当前位置:文档之家› 定向凝固

定向凝固

定向凝固
定向凝固

定向凝固

定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。定向凝固是研究凝固理论和金属凝固规律的重要手段,也是制备单晶材料和微米级(或纳米级)连续纤维晶高性能结构材料和功能材料的重要方法。自20世纪60年代以来,定向凝固技术发展很快。由最初的发热剂法、功率降低法发展到目前广泛应用的高速凝固法、液态金属冷却法和连续定向凝固技术。现代航空发动机的涡轮叶片和导向叶片是用铸造高温合金材料制成,这类材料晶界在高温受力条件下是较薄弱的地方,这是因为晶界处原子排列不规则,杂质较多,扩散较快,于是人们设想利用定向凝固方法制成单晶,消除所有晶界,结果性能明显提高了。定向凝固技术广泛应用于高温合金、磁性材料、单晶生长、自生复合材料的制备等力面,并且在类单晶金属间化合物、形状记忆合金领域具有极广阔的应用前景。

制备方法:

1. 发热剂法

定向凝固技术的起始阶段。

基本原理:将铸型预热到一定温度后,迅速放到水冷铜底座上并立即进行浇注,顶部覆盖发热剂,侧壁采用隔热层绝热,水冷铜底座下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固。

2. 功率降低法

铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。加热时上下两部分感应圈全通电,在加入熔化好的金属液前建立所要的温度场,注入过热的合金液。然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。热量主要通过已凝固部分及底盘由冷却水带走。由于热传导能力随着离水冷平台距离的增加而明显降低,温度梯度在凝固过程中逐渐减小,所以轴向上的柱状晶较短。并且柱状晶之间的平行度差,合金的显微组织在不同部位差异较大,甚至产生放射状凝固组织。

3. 高速凝固法

装置和功率降低法相似,多了拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,挡板附近产生较大的温度梯度,局部冷却速度增大,有利于细化组织,提高力学性能。

4. 液态金属冷却定向凝固

合金在熔炼炉内熔炼后,浇入保温炉内的铸型,保温一段时间,按选择的速度将铸型拉出保温炉,浸入金属液进行冷却。在加热系统和冷却系统之间有辐射挡板,确保将加热区和冷却区隔开,使固液界面保持在辐射挡板中心附近,以实现定向凝固。

5. 流化床冷却法

液态金属冷却法采用低熔点合金冷却,成本高,可能使铸件产生低熔点金属脆性。

6. 区域熔化液态金属冷却法

在液态金属冷却法的基础上发展的一种新型的定向凝固技术。其冷却方式与液态金属冷却法相同,但改变了加热方式,利用电子束或高频感应电场集中对凝固界面前沿液相进行加热,充分发挥过热度对温度梯度的贡献,从而有效地提高了固液界面前沿温度梯度,可在较快的生长速率下进行定向凝固,可以使高温合金定向凝固一次枝晶和二次枝晶间距得到非常明显的细化。但是,单纯采用强制加热的方法以求提高温度梯度从而提高凝固速度,仍不能获得很大的冷却速度,因为需要散发掉的热量相对而言更多了,故冷却速度提高有限。

7. 激光超高温度梯度快速定向凝固

激光能量高度集中的特性,使它具备了在作为定向凝固热源时可能获得比现有定向凝固方法高得多的温度梯度的可能性。

激光束作为热源,加热固定在陶瓷衬底上的高温合金薄片,激光束使金属表面迅速熔化,达到很大的过热度。在激光表面快速熔凝时,凝固界面的温度梯度可高达5×104 K/cm。但一般的激光表面熔凝过程并不是定向凝固,因为熔池内部局部温度梯度和凝固速度是不断变化的,且两者都不能独立控制;同时,凝固组织是从基体外延生长的,界面上不同位置的生长方向也不相同。

8. 连续定向凝固

将结晶器的温度保持在熔体的凝固温度以上,绝对避免熔体在型壁上形核,熔体的凝固只在脱离结晶器的瞬间进行。随着铸锭不断离开结晶器,晶体的生长方向沿热流的反方向进行。

可以得到完全单方向凝固的无限长柱状组织;铸件气孔、夹渣等缺陷较少;组织致密,消除了横向晶界。但它的局限性在于依赖于固相的导热,所以只适用于具有较大热导率的铝合金及铜合金的小尺寸铸锭。

9. 电磁约束成形定向凝固

利用电磁感应加热直接熔化感应器内的金属材料,利用在金属熔体表层部分产生的电磁压力来约束已熔化的金属熔体成形。

无坩埚熔炼、无铸型、无污染的定向凝固成形,可得到具有柱状晶组织的铸件,同时还可实现复杂形状零件的近终成形。

但对某些密度大、电导率小的金属,实现完全无接触约束时,约束力小,不容易实现稳定的连续的凝固。

10. 深度过冷定向凝固

装有试样的坩埚装在高频线圈中循环过热,使异质核心通过蒸发与分解去除;或通过净化剂的吸附消除和钝化异质核心,获得深过冷的合金熔体。

再将坩埚的底部激冷,底部先形核,晶体自下而上生长,形成定向排列的树枝晶骨架,残余的金属液向已有的枝晶骨架上凝固,最终获得了定向凝固组织。

3.1定向凝固的理论基础

在定向凝固过程中,随着凝固速度的增加,固液界面的形态由低速生长的平面晶i胞晶i枝晶i细胞晶i高速生长的平面晶变化。无论是哪种固液界面形态,保持固液界面的稳定性对材料的制备和材料的力学性能非常重要。因此,固液界面稳定性是凝固过程中一个十分重要的科学问题。低速生长的平面晶固液界面稳定性可以用成分过冷理论来判定,高速生长的平面晶同液界面稳定性可以用绝对稳定性理论来判定。但到目前为止,关于胞晶、枝

晶、细胞晶固液界面稳定性问题,

尚没有相应的判定理论体系。

3.1.1成分过冷

成分过冷理论能成功地判定

低速生长条件下无偏析特征的平

面凝固,避免胞晶或枝晶的生长。

20世纪50年代Chalmers、Tiller

等人首次提出单相二元合金成分

过冷理论。固液界面液相区内形成

成分过冷的条件主要有两个方面:

一是由于溶质在固相和液相中的

固溶度不同,速溶质原子在液相中固溶度大,在固相中固溶度小,当单相合金冷却凝固时,溶质原子被排挤到液相中去,在固液界面液相一侧堆积着溶质原子,形成溶质原子的富集层。随着离开固液界面距离的增大,溶质质量分数逐渐降低,这时固液界面前沿平衡液相线温度的分布如图3-l(b)所示。二是在凝固过程中,由于外界冷却作用,在固液界面液相一侧不同位置上实际温度不同,外界冷却能力强,实际温度低;相反,实际温度则高。如果在固液界面液相一侧,溶液中的实际温度低于平衡时液相线温度,出现过冷现象。这种由于成分变化引起的过冷称为成分过冷。在无成分过冷条件下,溶液中的实际温度T a 和平衡时液相线温度T L 分布如图3-1(c)所示。为了与单纯由于温度引起的过冷相区别,从图3-l(d)可以看出,在溶液中的实际温度低于平衡时液相线温度的区间称为成分过冷区。此时在固液平界面上由于成分过冷的作用,可能形成突起并不断地长大,从而破坏了固液平界面的凝固。 在无对流条件下,稳定态时固液平界面液相一侧中的溶质质量分数为

00

10(1

)

R D

L x k L k w w e --=+ (3-1) 则液相一侧中的浓度梯度为

000

(1)

(

)

L

L

w k dw v

x dx D k -==-? (3-2)

式中 v ——固液界面的生长速率

w L ——液相溶质质量分数;

w 0——温度T 1下的平衡溶质质量分数; D L ——溶质在液相中的扩散系数; k 0——溶质平衡分配系数。 当固液平界面处于平衡时,

0()()L

L dw dw x L x dx dx m === (3-3) 式中 T L ——单相合金液相线的温度;

m L ——单相合金液相线的斜率。

如果没有成分过冷,固液界面液相一侧的实际温度梯度G L 应等于或大0

(

)

L

dT x dx =。 即 0()L dT

x dx G =≥ (3-4)

或 000(1)

L L

L

m w k G v

k D *-≥

(3-5) 如果固液界面处存在液体对流,稳态时固液界面处液相一侧有成分过冷的条件为

0(1)

L L L

L

m w k G v

D *-≥

(3-6) 式中,L w *

是固液界面平衡时固液界面处溶质质量分数。

图3-2为Pd-Sn 系平面凝固的条件。随着溶质Sn 质量分数的增加,固液界面稳定因子

(GL /v )值要增大,这样才能维持平面凝固条件,抑制胞晶的形成。图3-2中的直线斜率应为00/(1)L L k D m k -。如果从手册中查出液相线斜率和平衡溶质分配系数,就可从图3-2中斜率求出平衡时溶质在液相中的扩散系数D L 。例如,Pb 在Sn 中的D L 值为2.3×10-5

㎝2

s ,从斜率中可知D L 为2×10-5㎝2

/s ,十分接近,这间接证明了成分过冷理 论是正确的。

图3-2 Pb-Sn 系的平面凝固条件 ψ单位为㎝/s ,G L 单位为℃/㎝

图3-3界面干扰的波形

?—扰动角频率;δ—扰动振幅

多元系的单相合金凝固和二元单相合金凝固一样,只要温度梯度足够高,凝固速率是够慢,可以得到平界面凝固。Coates 等人做了这方面的工作,在无成分过冷、忽略溶质元素相互作用对各自扩散系数影响的条件下,推导出多元单相合金平界面凝固稳定性判据

1

(1)

n

Li Li i L

i i Li

m k G k D ωυ

=-≥-

(3-7)

式中 w Li ——溶质组元i 在液相中质量分数;

m Li ——w Li 固定后的液相面斜率; D Li ——组元i 的液相扩散系数; k i ——组元i 的溶质分配系数。 一般来讲,成分过冷理论对判断固液平界面稳定性是适用的,由于这一判据是在一定假设条件基础上推导,存在如下局限:

(1) 成分过冷理论是以热力学平衡态为基点的理论,不能作为描述动态界面的理论依据; (2) 在固液界面上局部的曲率变化将增加系统的自由能,而这一点在成分过冷理论中被忽略了;

(3) 成分过冷理论没有说明界面形态改变的机制。

快速凝固新领域的出现,发现上述理论已不能适用。因为快速凝固时ψ值很大,按成分过冷理论,G L /ψ值愈来愈小,更应该出现树枝晶,但实际情况是

快速凝固后,固液界面反而稳定起来,产生无特征无偏析的组织,得到成分均匀的材料。 3.1.2绝对稳定性理论

Mullins 和Sekerka 鉴于成分过冷理论存在不足,提出一个考虑溶质浓度场和温度场、固液界面能以及界面动力学的新理论。在运算时,假定固液界面处于局域平衡,表面能为各向同性、无对流,在固液平界面上有干扰,其干扰波形是正弦波,

如图3-3所示。固液界面处温度为

*L T =*S T =m T T +?=m m T T -Γρ (3-8)

式中 *

L T ——固液界面处液相温度;

*

S T ——固液界面处固相温度;

m T ——固液界面为平界面时的熔点; Γ——Cibbs-Thomson 常数;

ρ——曲率,曲面凹向液相时为正。 绝对稳定性理论推导出固液界面失稳的条件为

22L L C

m D m G T k

υ≤Γ (3-9)

式中G c ——溶质质量分数梯度。

如果有两种溶质原子同时存在,则固液界面绝对稳定性条件为

222

1112222

12

11m C L C T D mL G D m G k k υ

Γ≥+ (3-10) 式中 D 11、D 22——分别为组元l 和2在液相中扩散系数;

k 1、k 2——分别为组元1和2的溶质分配系数;

m L1、m L2——分别为合金液的凝固温度对组元l 和2质量分数的偏导数; G cl 、G c 2——分别为组元l 和2的质量分数梯度。 根据绝对稳定性理论,可概括总结出下列几点:

(1) 快速凝固时,界面张力总是起到稳定固液界面的作用; (2) 快速凝固时,溶质原子总是起到破坏固液界面稳定的作用;

(3) 平衡溶质分配系数愈小,对绝对稳定区的平面凝固条件要比成分过冷区的平面凝固条件愈苛刻;

(4) 快速凝固时,宏观的扩散边界层变得很小,大约只有几个原子层。固液界面前进的速率超过溶质原子在液相中的扩散速率,使在固液界面的局部平衡不起作用,就会发生完全的溶质截留。

绝对稳定性理论虽然已能应付快速凝固时的平界面凝固条件,但尚在不断完善中。如这个理论只适合稀溶液,即低溶质质量分数的情况,并且忽略了凝固速率对溶质分配系数的影响。Trived 和kurz 对溶质质量分数高的合金和接近金属间化合物成分的合金进行了初步理论分析。对于稀溶液,溶质分配系数k 和成分无关;对溶质质量分数高的合金和接近金属间

化合物成分的合金,这种处理不够严格,应用区域化分配系数k *代替常数k 0,k *

的计算公式可以表示为

S

L

dw

dw k *= (3-11)

因为w S 和w L 只是温度的函数,k *

可写为

L

S m m k *=

(3-12)

在快速凝固时,高过冷会影响凝固速率,从而改变温度场,在绝对稳定理论中也把凝固速率视作常数。此外在推导时,假定固液界面是正弦渡形,是否符合所有实际情况也需进一步证实。

王自东和胡汉起在绝对稳定性理论基础上,对固液界面稳定性进一步分析后认为:在快速凝固条件下,当固液界面前沿扰动振幅δi 0,其扰动频率?i 0,即扰动波长λ i 0,这时固液界面为平面,即是准平面晶;而慢速凝固(近平衡凝固)时的固液平界面是扰动振幅δi 0,扰动频率?i 0,扰动波长λ i 0,这就是慢速凝固时的平界面与快速凝固准平面晶的本质区别。在慢速凝固条件下,固液界面能常数Γ 对界面起稳定作用,这一点不难理解;在快速凝固条件下,固液界面能常数Γ 是促进固液界面产生分岔,当固液界面产生无穷分岔即扰动频率?i 0 ,这时固液界面达到稳定的准平面晶。从这个意义来说,界面能常数Γ 对固液界面也是起稳定作用。 3.1.3胞晶、枝晶生长

在胞晶、枝晶生长过程中,有三个特征长度影响定向凝固的组织:

(1) 溶质扩散长度l S

L D S v

l =

(3-13)

式中 D L ——扩散系数; v ——凝固速率。 (2) 热扩散长度l T

0L

T T G l ?=

(3-14)

式中 △T 0——平衡凝固温度区间; G L ——液相温度梯度。 (3) 毛细管长度l C ,对纯金属

C

h l Γ

?=

(3-15)

式中 Γ——Gibbs-Thomson 数,界面能和液固相变体积熵之比; △h ——金属合金凝固时结晶潜热。 如某一单相台金,△T 0=10K ,D L =5×10-9m /s ,Γ=10-7K ·m ,则不同G L 和v 下,其特征长度如表3-l 所示。

表3-l 某一单相台金的特征长度

在单相合金凝固过程中,其组织特征长度l i 可用溶质扩散长度l S 、热扩散长度l T 、毛细管长度l C 表示为

()()()

a b c i T S C l A l l l = (3-16) 式中A 为比例常数;a +b +c = l 。

Trivedi 和Kurz 把各种组织特征长度指数收集在表3-2中。

表 3-2各种组织特征长度的指数

在定向凝固过程中,固液界面失稳的临界条件可用特征长度表示为: (1) 低v 时,服从成分过冷理论,平界面向胞晶转化条件为:l S =l i ; (2) 高v 时,服从绝对稳定理论,胞晶向平界面转化条件为:l S =kl C ; (3) 低 v 时,胞晶向枝晶转化条件为:l S =kl T ; (4) 高 v 时,枝晶向胞晶转化条件为:l S =α l C 。

在式(3-16)中的比例常数A 是一个无量纲参数,对热作用的枝晶生长1

2(2/)A δ*=,对

溶质作用的枝晶生长1

2

()

A k δ*

= 。在上述两个公式中又引出一个十分重要的参数δ *,是

枝晶尖端选择参数,在低速凝固时它可分别表示为:

(1) 在热扩散控制的情况下,当固相热导率λS 与液相热导率λL 相等,即λS =λL 时,

/22()L L

h c

t t vr αδ?*Γ= (3-17)

式中 v ——生长速率;

r t ——枝晶尖端半径; c L ——液相的质量热容; α L ——液相热扩散系数。

(2) 由溶质扩散控制的情况,当固相扩散系数D S 远远小于液相扩散系数D L ,即D s ''D L 时,

2

01

2t S L k T r D υδ*??

?= ?Γ??

(3-18)

对某一单相合金系统,δ*可以表示为合余成分、生长速率ψ、s t δδ**

和的函数,即

t c s 0121=T t ωξξδδωδβ***????????

+ ??? ? ???

?????? (3-19)

式中?1——枝晶尖端溶质质量分数; ?0——合金溶质质量分数; β——0.51S L λλ??????

+??

???????

; L λ、s λ——分别为液相和固相的热导率;

?c ——溶质贝克莱(Peclet)数P eC 的函数; 0

c 1/2

2e 2k =1-

11+12k C P υ

ξδ*????-+?? ?????

t

e r 2C L

P D υ=

s

L

k υωω=

?T ——液体温度贝克莱(Peclet )数P Et 的函数;

12

1111eT T P δξ*??+ ? ?????

??=-????

2t L vr eT P α=

式中 D L ——液相溶质扩散系数; α L —— 液相热扩散率; r t ——枝晶尖端半径; v ——生长速率。

δ*最早由Langer 和Muller-krumbhaar 提出。引入一个无量纲参数δ,其物理意义是决定偏离稳态界面形态的程度。

2t

r T C l l

δ= (3-20)

当δ=δ*,枝晶尖端变为稳定;当δ>δ*,分枝现象减弱;当δ<δ*,表示不稳定,枝晶尖端分裂,出现新的分枝,间距减小。δ*的值在0.025左右已被很多研究者所证明,如Mullins 和Sekerka ,Huang 和Glickman 等,表3-3列出实验求得的一些δ*值。

表3-3 实验求得的δ *

将保温炉的加热器分成几组,保温炉是分段加热的。当熔融的金属液置于保温炉内后,在从底部对铸件冷却的同时,自下而上顺序关闭加热器,金属则自下而上逐渐凝固,从而在铸件中实现定向凝固。通过选择合适的加热器件,可以获得较大的冷却速度,但是在凝固过程中温度梯度是逐渐减小的,致使所能允许获得的柱状晶区较短,且组织也不够理想。加之设备相对复杂,且能耗大,限制了该方法的应用

为了改善功率降低法在加热器关闭后,冷却速度慢的缺点,在Bridgman 晶体生长技术的基础上发展成了一种新的定向凝固技术,即快速凝固法。该方法的特点是铸件以一定的速度从炉中移出或炉子移离铸件,采用空冷的方式,而且炉子保持加热状态。这种方法由于避免了炉膛的影响,且利用空气冷却,因而获得了较高的温度梯度和冷却速度,所获得的柱状晶间距较长,组织细密挺直,且较均匀,使铸件的性能得以提高,在生产中有一定的应用。

该方法采用在距液固界面极近的位置处设置感应线圈进行强制加热,使金属局部熔化过热,产生的熔化区很窄,从而将液固界面位置下压,同时使液相中的最高温度尽量靠近凝固界面,启动抽拉装置,不断地向下抽拉熔化的试样进入液态合金中冷却。ZMLMC 定向凝固装置最高温度梯度可达1300K/cm ,最大冷却速度可达50K/s ,凝固速率可在61000μm/s 内调节。目前这方面的研究还都处于试验阶段,要进一步广泛应用,还有待于进一步的努力和改进。

通过加入元素,使金属成为(在一定的工艺条件下)具有预期性能的合金。为保证钢的各种物理、化学性能,向钢中加入合金添加剂将其成分调整到规定范围的操作。那些在普通钢中没有的或含量较少的元素(C、Si、Mn、S或P)都属于合金元素。合金添加剂既可以是纯的材料(镍、铜、铝、石墨粉等),也可以是铁合金(锰铁、硅铁、钒铁、铬铁等),也可是合金元素的化合物(氧化物、碳化物、氮化物等)。在炼钢生产中,一般脱氧与合金化几乎同时进行,有时不可能把脱氧元素与合金元素截然分开。但脱氧与合金化二者的目的和物理化学反应过程是不同的

Ni

基耐热合金是在

Ni-Cr

合金的基础上发展起来的。

NCr20

合金在

1000

1100

℃仍有相当高的抗氧化能力,

室温强度也不

(表

1-11

但在

800

℃的持久强

度(

σ

100

)却很低,几乎与纯

Ni

相同。加入少量

Ti

Al

,抗氧化能力不变,

但高温强度却显著提高,这就是抗氧化的耐热合金

GH3030

GH3030

合金的

A1

含量分别提高到

2.5

%和

0.75

%,

γ

'

相的体积分数

增高,

可以热处理强化,

就变成了

“尼莫尼克”

Nimonic

型合金

GH32

GH32

金再加入

0.005~0.015

B

0.1%Ce

晶界得到了进一步强化,就变成了

GH4033

Nimonic

合金

GH32

加入难熔金属

W

Mo

Nb

,使之进一步固溶强化,提高

再结晶温度,阻止

γ

'

相吞并长大,耐热性也随之提高。这就是复杂合金化的耐热合金

GH4037

GH3039

GH4037

还提高了

Al

含量,热强度和抗氧化能力都得

到了改善;加入的

V

对强度的影响不大,但能改善锻造性能。

定向凝固技术的研究进展

定向凝固技术的研究进展 材料的使用性能是由其组织形态来决定的。因此.包括成分调整在内,人们通过控制材料的制备过程以获得理想的组织从而使材料具有所希望的使用性能,控制凝固过程已成为提高传统材料的性能和开发新材料的重要途径。定向凝固技术由于能得到一些具有特殊取向的组织和优异性能的材料,因而自它诞生以来得到了迅速的发展[1] ,目前已广泛地应用于半导体材料、磁性材料以及自身复合材料的生产[2-3] 。同时,由于定向凝固技术的出现,也为凝固理论的研究和发展提供了实验基础(由于理论处理过程的简单化),因为在定向凝固过程中温度梯度和凝固速率这两个重要的凝固参数能够独立变化,从而可以分别研究它们对凝固过程的影响。此外,定向凝固组织非常规则,便于准确测量其形态和尺度特征。 本文评述了定向凝固技术的发展过程及其在材料的研究和制备过程中的应用,指出了传统定向凝固技术存在的问题和不足,并介绍了在此基础上新近发展起采的新型定向凝固技术及其应用前景。 1 传统的定向凝固技术 1.1 炉外结晶法(发热铸型法) [4] 所谓的炉外结晶法就是将熔化好的金属液浇入一侧壁绝热,底部冷却,顶部覆盖发热剂的铸型中,在金属液和已凝固金属中建立起一个自上而下的温度梯度,使铸件自上而下进行凝固,实现单向凝固。这种方法由于所能获得的温度梯度不大,并且很难控制,致使凝固组织粗大,铸件性能差,因此,该法不适于大型、优质铸件的生产。但其工艺简单、成本低,可用于制造小批量零件。 1.2 炉内结晶法 炉内结晶法指凝固是在保温炉内完成,具体工艺方法有:

1.2.1 功率降低法(PD法) [5] 将保温炉的加热器分成几组,保温炉是分段加热的。当熔融的金属液置于保温炉内后,在从底部对铸件冷却的同时,自下而上顺序关闭加热器,金属则自下而上逐渐凝固,从而在铸件中实现定向凝固。通过选择合适的加热器件,可以获得较大的冷却速度,但是在凝固过程中温度梯度是逐渐减小的,致使所能允许获得的柱状晶区较短,且组织也不够理想。加之设备相对复杂,且能耗大,限制了该方法的应用。 1.2.2 快速凝固法(HRS) [6] 为了改善功率降低法在加热器关闭后,冷却速度慢的缺点,在Bridgman晶体生长技术的基础上发展成了一种新的定向凝固技术,即快速凝固法。该方法的特点是铸件以一定的速度从炉中移出或炉子移离铸件,采用空冷的方式,而且炉子保持加热状态。这种方法由于避免了炉膛的影响,且利用空气冷却,因而获得了较高的温度梯度和冷却速度,所获得的柱状晶间距较长,组织细密挺直,且较均匀,使铸件的性能得以提高,在生产中有一定的应用。 1.2.3 液态金属冷却法(LMC法) [7] HRS法是由辐射换热来冷却的,所能获得的温度梯度和冷却速度都很有限。为了获得更高的温度梯度和生长速度。在HRS法的基础上,将抽拉出的铸件部分浸入具有高导热系数的高沸点、低熔点、热容量大的液态金属中,形成了一种新的定向凝固技术,即LMC法。这种方法提高了铸件的冷却速度和固液界面的温度梯度,而且在较大的生长速度范围内可使界面前沿的温度梯度保持稳定,结晶在相对稳态下进行,能得到比较长的单向柱晶。 常用的液态金属有Ga—In合金和Ga—In—Sn合金,以及Sn液,前二者熔点低,但价格昂贵,因此只适于在实验室条件下使用。Sn液熔点稍高(232℃),但由于价格相对比较便宜,冷却效果也比较好,因而适于工业应用。该法已被美国、前苏联等国用于航空发动机叶片的生产[8] 。

材料成型期末复习题

《材料成型基础》复习题 成型—利用局部变形使坯料或半成品改变形状的工序 一、金属液态成型 1. 何谓铸造**?铸造有哪些特点?试从铸造的特点分析说明铸造是生产毛坯的主要方法? 答:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成形方法,称为铸造1)可以生产出形状复杂,特别是具有复杂内腔的零件毛坯,如各种箱体、床身、机架等。 2)铸造生产的适应性广,工艺灵活性大。工业上常用的金属材料均可用来进行铸造,铸件的重量可由几克到几百吨,壁厚可由0.5mm到1m左右。 3)铸造用原材料大都来源广泛,价格低廉,并可直接利用废机件,故铸件成本较低。 缺点1)铸造组织疏松、晶粒粗大,内部易产生缩孔、缩松、气孔等缺陷,因此,铸件的力学性能,特别是冲击韧度低于同种材料的锻件。2)铸件质量不够稳定。 2. 何谓合金的铸造性能**?它可以用哪些性能指标来衡量**?铸造性能不好,会引起哪些缺陷? 铸造性能——合金易于液态成型而获得优质铸件的能力。 合金的铸造性能包括金属的流动性、凝固温度范围和凝固特性、收缩性、吸气性等。 3. 什么是合金的流动性**?影响合金流动性的因素有哪些?(P2) 流动性流动性是指熔融金属的流动能力;合金流动性的好坏,通常以“螺旋形流动性试样”的长度来衡量 流动性的影响因素1)合金的种类及化学成分{1、越接近共晶成分,流动性就越好。2、选用结晶温度范围窄的合金,以便获得足够的流动性。}2)铸型的特点3)浇注条件 4. 从Fe-Fe3C相图分析,什么样的合金成分具有较好的流动性**?为什么? 越接近共晶合金流动性越好。 凝固温度范围越窄,则枝状晶越不发达,对金属流动的阻力越小,金属的流动性就越强 5. 试比较灰铸铁、碳钢和铝合金的铸造性能特点。 6. 铸件的凝固方式依照什么来划分?哪些合金倾向于逐层凝固? 1. 合金的凝固方式(1)逐层凝固方式(图1-5a)合金在凝固过程中其断面上固相和液相由一条界线清楚地分开,这种凝固方式称为逐层凝固。常见合金如灰铸铁、低碳钢、工业纯铜、工业纯铝、共晶铝硅合金及某些黄铜都属于逐层凝固的合金。 2)糊状凝固方式(图1-5c)合金在凝固过程中先呈糊状而后凝固,这种凝固方式称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄铜等都是糊状凝固的合金。 (3)中间凝固方式(图1-5b)大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口铸铁等具有中间凝固方式。 7. 缩孔和缩松是怎样形成的?可采用什么措施防止? 形成缩孔和缩松的主要原因都是液态收缩和凝固收缩所致;防止措施:a)采用定向凝固的原则b)合理确定铸件的浇注位置、内浇道位置及浇注工艺c)合理应用冒口、冷铁和补贴 8. 合金收缩由哪三个阶段组成**?各会产生哪些缺陷?影响因素有哪些?如何防止? 1.液态收缩金属在液态时由于温度降低而发生的体积收缩。 2. 凝固收缩熔融金属在凝固阶段的体积收缩。液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。 3. 固态收缩金属在固态时由于温度降低而发生的体积收缩。固态收缩对铸件的形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。 二)影响收缩的因素1. 化学成分不同成分的合金其收缩率一般也不相同。在常用铸造合金中铸钢的收缩最大,灰铸铁最小。 2. 浇注温度合金浇注温度越高,过热度越大,液体收缩越大。 3. 铸件结构与铸型条件铸件冷却收缩时,因其形状、尺寸的不同,各部分的冷却速度不同,导致收缩不一致,且互相阻碍,又加之铸型和型芯对铸件收缩的阻力,故铸件的实际收缩率总是小于其自由收缩率。这种阻力越大,铸件的实际收缩率就越小。 缩孔、缩松的防止措施 9. 何谓同时凝固原则和定向(顺序)凝固原则**?对图1所示阶梯型铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。

定向凝固技术及其应用

定向凝固技术及其应用 1.定向凝固理论基础及方法 定向凝固又称定向结晶,是指金属或合金在熔体中定向生长晶体的一种方法。定向凝固技术是在铸型中建立特定方向的温度梯度,使熔融合金沿着热流相反的方向,按要求的结晶取向进行凝固铸造的工艺。它能大幅度地提高高温合金综合性能。定向凝固的目的是为了使铸件获得按一定方向生长的柱状晶或单晶组织。定向凝固铸件的组织分为柱状、单晶和定向共晶3种。要得到定向凝固组织需要满足的条件,首先要在开始凝固的部位形成稳定的凝固壳,凝固壳的形成阻止了该部位的型壁晶粒游离,并为柱状晶提供了生长基础,该条件可通过各种激冷措施达到。其次,要确保凝固壳中的晶粒按既定方向通过择优生长而发展成平行排列的柱状晶组织,同时,为使柱状晶的纵向生长不受限制,并且在其组织中不夹杂有异向晶粒,固液界面前方不应存在生核和晶粒游离现象。这个条件可通过下述措施来满足:(1)严格的单向散热。要使凝固系统始终处于柱状晶生长方向的正温度梯度作用下,并且要绝对阻止侧向散热,以避免界面前方型壁及其附近的生核和长大。(2)要有足够大的液相温度梯度与固液界面向前推进速度比值以使成分过冷限制在允许的范围内。同时要减少熔体的非均质生核能力,这样就能避免界面前方的生核现象,提高熔体的纯净度,减少因氧化和吸氧而形成的杂质污染,对已有的有效衬底则通过高温加热或加入其他元素来改变其组成和结构等方法均有助于减少熔体的非均质生核能力。(3)要避免液态金属的对流。搅拌和振动,从而阻止界面前方的晶粒游离,对晶粒密度大于液态金属的合金,避免自然对流的最好方法就是自下而上地进行单向结晶。当然也可以通过安置固定磁场的方法阻止其单向结晶过程中的对流。从这三个条件我们可以推断,为了实现定向凝固,在工艺技术上必须采取措施避免侧向散热,同时在靠近固液界面的熔体中维持较高的温度梯度。 定向生长理论和它的应用很大程度上取决于先进定向凝固技术。自从Bridgman和Stockbarger在20世纪20年达提出奠定了现代定向凝固和单晶生长技术基础的Bridgman定向凝固技术,定向凝固就被广泛运用于制备各种结构和功能材料。定向凝固技术最大的一个成果之一就是涡轮叶片的生产,这直接促进了高温合金材料设计上的巨大进步。自从这个突破后,一系列的定向凝固技术,比如:快速凝固技术(HRS),液态金属冷却(LMC)等可以提高定向凝固组织都发展起来。如今,定向凝固理论是一种重要的材料制备方法和一种研究凝固现象的有利工具。因此,研究和开发新的定向凝固方法吸引了世界范围内的材料工程师和科学家。 定向凝固方法主要有以下几种: (1)发热剂法。将型壳置于绝热耐火材料箱中,底部安放水冷结晶器。型壳中浇入金属液后,在型壳上部盖以发热剂,使金属液处于高温,建立自下而上的 凝固条件。由于无法调节凝固速率和温度梯度,因此该法只能制备晓得柱状 晶铸件。 (2)功率降低法。铸型加热感应圈分两段,铸件在凝固过程中不移动。当型壳被预热到一定过热度时,向型壳中浇入过热金属液,切断下部电源,上部继续 加热。温度梯度随着凝固距离的增大而不断减少。 (3)快速凝固法。与功率降低法的主要区别是铸型加热器始终加热,在凝固时铸件与加热器之间产生相对移动。另外,在热区底部使用辐射挡板和水冷套。 在挡板附近产生较大的温度梯度。与功率降低法相比,该法可大大缩小凝固

材料成型新技术——连续定向凝固技术 - 副本

材料成型新技术报告 学生姓名:学号: 学院:材料学院 班级:成型093 题目:连续定向凝固技术 2012 年 11月

连续定向凝固技术 绪论 金属的凝固,从传热学的角度是液态金属转变为固态的过程;从物理化学、金属学的观点就是结晶,即:形核和生长。形核过程对金属材料晶粒的大小起着至关重要的作用;晶体生长关系到凝固后微观组织的形态,由于组成金属材料的晶体形态与金属材料的性质有关,如何控制晶体生长已成为控制金属材料性能的重要手段。凝固组织的控制包括两方面的内容:(l)凝固组织形态的选择(2)控制凝固组织的尺寸、间距。 材料的使用性能是由其组织形态来决定的。因此,包括调整成分在内,人们通过控制材料的制备过程以获得理想的组织从而使材料具有所希望的使用性能,控制凝固过程己成为提高传统材料的性能和开发新材料的重要途径。定向凝固技术由于能得到一些具有特殊取向的组织和优异性能的材料,因而自它诞生以来得到了迅速的发展。同时,由于定向凝固技术的出现,也为凝固理论的研究和发展提供了实验基础,因为在定向凝固过程中温度梯度和凝固速率这两个重要的凝固参数能够独立变化,从而可以分别研究它们对凝固过程的影响。此外,定向凝固组织非常规则,便于准确测量其形态和尺度特征。 定向凝固技术是控制晶体生长、研究晶体生长行为最有效的方法,实现定向凝固的总原则为金属熔体中的热量严格的按单一方向导出,使金属或合金按柱状晶或单晶的方式生长。金属熔体在凝固过程中,为了达到单一方向生长为柱状晶的目的,除满足上述总原则外,还必须满足以下两个条件:一是凝固过程中固液界面保持为平面,在界面前沿保持足够高的温度梯度,并且使此温度梯度与柱状晶生长速度的比值足够大;二是未凝固的液体有足够的过热度,避免型壁形核,防止型壁上形成的晶体脱落形成等轴晶的核心。 定向凝固的发展历程 定向凝固过程的理论研究的出现是在1953年,那是Charlmers及其他的同事们在

定向凝固中的界面形态演化

定向凝固中的界面形态演化 引言 通常人们在研究金属及其合金的凝固时,由于金属本身的不透明性,使得人们无法动态实时观察金属内部凝固过程中凝固组织的演化与选择;而采用X射线透视或者原子力显微镜则代价较为高昂,也不可能获得对组织演化细节的清楚认识。由于熔体凝固时对流会造成材料组分上的变化,造成杂质条纹等缺陷。要获得高质量的材料,就要对凝固过程的熔体流动和其稳定性进行深入研究。借助实时观察方法对凝固过程进行实时原位观察,研究凝固过程中材料表面微观形貌和整体形态的变化以及流体运动,实现动态过程的可视化监测和测量,从中就可获得有关凝固的信息。 随着对凝固理论与晶体生长技术不断深入的研究,发现凝固形态是由晶体界面性质和凝固驱动力场的性质所完全决定的。界面性质决定了界面形态对驱动力场的响应性质,因而相似的界面性质在相似的驱动力场作用下将产生相似的动力学行为,从而导致相似的界面形态。 固--液界面可以分为两类[1]:规则界面和不规则界面。规则界面是指正常凝固条件下的平面、胞状和枝晶界面[2]。理论分析表明,只有当固--液界面能是各向异性时才能形成稳定枝晶界面[3],通常情况下大多数材料是以稳定枝晶界面生长。 当晶体沿着一定的晶向生长时,如立方晶系的<111>晶向,固--液界面能接近于各向同性[4],这时将会出现不规则界面。在这样的条件下,枝晶尖端常常随机分枝,分枝与枝晶干不对称,从而形成不规则界面。至今已经观察到几种不规则界面,如:倾斜枝晶界面、退化枝晶界面、海藻状晶体界面。 1实验方法 晶体生长室的最大平面放在x-y平面中,观察二维晶体生长。实验采用了丁二腈-5at%水来作为模拟晶体,测试开始前,试样加热至全部融化并静止一段时间冷却,使得试样内的熔质均匀化。温度通过采用SWP-T803数字控温仪控温,控温精度0.1°C,可在0°C到200°C范围内任意调节。加热至一定温度且保持恒定,试样内形成一定的温度梯度,试样放在温度梯度场中。晶体中温度的测量利用热电偶,晶体生长过程中,根据晶体界面的位置移动热电偶的位置,记录温度值,即可获得温度梯度值。 实验系统见图1,试样放入定向固系统中,使用CKX41型浮雕相衬显微镜可

材料成型复习题思考及答案

《材料成形技术基础》复习思考题 第一篇铸造 1.何谓液态合金的充型能力?充型能力不足,铸件易产生的主要缺陷有哪 些? 充型能力:液态金属充满铸型型腔,获得形状完整、尺寸精确、轮廓清晰铸件的能力。 充型能力不足,会产生浇不足、冷隔、气孔、夹渣等缺陷。 提高充型能力的方法: 1)选择凝固温度范围小的合金; 2)适当提高浇注温度、充型压力; 4)合理设计浇注系统结构; 4)铸型预热,合理的铸型蓄热系数和铸型发气量; 5)合理设计铸件结构。 2.影响液态合金充型能力的主要因素有哪些? 影响液态合金充型能力的主要因素有:流动性、铸型条件、浇注条件和铸件结构等。 3.浇注温度过高或过低,对铸件质量有何影响? 浇注温度过低,会产生浇不足、冷隔、气孔、夹渣等缺陷。浇注温度过高,液态合金的收缩增大,吸气量增加,氧化严重,容易导致产生缩孔、缩松、气孔、粘砂、粗晶等缺陷。可见,浇注温度过高或过低,都会产生气孔。 4.如何实现同时凝固?目的是什么?该原则适用于何种形状特征的铸件? 铸件薄璧部位设置在浇、冒口附近,而厚璧部位用冷铁加快冷却,使各部位的冷却速度趋于一致,从而实现同时凝固。目的:防止热应力和变形。该原则适用于壁厚均匀的铸件。 注意:壁厚均匀,并非要求壁厚完全相同,而是铸件各部位的冷却速度相近。 5.试述产生缩孔、缩松的机理。凝固温度范围大的合金,其缩孔倾向大还是缩松倾向大?与铸铁相比较,铸钢的缩孔、缩松倾向如何? 产生缩孔、缩松的机理:物理机制是因为液态收缩量+凝固收缩量>固态收缩量(或写为:体收缩量>线收缩量);工艺原因则是由于补缩不足。 凝固温度范围大的合金,其缩松倾向大。与铸铁相比较,铸钢的缩孔、缩松倾向大。 6.试述冒口与冷铁的作用。 冒口:补缩、排气。 冷铁:调整冷却速度。

快速凝固习题

1、试比较快速凝固技术和雾化制粉技术的异同 答:快速凝固指的是在比常规工艺过程中快得多的冷却速度下,金属或合金以极快的速度从液态转变为固态的过程。要求金属与合金凝固时具有极大的过冷度。 雾化制粉是以快速运动的流体(雾化介质)冲击或以其他方式将金属或合金液体破碎为细小液滴,继之冷凝为固体粉末的粉末制取方法。雾化法是生产完全合金化粉末的最好方法,其产品称为预合金粉。 快速凝固具有凝固速度快,从而可以使金属在液态中的溶解度得到扩大,这样是其材料的密度有所改变,材料各部位的组织更加的紧密,改变金属中各元素的所含比例,从而可以改变该材料的性质,使其达到某种用途的需求。由于凝固的速度比一般铸造的快,这样得到的凝固结晶会更加的细小,晶粒的分布更加的均匀,一定程度减少了杂质的混入,提高材料的质量,由于晶粒组织的优化,该材料的力学,化学性质会得到提高,从而使其得到更广的运用。由于快速凝固给材料带来的溶解度的扩大,更加精细的晶粒的析出,从而赋予了材料的高强度,高韧度,以及高耐腐蚀性。这是快速凝固技术能在工业领域得到广泛运用的硬道理。除了金属的快速凝固,还有一种快速凝固非晶态合金。其特点和上类似,可以使材料具有极高的强度,硬度。又因为其实处于非晶态,它在具有高强度的同时也具有较好的韧性。同时,因为非晶态这种特殊形态,可以使材料具有良好的半导体性能,这是传统铸造方法所不能达到的。 而雾化技术这种粉的每个颗粒不仅具有与既定熔融合金完全相同的均匀化学成分,而且由于快速凝固作用而细化了结晶结构;消除了第二相的宏观偏析。雾化制粉法分“双流法”(以雾化介质流破碎合金液流)和“单流法”(以其他方式破碎合金液流)两大类。前者的雾化介质又分气体(氦、氲、氮、空气)和液体(水、油);后者如离心雾化和溶气真空雾化。 2、试论金属热处理在快速凝固材料制备工艺中的应用 答:金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。快速凝固时由液相到固相的相变过程进行得非常快,从而获得普通铸件和铸锭无法获得的成分、相结构和显微结构的凝固过程。其从液态到固态的冷却速度大于某一临界冷却速率。通过金属热处理可以控制金属相变的过程和速率,金属热处理在快速凝固材料制备

材料成型原理复习题

综合测试题一 模具寿命与材料成形加工及材料学 一、填空题(每小题2分,共20分) 1. 目前铸造成形技术的方法种类繁多按生产方法分类,可分为砂型铸造和特种铸造。 2. 在铸造生产中,细化铸件晶粒可采用的途径有增加过冷度、采用孕育处理和附加振动。 3. 铸铁按碳存在形式分灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁等。 4. 合金在铸造时的难易程度的衡量指标合金的流动性和收缩。 5. 合金的流动性主要取决于它本身的化学成分。 6. 压力加工的加工方法主要有:冲压、锻造、轧制、拉拔和 挤压等。 7. 合金的流动性常采用浇注螺旋型标准试样的方法来衡量, 8. 流动性不好的合金容易产生浇不足、冷隔、气孔、夹渣等缺陷。 9. 液态金属的充型能力主要取决于金属的流动性,还受外部条件如浇注温度、充型压力、铸型结构和铸型材料等因素的影响,是各种因素的综合反映。 10.金属由浇注温度冷却到室温经历了液态收缩、凝固收缩和固态收缩三个相互关联的收缩阶段。 11.液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。固态收缩对铸件的形状和尺寸精度影响很大,是内应力、变形和裂纹等缺陷产生的基本原因。 12.铸造中常产生的铸造缺陷有缩孔、缩松、浇不足、裂纹、内应力、夹渣和夹砂等 13. 特种铸造相对于砂型铸造的两类特点:型模的革新和充型方式的变更。 14.常用特种铸造方法金属型铸造、压力铸造、离心铸造、消失模铸造和熔模铸造、壳型铸造等。 15.衡量金属锻造性能的两个指标塑性和变形抗力。 16.自由锻造常用设备空气锤和水压机。 17.自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割、扭转和错移等。

18.镦粗的变形特点横截面积变大,长度变短普通拔长的变形特点横截面积变小,长度变长芯轴拔长的变形特点内孔直径不变,长度变长,壁厚变薄。 19.锻造温度范围是指始锻温度与终锻温度之差。后者过低易产生加工硬化现象。 20. 锤上模锻的实质金属在模膛内成形和变形阻力大,变形不均匀。 21. 模膛的分类制坯模膛和模锻模膛。 22. 板料冲压中分离工序有冲孔、落料、剪切和修整等。变形工序有拉深、弯曲、翻边和成形等。 23. 电弧燃烧实质是指电弧的产生、运动和消失的动态平衡。 24. 电弧分为阴极区、阳极区和弧柱区三个区。 25. 直流电焊机正接极是指焊件接正极,焊条接负极。 26. 焊接冶金过程的特点反应温度高、接触面积大、冷却速度快。 27. 焊接接头是指焊缝和热影响区。焊接热影响区包括熔合区、过热区、正火区、部分相变区和再结晶区。 28. 焊接应力和变形产生的原因对焊缝区不均匀的加热和冷却。 29. 焊接变形的几种形式收缩变形、角变形、弯曲变形、扭曲变形和波浪形变形等。 30.焊接变形矫正方法机械矫正法和火焰矫正法。 31. 焊接性主要指结合性能和使用性能。 32. 估算材料焊接性常采用的方法碳当量法。 33. 焊接方法按照连接形式不同可以分为压焊、熔焊、和钎焊。 34. 埋弧自动焊使用连续送进的焊丝相当于焊条,颗粒状的焊剂相当于药皮。 35. 氩弧焊的分类熔化极电弧焊和不熔化极电弧焊。 36. 电阻焊的分类点焊、缝焊、和对焊。 37. 钎焊的分类软钎焊和硬钎焊。 二、选择题(每小题1分,共10分) 1. 式样拉断前承受的最大拉应力称为(B)。

定向凝固技术的发展与应用

定向凝固技术的发展与应用 摘要:定向凝固技术是指利用一定的设备,在一定的工艺条件下使材料的组织具有特殊取向从而获得优异性能的工艺过程。定向凝固技术是伴随着高温合金的发展而逐步发展起来的。本文综述了定向凝固技术的定向凝固理论,对比分析了不同定向凝固方法的优缺点,并从四个方面论述了提高温度梯度的途径,最后对定向凝固技术的发展及应用前景做了展望。 关键词:定向凝固;工艺特点;温度梯度;应用 1.引言 凝固是材料制备与加工的重要手段之一,先进的凝固技术为先进材料开发与利用提供了技术条件。凝固过程中包含了热量、质量和动量的传输过程,它们决定了材料凝固组织和成分分布,进而影响材料性能。近20年中,不仅开发出许多先进凝固技术,也丰富和发展了凝固理论。其中,先进凝固技术主要集中于如下几种类型:定向凝固、快速凝固与近快速凝固技术、外加物理场(压力场、电磁场、超重力或微重力场)中的凝固技术以及强制流动条件下的凝固技术等。 定向凝固技术是对金属材料进行凝固过程进行研究的重要手段之一,可用于模拟合金的凝固过程,制备高质量航空发动机定向和单晶叶片等。同时,也是研究固液界面形态及凝固组织行之有效的技术手段。 定向凝固技术的出现是涡轮叶片发展过程中的一次重大变革。铸造高温合金叶片的制造工艺经历了从等轴晶铸造到定向单晶凝固的发展过程,不仅在晶粒结构的控制上取得了很大进展,而且铸造性能也有了很大提高,常规的铸造高温合金尽管有较高的耐温能力,但材料的中温蠕变强度较低。定向凝固技术能够使晶粒定向排列,在垂直于应力方向没有晶界,同时由于沿晶粒生长的(001)方向具有最低的弹性模量,这样将大大降低叶片工作时因温度不均匀所造成的热应力,因此使蠕变断裂寿命和热疲劳强度得到很大提高,如DS Mar-M200+Hf比等轴晶合金热疲劳性能提高了8倍。此后,随着各种定向凝固技术的不断发展,固液界面前沿的温度梯度不断增大、冷却速率逐渐提高,定向生产的叶片综合性能也日益提高。 2.定向凝固理论

连续定向凝固

1连续定向凝固的基本原理 连续定向凝固技术是热型连铸即OCC法发展的高级阶段,也是目前应用较多的单晶连铸方法。其基本原理与OCC法相似,均是将结晶器的温度保持在熔体的凝固温度以上,绝对避免熔体在型壁上形核,完全消除等轴晶的来源,获得了单向凝固的柱状晶连续铸锭,熔体的凝固只在脱离结晶器的瞬间进行。随着铸锭不断离开结晶器,熔体的凝固方向沿热流的反方向进行,这种方法最大的特点是改变传统的连续铸造中冷却结晶器为加热结晶器,熔体的凝固不在结晶器内部进行。其原理见图1。 2连续定向凝固技术的特点 连续定向凝固技术的特点: (1)在铸型出口端与冷却区之间具有高的温度梯度,型内金属液的热量主要沿拉铸方向单向传输,造成有利于定向凝固的条件,可铸出长度不受限制的单晶和柱状晶铸锭。 (2)铸锭与铸型之间始终存在一层液体膜,铸锭表面在离开铸型出口一小段距离之后才自由凝固,铸锭表面光滑呈镜面状。金属液在铸型出口处凝固结壳,显著地减小铸件与型壁的磨擦磨损,可铸得表面非常光洁的复杂截面形状的薄壁型材。因此,OCC技术可以称为一种新型成形技术,可用于制造那些通过塑性加工难以成型的硬脆合金及金属间化合物等线材、板材及复杂管材等。 (3)凸出的固液界面有利于凝固过程中析出的气体及夹杂不断排向液体,不被卷入铸锭,而且不存在补缩困难的问题。因此,铸锭组织致密,无气孔、缩孔、缩松等铸造缺陷。有利于后续的冷加工,可以减少甚至消除冷加工过程中的中间退火,节省了能源,提高了生产效率。 (4)凸出的固液界面有利于引晶阶段晶体的竞争生长,易于实现多晶组织向单晶的演化。但是,由于铸锭在离开铸型时,表面仍呈液体状态,铸锭的成形依靠液膜表面张力与液体金属静压力和重力的平衡,使得该技术在具体的工艺方案及工艺控制上有其特殊性。 3连续定向凝固技术的应用 定向凝固技术的实现,对研发新型金属材料和近成型产品,进一步开发金属材料的潜力起到了积极的推动作用。 目前,世界范围内有多家企业采用该技术开发产品,如日本大阪富士公司制造的连铸单晶镁以及用于弧焊的一系列铝合金线;日本O saka FujiKogyo公司生产的Sn-Bi共晶合金的焊

定向凝固

定向凝固 定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。定向凝固是研究凝固理论和金属凝固规律的重要手段,也是制备单晶材料和微米级(或纳米级)连续纤维晶高性能结构材料和功能材料的重要方法。自20世纪60年代以来,定向凝固技术发展很快。由最初的发热剂法、功率降低法发展到目前广泛应用的高速凝固法、液态金属冷却法和连续定向凝固技术。现代航空发动机的涡轮叶片和导向叶片是用铸造高温合金材料制成,这类材料晶界在高温受力条件下是较薄弱的地方,这是因为晶界处原子排列不规则,杂质较多,扩散较快,于是人们设想利用定向凝固方法制成单晶,消除所有晶界,结果性能明显提高了。定向凝固技术广泛应用于高温合金、磁性材料、单晶生长、自生复合材料的制备等力面,并且在类单晶金属间化合物、形状记忆合金领域具有极广阔的应用前景。 制备方法: 1. 发热剂法 定向凝固技术的起始阶段。 基本原理:将铸型预热到一定温度后,迅速放到水冷铜底座上并立即进行浇注,顶部覆盖发热剂,侧壁采用隔热层绝热,水冷铜底座下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固。 2. 功率降低法 铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。加热时上下两部分感应圈全通电,在加入熔化好的金属液前建立所要的温度场,注入过热的合金液。然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。热量主要通过已凝固部分及底盘由冷却水带走。由于热传导能力随着离水冷平台距离的增加而明显降低,温度梯度在凝固过程中逐渐减小,所以轴向上的柱状晶较短。并且柱状晶之间的平行度差,合金的显微组织在不同部位差异较大,甚至产生放射状凝固组织。 3. 高速凝固法 装置和功率降低法相似,多了拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,挡板附近产生较大的温度梯度,局部冷却速度增大,有利于细化组织,提高力学性能。 4. 液态金属冷却定向凝固 合金在熔炼炉内熔炼后,浇入保温炉内的铸型,保温一段时间,按选择的速度将铸型拉出保温炉,浸入金属液进行冷却。在加热系统和冷却系统之间有辐射挡板,确保将加热区和冷却区隔开,使固液界面保持在辐射挡板中心附近,以实现定向凝固。 5. 流化床冷却法 液态金属冷却法采用低熔点合金冷却,成本高,可能使铸件产生低熔点金属脆性。 6. 区域熔化液态金属冷却法 在液态金属冷却法的基础上发展的一种新型的定向凝固技术。其冷却方式与液态金属冷却法相同,但改变了加热方式,利用电子束或高频感应电场集中对凝固界面前沿液相进行加热,充分发挥过热度对温度梯度的贡献,从而有效地提高了固液界面前沿温度梯度,可在较快的生长速率下进行定向凝固,可以使高温合金定向凝固一次枝晶和二次枝晶间距得到非常明显的细化。但是,单纯采用强制加热的方法以求提高温度梯度从而提高凝固速度,仍不能获得很大的冷却速度,因为需要散发掉的热量相对而言更多了,故冷却速度提高有限。 7. 激光超高温度梯度快速定向凝固

快速凝固技术国内外发展及其应用

快速凝固技术国内外发展及其应用 1.快速凝固技术国内外发展 随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域。 快速凝固的概念和技术源于20世纪60年代初Duwez等人的研究,他们发现某些共晶合金在平衡条件下本应生成双相混合物,但当液态合金以足够快的冷却速度凝固合金液滴被气体喷向冷却板时,则可能生成过饱和固溶体、非平衡晶体,更进一步生成非晶体。上述结果稍后被许多研究结果所证实,而且由此发现一些材料具有超常的性能,如电磁、电热、强度和塑性等方面的性能,出现了用于电工、电子等方面的非晶材料。20世纪70年代出现了用快速凝固技术处理的晶态材料,80年代人们逐渐把注意力转向各种常规金属材料的快速凝固制备上,90年代大块非晶合金材料的开发与应用取得重大进展。快速凝固技术是目前冶金工艺和金属材料专业的重要领域,也是研究开发新材料手段。 快速凝固一般指以大于 5 10 ~ 6 10 K/s的冷却速率进行液相凝固成固相,是一种非平衡的 凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。由于凝固过程的快冷、起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。加快冷却速度和凝固速率所起的组织及结构特征可以近似地用图1来表示。从上图我们不难看出,随着冷却速度的加快,材料的组织及结构发生着显著的变化,可以肯定地说,它也将带来性能上的显著变化[1]。 快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。实现快速凝固的三种途径包括:动力学急冷法;热力学深过冷法;快速定向凝固法。由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。 1.1快速凝固技术的主要方法 (1)动力学急冷快速凝固技术 动力学急冷快速凝固技术简称熔体急冷技术,其原理可以概括为:设法减小同一时刻凝固的熔体体积与其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热

定向凝固技术的发展及应用

定向凝固技术的发展及应用 摘要:定向凝固技术可使材料凝固组织按特定方向排列,获得定向及单晶组织结构,从而大大改善材料的力学和物理性能。本文详细地评述了传统定向凝固技术的发展过程和存在的问题,阐述了几种新近发展起来的新型定向凝固技术。介绍了定向凝固技术在材料制备中的应用。 关键词:定向凝固技术,温度梯度,材料制备 金属的定向凝固就是指在凝固过程中采用强制手段,在凝固金属样未凝固熔体中建立起沿特定方向的温度梯度,从而使熔体在气壁上形核后沿着与热流相反的方向,按要求的结晶取向进行凝固的技术。它是在高温合金的研制中建立和完善起来的。该技术被广泛用于获得具有特殊取向的组织和优异性能的材料,因而自其诞生以来得到了迅速的发展。应用定向凝固方法,可以得到定向组织、甚至单晶,可以明显地提高材料所需的性能。因此,定向凝固技术自其诞生以来得到了迅速的发展。 1定向凝固技术的发展过程 定向凝固技术除早期用于高温合金的研制外,后来还逐渐推广到半导体材料、磁性材料、复合材料等的研制中,并成为凝固理论研究的重要手段之一。热流的控制是定向凝固技术中的重要环节,获得并保持单向热流是定向凝固成功的重要保证。伴随着对热流控制(不同的加热、冷却方式)技术的发展,定向凝固技术经历了由炉外法、功率降低法、快速凝固法直到液态金属冷却法等的发展过程。 1.1炉外结晶法 炉外结晶法有叫发热剂法(EP法),是定向凝固技术中最原始的方法之一。Versnyder 等早在20 世纪50年代就应用于试验中。其原理是水冷模底部采用水冷铜底座,顶部覆盖发热剂,侧壁采用隔热层绝热,浇入金属液后,在金属液和已凝固金属中建立起一个自下而上的温度梯度,使铸件自下而上,实现定向凝固。由于所能获得的温度梯度小和沿高度不断减小,而且很难控制。因此,该法只可用于制造要求不高的零件。但该方法工艺简单,成本低,在小批量零件生产中任然还有应用。 1.2功率降低法(PD法) 在20世纪60年代,Versnyder等人提出了功率降低法。其原理是采用水冷底盘,上面放一个底部开放的模壳,外面套有石墨罩,石墨上套有中间抽头的两组感应线圈,在模壳上安有热电偶,在加入熔化好的金属液前,建立所要的温度场。自下而上顺序关

第三章定向凝固

第三章定向凝固技术 3、1定向凝固技术概论 定向凝固技术就是上世纪60年代,为了消除结晶过程中生成得横向晶界,从而提高材料得单向力学性能,而首先提出得。目前,定向凝固技术被广泛应用于高温合金、磁性材料、单晶生长、自生复合材料得制备。定向凝固技术得最主要应用就是生产具有均匀柱状晶组织得铸件。利用定向凝固技术制备得航空领域得高温合金发动机叶片,与普通铸造方法获得得铸件相比,它使叶片得高温强度、抗蠕变与持久性能、热疲劳性能得到大幅度提高。对于磁性材料,应用定向凝固技术,可使柱状晶排列方向与磁化方向一致,大大改善了材料得磁性能。用定向凝固方法得到得自生复合材料消除了其它复合材料制备过程中增强相与基体间界面得影响,使复合材料得性能大大提高。 定向凝固就是指在凝固过程中采用强制手段,在凝固金属与未凝固金属熔体中建立起特定方向得温度梯度,从而使熔体沿着与热流方向相反得方向凝固,最终得到具有特定取向柱状晶得技术。热流得控制就是定向凝固技术中得重要环节,获得并保持单向热流就是定向凝固成功得重要保证。伴随着对热流控制技术得发展,定向凝固技术由最初得发热剂法(EP法)、功率降低法(PD法)发展到目前广泛应用得高速凝固法(HRS法)、液态金属冷却法(LMC法)何连续定向凝固法。 3、2 定向凝固得理论基础 定向凝固就是研究凝固理论与金属凝固规律得重要手段,定向凝固技术得发展直接推动了凝固理论得发展。从Chalmers等得成分过冷到Mullins得界面绝对稳定动力学理论,人们对凝固过程有了更深刻得认识。 在定向凝固过程中,随着凝固速度得增加,固液界面得形态由低速生长平面晶→胞晶→枝晶→细胞晶→高速生长得平面晶变化。无论就是那一种固液界面形态,保持固液界面得稳定性对材料得制备与材料得力学性能非常重要。因此固液界面稳定性就是凝固过程中一个非常重要得科学问答题。低速生长得平面晶固液界面稳定性可以用成分过冷理论来判定,高速生长得平面晶固液界面稳定性可以用绝对稳定理论来判定。但就是,到目前为止,关于胞晶、枝晶、细胞晶固液界面稳定性问题,尚没有相应得判定理论。 (一)成分过冷理论 20世纪50年代Charlmers,Tiller等人首次提出单相二元合金成分过冷理论。 在固溶体合金凝固时,在正得温度梯度下,由于固液界面前沿液相中得成分差别,导致固液界面前沿得熔体得温度低于实际液相线温度,从而产生得过冷称为成分过冷。这种过冷完全就是由于界面前沿液相中得成分差别引起得。产生成分过冷必须具备两个条件:一就是固液界面前沿溶质得富集引起得成分再分配。由于溶质在固相得溶解度小于液相,当单相合金冷却凝固时,溶质原子被排挤到液相中去,在固液界面液相一侧堆积着溶质原子,形成溶质原子得富集层。随着离开固液界面距离得增大,溶质分数逐渐降低。二就是固液界面前沿液相一侧得实际温度分布低于平衡时液相线温度。在凝固过程中,由于外界冷却作用,在固液界面液相一侧不同位置上实际温度不同。外界冷却能力越强,实际温度越低;相反,实际温度则高。如果在固液界面液相一侧溶液中得实际温度低于平衡时液相线温度,由于溶质在液相一侧得富集,将出现成分过冷现象。

材料物理复习大纲复习进程

材料物理复习大纲

【一、力学】 1 材料力学性能概论 材料的力学性能是关于材料强度的一门学科,即关于材料在外加载荷(外力)作用下或载荷和环境因素(温度、介质和加载速率)联合作用下表现的变形、损伤与断裂的行为规律及其物理本质和评定方法的一门学科。 2 弹性极限σe:不产生永久变形的最大应力 比例极限σp:保持弹性比例关系的最大应力值。略小于σe; 3 弹性模量的影响因素 (1)结合键材料熔点与弹性模量的一致性关系 (2)原子结构:对金属来说,原子结构对其弹性模量影响很大弹性模量的周期性变化 (3)温度:随温度升高,弹性模量降低。 (4)相变:相变影响晶体结构,从而影响弹性模量。 相变包括:多晶型转变、有序化转变、铁磁性转变、超导态转变等。 陶瓷的弹性模量E与气孔率P的关系可表示为:E = E0e-bP式中,E0是气孔率为零时的弹性模量,b为与陶瓷制备工艺有关的常数。对连续基体内的闭气孔,经验公式为: E = E0 (1-1.9P + 0.9 P2) 4 陶瓷材料的弹性模量特点 特点一:陶瓷材料的弹性模量一般高于金属。 特点二:陶瓷材料的弹性模量,不仅与结合键有关,还与陶瓷相组成及气孔率有关。 (金属材料的弹性模量是一个非常稳定的力学性能指标)

?对两相陶瓷复合物,两相弹性模量分别为E1,E2,体积百分数分别为 V1,V2 ?当应力平行于层面,各层应变相等,复合陶瓷的平均弹性模量为: E//=E1V1+E2V2 ?当应力垂直于层面,各层的应力相等,复合陶瓷的平均弹性模量为: E⊥=E1E2/(E2V1+E1V2) 特点三:陶瓷材料压缩时的弹性模量一般高于拉伸时的弹性模量,即压缩时的曲线斜率比拉伸时大。 5 滞弹性 6 屈服强度σs:应力超过σe,材料开始出现塑性变形,当应力增至s点时,试样开始产生明显的塑性变形,在曲线上出现了水平的锯齿形的线段,表现为应力不增加,试样仍然继续塑性伸长,这种现象叫屈服。对应的强度叫屈服强度。 7 陶瓷材料的抗弯强度由于陶瓷材料塑性小,陶瓷强度主要指它的断裂强度。陶瓷弯曲试样的表面粗糙度和是否进行棱边倒角加工对抗弯强度有较大影响 8 断裂的类型正断:断裂垂直于最大正应力;切断:沿着最大切应力方向断开。 (1)张开型(或称拉伸型)裂纹 外加正应力垂直于裂纹面,在应力作用下裂纹尖端张开,扩展方向和正应力垂直。这种张开型裂纹通常简称I型裂纹。 (2)滑开型(或称剪切型)裂纹 剪切应力平行于裂纹面,裂纹滑开扩展,通常称为Ⅱ型裂纹。 (3)撕开型裂纹

定向凝固技术的研究进展

定向凝固技术的研究进展 Ξ 杨 森 黄卫东 林 鑫 周尧和 (西北工业大学)摘 要:详细地评述了传统定向凝固技术的发展过程和存在的问题,介绍了几种新近发展起来的新型定向凝固技术,并指出了今后发展的方向。 关键词:定向凝固;电磁约束成形;深过冷;激光快速凝固 中图分类号:O 782+19 文献标识码:A 文章编号:1004-244X (2000)02-0044-06 材料的使用性能是由其组织形态来决定的。因此,包括成分调整在内,人们通过控制材料的制备过程以获得理想的组织从而使材料具有所希望的使用性能,控制凝固过程已成为提高传统材料的性能和开发新材料的重要途径。定向凝固技术由于能得到一些具有特殊取向的组织和优异性能的材料,因而自它诞生以来得到了迅速的发展〔1〕,目前已广泛地应用于半导体材料、磁性材料以及自身复合材料的生产〔2~3〕。同时,由于定向凝固技术的出现,也为凝固理论的研究和发展提供了实验基础(由于理论处理过程的简单化),因为在定向凝固过程中温度梯度和凝固速率这两个重要的凝固参数能够独立变化,从而可以分别研究它们对凝固过程的影响。此外,定向凝固组织非常规则,便于准确测量其形态和尺度特征。 本文评述了定向凝固技术的发展过程及其在材料的研究和制备过程中的应用,指出了传统定向凝固技术存在的问题和不足,并介绍了在此基础上新近发展起来的新型定向凝固技术及其应用前景。 1 传统的定向凝固技术  111 炉外结晶法(发热铸型法)〔4〕 所谓的炉外结晶法就是将熔化好的金属液浇入一侧壁绝热,底部冷却,顶部覆盖发热剂的铸型中,在金属液和已凝固金属中建立起一个自上而下的温度梯度,使铸件自上而下进行凝固,实现单向凝固。这种方法由于所能获得的温度梯度不大,并且很难控制,致使凝固组织粗大,铸件性能差,因此,该法不适于大型、优质铸件的生产。但其工艺简单、成本低,可用于制造小批量零件。  112 炉内结晶法 炉内结晶法指凝固是在保温炉内完成,具体工艺方法有: 第23卷 第2期2000年 3月 兵器材料科学与工程ORDNANCE MA TER I AL SC IENCE AND EN G I N EER I N G V o l .23 N o.2 M ar . 2000 Ξ收稿日期:1999-03-26 基金项目:国家自然科学基金资助项目:59771054 作者简介:杨森,博士,西北工业大学凝固技术国家重点实验室,西安,710072

快速定向凝固技术的研究及发展

世界金属导报/2007年/1月/30日/第012版 技术专题 快速定向凝固技术的研究及发展 宋宝来周军 定向凝固技术可较好地控制凝固组织晶粒取向,消除横向晶界,获得柱晶或单晶组织,提高材料的纵向力学性能,已成为富有生命力的工业生产手段,代表着航空发动机涡轮叶片生产的现代水平,除用于高温合金的研制外,还逐渐应用到半导体材料、磁性材料、复合材料的研制中,并成为凝固过程理论研究的重要手段之一。 伴随着热流控制技术的发展,定向凝固技术经历了发热剂法(EP)、功率降低法(PD)、高速凝固法(HRS)、液态金属冷却法(LMC)等。其目的就是通过改变已凝固金属的冷却方式来有效控制单向热流,获得理想的定向凝固组织。然而,这些方法所能获得的冷却速率都是有限的。快速凝固技术的发展为提高材料的性能打下良好的基础。定向凝固技术吸收快速凝固技术的优点,发展成新型快速定向凝固技术,研制出新型高性能材料及功能材料。本文评述了快速定向凝固技术的研究进展,指出了快速定向凝固技术存在的问题,并介绍了发展的前景。 1.快速凝固技术原理 快速凝固技术自1960年由美国的P.Duwez开创以来,由于能极大地改善某些材料的组织和性能,因此得到了迅速发展。到目前为止,它已从最开始时用于制备快凝薄条等发展到用于制备微晶、准晶以及非晶等,从而成为研制新型材料的又一重要手段和方法。在快速凝固条件下,可以获得小偏析甚至无偏析的超细化组织以及过饱和固溶体、亚稳相等的事实已广为人知。要达到这一目的,实际凝固过程有两种:一是可以看成是“动力学”的方法,即急冷凝固技术;二是“静力学”的方法,即大过冷快速凝固技术。 1.1急冷凝固技术 急冷凝固技术的核心是提高凝固过程中熔体的冷速,从热传输的基本原理可以知道一个相对环境放热的冷速取决于该系统在单位时间内产生的热量和传出系统的热量,因此对金属凝固而言,提高系统的冷速必须要求:第一,减少单位时间内金属凝固时产生的熔化潜热;第二,提高凝固过程中的传热速度。根据这两个基本要求,并针对常规铸造凝固时熔体在体积很大的铸模中同时凝固、热量不易迅速传出和固态淬火时主要通过对流传热,因而冷速不高等问题,急冷凝固技术的基本原理是设法减小同一时刻凝固的熔体体积并减小熔体体积与其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热阻以及主要通过传导的方式散热。采用急冷的方法可以分为模冷技术、雾化技术、表面熔化与沉积技术三类。 1.2大过冷凝固技术 大过冷快速凝固技术的核心是在熔体中设法消除可以作为非均匀形核媒质的杂质或容器的影响,创造尽可能均匀形核的条件,从而在形核前获得很大的过冷度。通常在熔体凝固过程中促进非均匀形核的形核媒质主要来自熔体内部和容器壁,因此大过冷技术就是主要从这二个方面设法消除形核媒质。采用大过冷快速凝固技术的具体方法大致分为两类。一类是熔滴弥散法,即在细小熔滴中达到大凝固过冷度的方法,包括乳化法、熔滴水成冰(基底法)和落管法等。另一类是在较大体积熔体中获得大的凝固过冷度的方法,包括玻璃体包裹法、二相区法和电磁悬浮熔化法等。 2.快速定向凝固固液界面稳定性理论 Chalmers等在成分过冷理论中指出,定向凝固过程中固液界面形态由G1/R值决定,当G1/Rφ△T0/D1时,为平面状界面;当G1/R值逐渐减小时,平界面失稳,逐渐发展为胞状至树

相关主题
文本预览
相关文档 最新文档