稳定性分析和设计。使用李亚普诺夫线性化方法,Ying建立了包括非

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

信号配时计算过程

信号配时计算过程

本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。四个交叉口均属于定时信号配时。国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规范》推荐方法、停车线法、冲突点法共六种方法。本次设计运用的是比较经典的英国的TRRL法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。对单个交叉口的交通控制也称为“点控制”。本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要内容。在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。 柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。 其公式计算过程如下: 1.最短信号周期C m 交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期内到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。因此,C m恰好等于一个周期内损失时间之和加上全部到达车辆以

饱和流量通过交叉口所需的时间,即: 1212n m m m m n V V V C L C C C S S S =+ +++L (4-8) 式中:L ——周期损失时间(s ); ——第i 个相位的最大流量比。 由(4-8)计算可得: 111m n i L L C Y y = = --∑ (4-9) 式中:Y ——全部相位的最大流量比之和。 2.最佳信号周期C 0 最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式: 1 22(25) 32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+--- (4-10) 式中:d ——每辆车的平均延误; C ——周期长(s ); λ——绿信比。 则总延误时间为: D=qd (4-11) 若使总延误最小,则: ()0d D dC = (4-12) i i V S

PID模糊控制器发展现状综述

模糊PID控制器的发展现状综述 1模糊PID控制器研究背景 1.1PID控制器 传统的PID控制器虽然以其结构简单、工作稳定、适应性好、精度高等优点成为过程控制中应用最广泛最基本的一种控制器。PID调节规律一般都能得到比较令人满意的控制效果,尤其是对于线性定常系统的控制是非常有效的,但是它的调节品质取决于PID控制器各个参数的确定。随着工业生产过程的日趋复杂化,系统不可避免地存在非线性、滞后和时变现象,其中有的参数未知或缓慢变化,有的带有延时和随机干扰,有的无法获得较精确的数学模型或模型非常粗糙,如果使用常规的PID控制器,PID参数的整定变得十分困难甚至无法整定,因此并不能得到理想的控制效果。为此,近年来各种改进的PID控制器如自校正、自适应PID[1][2][3]及智能控制器[4]迅速发展起来,但仍存在一定的局限性。 1.2模糊控制器 随着技术的发展,模糊控制理论和模糊技术成为最广泛最有前景的应用分支之一。模糊控制器是一种专家控制系统,它的优点是不需要知道被控对象的数学模型而能够利用专家已有的经验对系统进行建模。与传统的PID控制方式相比,它适合解决一些难以建立精确数学模型、非线性、大滞后和时变的复杂过程的问题,因此得到了很好的发展,尤其是在工业控制、电力系统等领域中解决了许多实际性的问题,引起了越来越多的工程技术人员的兴趣。但是经过深入研究,会发现基本模糊控制存在着其控制品质粗糙和精度低等弊病。而且用的最多的二维输入的模糊控制器是PI或PD型控制器,会出现过渡过程品质不好或不能消除稳态误差的问题。 因此,在许多情况下,将模糊控制和PID控制两者结合起来,扬长避短,既具有模糊控制灵活、适应性强、快速性好的优点,又具有PID控制精度高的特点。把规则的条件、操作用模糊集表示,并把这些模糊控制规则及有关信息作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况,运用模糊推理,自动实现对PID参数的最佳整定,实现模糊PID控制。

交通信号配时_试卷A1(答案)

深圳职业技术学院汽车与交通学院 交通安全与智能控制专业2007级 2008-2009学年度第二学期期末考试(选修) 交通信号灯配时技术试卷A【开卷】 ——参考答案及评分标准—— 1.平面交叉路口按其类型大致分为:十字型、T型、Y型和混合型。(√)2.交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置,主要分为指挥灯信号、车道灯信号和人行横道灯信号。(√)3.在我国,城市道路分为高速公路、快速路、主干路、次干路和支路五类。(×)4.设置信号灯的目的,是使交通能安全和通畅,但信号灯设置不当,反而会造成车辆延误与交通事故的增加,因此在安装之前,必须进行必要的论证。(√)5.道路交通标线是用图形符号和文字传递特定信息,用以管理交通、指示行车方向以保证道路畅通与行车安全的设施。(×)6.平面交叉路口采用的控制方式主要有以下四种:停车让路控制、减速让路控制、信号控制、交通警察指挥控制。(√)7.城市路口采用交通信号控制的目的是从时间和空间上将车流进行分离。(×)8.城市路口交通信号控制的对象是人、车、路和环境四大因素。(×)9.在城市路口交通流量不太大的情况下一般采用定周期控制模式。(×)10.在干道信号协调控制中要考虑三个最基本的参数:公用周期时长、绿信比和相位差。(√) 二、名词解释(每小题5分,共25分)【得分:】 1.信号周期 信号周期是指信号灯色按设定的相位顺序显示一周所需的时间,即一个循环内各控制步伐的步长之和,用C表示。 2.饱和流量 饱和流量是指单位时间内车辆通过交叉口停车线的最大流量,即排队车辆加速到正常行驶速度时,单位时间内通过停车线的稳定车流量,用S表示。 3.饱和度 道路的饱和度是指道路的实际流量与通行能力之比,用表示。 4.半感应控制 只在交叉口部分进口道上设置检测器的感应控制。感应控制是在交叉口进口道上设置车辆检测器,信号灯配时方案由计算机或智能化信号控制机计算,可随检测器检测到的车流信息而随时改变的一种控制方式。

相关主题
文本预览
相关文档 最新文档