当前位置:文档之家› 变压器常识1

变压器常识1

变压器常识1
变压器常识1

变压器常识

变压器常识(1)--1 冷压硅钢板

返回

目前,一般都采用晶粒取向冷轧硅钢板作为铁心导磁材料。由于晶粒取向冷轧硅钢板种类与牌号较多,价格也不相同。所以,应较好地掌握其材料特性。

晶粒取向冷轧硅钢板包括:传统型、高导磁型和激光照射或等离子表面处理等。

(1) 厚度: 最常用的是0.3mm 。0.35mm 以趋淘汰。还可选用0.27mm 与0.23mm 厚的。厚度越薄,单位损耗越低,叠片系数较小。

(2) 单位损耗: 有二个概念,标准值与最大保证值。设计时最好以最大保证单位损耗作为计算值。

一般是保证50Hz 或60Hz 时1.7T 下单位损耗值。

传统型晶粒取向冷轧硅钢板与高导磁冷轧硅钢板是以25cm 宽退火后叠片用方框试验得出的结果为准。而激光处理与等离子处理硅钢板是以单片试验结果为准。

(3) 取向度: 高导磁硅钢板为3 °,传统型晶粒取向硅钢板为7 ° , 铁心宜用全斜接缝结构。

(4) 磁感应强度,以B8 表示,即激磁力为800A/m 时磁通密度,B8 越高越好。

(5) 损耗的工艺系数与下列因素有关

毛刺大小;

硅钢板弯曲度;

每叠片数及叠片工艺( 是否叠上轭) ;

接缝型式;

叠片重量的允差;

剪切时所受压力。

(6) 硅钢板对变压器性能的影响。

硅钢板材质与加工工艺影响变压器的空载损耗、噪声水平。

(7) 变压器的各个工艺过程有不同的空载损耗。

硅钢板取样作入厂试验;

铁心叠完后未套绕组前;

套完绕组的器身工序;

成品变压器;

冲击试验后。

一般应以冲击试验后空载损耗值作为出厂保证值,因冲击试验后,一般会使空载损耗有所增加。

但应注意,半成品试验时,一般不能加全电压,故应掌握某一百分数电压时空载损耗与全电压下空载损耗关系。

对超高压、高压变压器而言,应做半成品空载试验,一旦有问题总返工就要影响返工质量了。配电变压器因批量大,可以不做半成品试验,但对各加工工序要加强检测。

(8) 铁心的工作磁通密度不宜高,太高时会影响噪声水平、空载损耗值、空载电流值及其谐波含量。

对各种冷轧硅钢板,包括晶粒取向冷轧硅钢、高导磁冷轧硅钢板、激光照射处理或等离子表面处理高导磁硅钢板、饱和磁通密度都是一样的。

变压器常识(1)--2 空载损耗

返回

空载损耗指变压器二次侧开路,一次侧加额率与额定电压的正弦波电压时变压器所吸取的功率。一般只注意额定频率与额定电压,有时对分接电压与电压波形、测量系统的精度、测试仪表与测试设备却不予注意。对损耗的计算值、标准值、实测值、保证值又混淆了。

如将电压加在一次侧,且有分接时,如变压器是恒磁通调压,所加电压应是相应接电源的分接位置的分接电压。如是变磁通调压,因每个分接位置时空载损耗都不相同,必须根据技术条件要求,选取正确的分接位置,施加规定的额定电压,因为在变磁通调压时,一次侧始终加一个电压于各个分接位置。

一般要求施加电压的波形必须为近似正弦波形。所以,一是用谐波分析仪测电压波形中所含谐波分量,二是用简便办法,用平均值电压表,但刻度为有效值的电压表测电压,并与有效值电压表读数对比,二者差别大于3% 时,说明电压波形不是正弦波,测出的空载损耗,根据新标准要求应是无效了。

对测量系统而言,必须选合适的测试线路,选合适的测试设备与仪表。因为导磁材料的发展,每公斤损耗的瓦数在大幅度下降,制造厂都选用优质高导磁晶粒取向硅钢片或甚至选用非晶合金作为导磁材料,结构上又发展了诸如阶梯接缝与全斜无孔,工艺上采用不叠上铁轭工艺,制造厂都在发展低损耗变压器,尤其空载损耗已在大幅度地下降。因此对测量系统提出新的要求。容量不变,空载损耗下降是意味着空载时变压器功率因数的下降,功率因数小就要求制造厂改变和改造测量系统。宜用三瓦特表法测,选用

0.05-0.1 级互感器,选用犄低功率因数的瓦特表,只有这样,才能保证测量精度。在功率因数为0.01 时,互感器的相位差为 1 分时会引起功率误差 2.9% 。所以,在实际测量时还要正确选择电流互感器与电压互感器的电流比与电压比。实际电流远小于电流互感器所接的电流时,电流互感器的相位差与电流误差越大,这会导致实测结果有较大的误差,所以,变压器吸取的电流应接近于电流互感器的额定电流。

另外,在设计中根据规定程序,参照所选用硅钢片的单位损耗与工艺系数所算得的空载损耗,一般叫计算值。这个值要与标准中规定的标准值或与合同中规定的标准值或保证值对比。计算值必须小于标准值或保证值,不能在计算上吃宽裕度,尤其批量生的变压器。另外计算值只对设计员或设计科内有效,没有法律效应,不能用计算值来判断产品的损耗水平。而标准上规定的标准值或合同上规定的保证值是法律效应的。超过标准值加允许偏差,或者叫保证值(保证值等于标准值加允许偏差)的产品即为不合格产品。如有损耗评价制度时,一般在合同上会指出,尤其出口产品,超过规定损耗值要罚款,空载损耗的罚款最高,欧洲各国的损耗评价值可参见《变压器》杂志1994 年第11 期。每千瓦要罚几千美元。这就是法律效应,并与经济效益直接挂钩。

对实测值的概念也要正确理解,不是互特表的读数(或叫功率转换器的读数)就是实测值要换算到额定条件,并要有足够的精度。对空载损耗的实测值而言,主要是电源的电压波形要正弦波,平均值电压表读数与有效值电压读数之差小于3% 。

综上所述,众所周知的空载损耗如不能正确理解,在设计与制造,或测量中有所误解,会引起产品的不合格或根据合同要求被罚款。

变压器常识(1)--3 负载损耗

返回

负载损耗是指额定电流下与参与温下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是 A 级绝缘材料,其参考温度是根据传统概念加以规定的,都是75 ℃。而干式变压器的参考温度都按公式算出,参考温度等于允许温升加20 ℃,其物理概念是绝缘材料的年平均温度。 A 级绝缘材料的参考温度为60 ℃加20 ℃等于80 ℃,它与油浸式(同为 A 级绝缘材料)的参考温度75 ℃差5 ℃。干式变压器的E 级绝缘材料参考温度为95 ℃,B 级为100 ℃,F 级为120 ℃,H 级145 ℃,C 级为170 ℃。负载损耗只是衡量产品损耗水平的一个参数,或者说是考核产品合格与否的一参数,而不是运行中的实际损耗值。运行中温度是变量,负载电流也是变量,所以运行中负载损耗不是变压器名牌上标定的负载损耗值,主要是运行温度不等到于参考温度。

另外,对比产品损耗水平时,尤其干式变压器,一定要在规定参考温度下对比。反过来,如 B 级与H 级干式变压器有相同负载损耗,因为参考温度是在温升限值的基础上加以规定的,在实际运行中如都是额定负载,实际负载也接近相同。

在温度换算时应注意,电阻损耗与温度成正比,负载损耗中附加损耗与温度成反比。所以应将负载损耗分解成二部分后再换算。在温度换算时,对铜导线而言,参考温度应按规定35 加规定参考温度值计算,测量负载损耗时温度也应加班费35 后再换算。

低损耗变压器的负载损耗的功率因数较低,所以测量系统与测量设备与仪表的选取用与以前提到的测量空载损耗的要求相同。

负载损耗的计算值、标准值、保证值与实测的概念也与空载损耗相同。但是在实际测量中,所加电流不能低于50% 额定电流。这是新标准的要求,否则实测值不能换算,即使换算也无效。负载损耗的评价值比空载损耗要低些,但负载损耗的绝对值大,如超出同样的百分数,或同样的测量误差,其z 绝对值还是大的。

空载损耗与温度基本无关,而负载损耗是温度的函数。

这里还要强调一下,如果产品要进行型式试验,空载损耗是指冲击试验后的实测值,如果硅钢片的漆膜质量不好,冲击试验后空载损耗会增加。测负载损耗时,绕组温度应接近外围温度,在干燥出炉后不久,或注油的油温比室温高时不宜立即测量负载损耗,因为负载损耗是温度的函数。另外,测负载损耗的时间要短,时间一长,绕组温度会变。用作短接绕组的短路工具要有足够的导电截面,短接大电流绕组时必须用螺栓拧紧。否则短路工具联接不好时会在联接处产生局部过热,这部分热量倒涌入绕组时会影响测量精度。

对有载调压变压器而言,在新标准里还有新的要求,除保证额定电流下,即主分接位置下的负载损耗外,还要保证最大与最小分接位置的负载损耗。对最大或最小分接位置的负载损耗,应通相应的分接电流。如最小分接位置不能保证满容量而要降容量时,应取得用户同意,或向用户说明是按哪个标准或技术条件执行。

附机的损耗,不包括在空载损耗与负载损耗中。这种损耗如风扇电机、潜油泵、有载分接开关操动机构中的电机等。这种损耗虽不加考核,但应尽量的低。如强油风冷却器的风机与泵的损耗一般应在散热功率的5% 以下。即100kW 以下。

对多绕组变压器而言,负载损耗的保证值是指具有最大负载损耗的一对绕组在运行或绕组复合运行时的最大负载损耗。复合运行的绕组必须在技术条件上规定,即哪些绕组对哪些绕组供电。

在负载损耗计算时,应正确计算涡流损耗。只要是处漏磁场中的导线,不论导线中有无工作电流,此导线中有涡流损耗。如绕组变压器在内外两绕组运行时,中间绕组有涡流损耗;在主分接运行的绕组,对正分接匝数的导线内也有涡流损耗,用作内屏蔽或叫插入屏蔽、电容屏蔽的导线,此导线有电位无电流但有涡流损耗。

大容量变压器应计及横向漏磁引起的涡流损耗,故导线不宜过宽,螺旋式绕组的也不宜在均匀间隔内换位,绕组两端的换位间应略大些。

变压器常识(1)--4 主磁通与漏磁通

返回

当变压器中一个绕组与电源相联后,就会在铁心中产生磁通,在铁心中由于激磁电压产生的磁通叫主磁通,主磁通大小决定于激磁电压的大小。额定电压激磁时产生的主磁通不应使铁心饱和,即此时的磁通密度不应饱和。主磁通是矢量,一般用峰值表示。

当变压器中流过负载电流时,就会在绕组周围产生磁通,在绕组中由负载电流产生的磁通叫漏磁通,漏磁通大小决定于负载电流。漏磁通不宜在铁磁材质中通过。漏磁通也是矢量,也用峰值表示。

主磁通与漏磁通都是封闭回线,都是矢量,但不在同一相位上。主磁通在闭合磁路的铁心中成封闭回路,但在饱和后会溢出铁心成回路,漏磁通在开磁路结构件包括通过部分心柱或磁屏蔽成回路,主漏通与漏磁通在心柱内为矢量相加或相减,主磁通在铁心内产生空载损耗,漏磁通在绕组内与结构件内产生附加负载损耗。主磁通在数量上有下列关系:

Uk% 为变压器阻抗电压分数,0 为主磁通,s 为漏磁通。

可以理解:漏磁通产生阻抗电压,高阻抗电压百分数的变压器实质上是高漏磁变压器。在这种变压器中应采用漏磁回路控制技术,使漏磁在希望的回路中成闭合回路,以免过大的附加负载损耗或避免不应该有的局部过热。

漏磁产生 4 的效应较多,除上述说明中提到的漏磁通会引起绕组内涡流损耗、换位不完全损耗、心柱小及叠片上涡流损耗、结构损耗外,还会引起机械力。

由于负载电流在高、低压绕组沿轴向分布不均衡,即所谓安匝不平衡,还会引起附加的漏磁通。

绕组中负载电流产生的漏磁通为轴磁通(绕组端部有横向漏磁通),不平衡安匝引起的漏通一般为横向漏磁通。

即使导电材料内无负载电流,漏磁通会使处于漏磁场内无电流的导电材料中产生涡流损耗。

大容量变压器与高阻抗变压器中要合理控制漏磁通回路。

采用高压—低压—高压或低压—高压—低压排列的绕组结构可使漏磁通密度降低。

另外要特别注意大电流引线产生的漏磁通,引线产生的漏磙这分布与绕组产生的漏磁通分布不同。

为减少引线漏磁通的影响,引线不宜靠箱壁很近;A 、B 、C 三相垂直引线靠近走线时三相漏磁通之矢量和可为零。引线通过箱盖或箱壁引出时,如引线中通过电流较大,箱盖上开孔处应用隔磁装置。引线无法远离箱壁或箱盖时,宜将局部靠近引线的箱壁或箱盖用不导磁钢作结构件材料。引线漏磁通产生的局部过热是特别应避免的技术问题。

总之,漏磁通引起的局部过热是难予解决的问题。所以,在工厂的温升试验中应注意探测漏磁通引起的局部过热,包括由油中含气色谱分析的接测局部过热的方法,现在也有用高性能液相色谱分析探测油中糠醛含量的方法来判明绕组中是否有不允许的热点温度存在,这一方法已在《变压器》期刊中作了介绍。当然,最好是在绕组中埋入温度传感器以探险明绕组中是否有局部过热存在,或者说,探险明漏磁通的集中区。

以上各种方法,在国内外是可行的,对高漏磁变压器而言,要保证其运行可靠性,这些检测是必不可少的,不是用计算机辅助设计作磁场分布分析所能代替的。

还有一点,也应特别注意的,如果大容量变压器两个绕组的磁中心不在同一水平上(设计上是在同一水平上的,制造上不一定在同一水平上)会有附加的横向漏磁场存在。所以在绕组套装前,应加强对高压和低压绕组磁中心是否一致的控制。

附带强调一下,三相变压器的电压不平衡时(如单相短路)在变压器中还有零序磁通。在三相三柱Yyno 接法变压器中还有三次谐波磁通,由于它在三个柱上都是同相位,且在空气中成回路,故它们值是较小的。

变压器常识(1)--5 噪声式声级水平

返回

一般的所谓声级水平都有是指声压级水平的简称。

过去由于声级水平没有列入考核指标之内,随着用电量的增加,变电所接近市区或居民区,环境法又对噪声声值在法律上加以限制。所以,变压器对声级水平提出了考核的参数,因此,对声级水平就有进一步的理解。

声级水平是指额定电压与额定频率下变压器处于空载激磁条件时在规定轮廓回线上测得的声压级水

平( A )加权值。因为属于空载时的声级水平,所以目前考核的声压级水平主要是由铁心激磁时产生的磁致伸缩所引起的空载声压级水平。

声级水平标准中规定的Db(A) 值,也是指 A 加权声压级水平在空载时的值。

但是这一声级水平是在离变压器为规定距离轮廓线上的值,为计算任一距离的声级水平,还必须根据声级测量国家标准中规定的公式算出声功率水平。由声功率水平可换算成任一距离的声级水平。

同时,变压器的容易越来越大,负载电流引起的声级水平就不可忽略了。故目前的标准中对负载电流引起的声级水平也加规定了。

负载电流在箱壁的磁屏蔽中会产生噪声,负载电流在绕组内也会产生噪声。所以,大容量变压器在满载运行时测得的声级水平为空载与负载下声级水平之和。当然,两者之和为对数之和,可根据国家标准的公式加以合成。

负载下声级水平值与负载电流大小有关。将来我国国家标准也会对负载下声级水平加以规定。

可利用做温升试验的机会测负载下声级水平值,如不做温升试验,那么也要做负载下声级水平的测量。当然,这主要是对大容量变压器的要求,尤其是大容量发电机用升压变压器必须进行负载下声级水平测量。

另外,目前所谓低噪声变压器也是指空载电压激磁下(施加电压为额定电压,电源频率为额定频率)测得的声压级 A 加权水平。对大容量变压器而言,真正的低噪声变压器应是额定电压,额定频率并通过额定电流时为低声压级水平。

过激磁运行时,空载下声压级水平会提高,超名牌容量运行时,负载下声压级水平会增高。变压器的磁通密度越高,铁心中磁致伸缩越大,空载下声压级水平越高。在变压器周围设隔音墙可降低声压级水平。如将变压器安装在隔音室内更能大幅度地降低声压级水平。

为降低声压级水平,也可从结构与工艺上采取措施而加以解决。如铁心采用阶梯式接缝,叠完铁心后在剪切边缘上用树脂漆粘合,防止铁心的噪声传到箱底,绕组用恒压干燥处理工艺,合理布置磁屏蔽位置并防止磁屏蔽噪声传到箱壁等等。

城网改造工程、居民小区、楼内安装的变压器都有需要低声压级水平。因此,这是一种值勤得发展的变压器新品种。但在技术条件中必须明确:变压器技术条件上规定的声压级水平是空载下还是空载下已包括负载下的值。这个值是在规定轮廓线上测得的值,如用户要求的值离此轮廓线还有一段距离,那么通过声功率级水平的换算,并换算到要求距离后再与用户要求值对比。

还要了解,变压器是安装在敞开空间还是安装在隔音室内。如不正确理解这些区别,就不能正确地发展这一新品种。

变压器常识(1)--6 激磁涌流、空载电流、短时动稳定电流、短时热稳定电流、暂态

短路电流、稳态短路电流

返回

从一个稳定状态转变为另一个稳定状态时在这两个稳定状态之间存在着过渡时期。

平常所谓空载电流是指空载变压器在额定电压与额定频率下激磁后在变压器内流动的稳态对称空载

电流。此值很小,一般只占额定电流的百分之几或小于百分之一。但在变压器上一合上额定电压与额定频率的电源时,在空载的变压器合闸间,处于过渡过程的非对称合闸空载电流叫激磁涌流,作用时间很短,逐渐衰减到稳态空载电流,涌流峰值按指数曲线衰减,其时间常数为合闸侧绕组电感量与电阻量之比。小容量变压器在涌流时间常数较小,即很快过渡到稳态空载电流,而大容量变压器的涌流时间较大,要有一过程才过渡到稳态空载电流。涌流一般以峰值表示,空载电流以均方根值表示。

空载电流是变压器主要性能参数之一,在国家标准上有标准值与允许偏差的规定。在运行中要吸取无功容量。但涌流不是考核指标,它影响运行性能。合闸激磁涌流与铁心参数,如硅钢片特性中剩磁与饱和点、额定磁通密度,与绕组几何形状、匝数,与合闸时电压瞬时值等参数有关。如合闸瞬间正好为电压波形过零,铁心中剩磁与瞬变磁通的符号相反,当电压再过零时铁心饱和合闸激磁涌流的峰值将最大,有时可能超过额定电流很多倍,可用时间继电器使过流保护继电器对持续时间不长的合闸激磁涌流峰值不灵敏,另外内部绕组合闸时的合闸激磁涌流要比外部绕组合闸时的合闸激磁涌流要大,但时间常数要短些。在变压器做突发短路试验时,因一侧短路,另一侧加全电压时短路电流会与合闸激磁涌流叠加,所以,最好是内部绕组短接,而外部绕组加压以避免铁心饱和。短路电流与涌流的差异在于涌流第一个波含二次谐波分量,而短路电流第一个波不含二次谐波分量,可从波形中第一个波中谐波分量来区别短路电流与合闸激磁涌流。

合闸激磁涌流与暂态短路电流还有一点区别,合闸激磁涌流只在合闸侧绕组中流(三相角接绕组中有合闸激磁涌流的感应分量,起降低合闸激磁涌流作用),暂态短路电流在高压与低压侧绕组中都流过而且短路电流的倍数在两侧也相等。

当电压波形达峰值时合闸,从合闸间开始即达稳态空载电流,铁心也不存在饱和现象,所以,这种合闸条件不存在合闸激磁涌流。这一点与短短电流一样,当电压波形达峰值时发生短路,从短路瞬间开始即达稳态短路电流。

还有一点要注意,空载电流也会呈非线性。当变压器在过激磁情况下运行,稳态空载电流是较差的非线性电流,但此时稳态空载电流含较多的 3 次、5 次谐波分量,一般以 5 次谐波分量表示过激磁空载电流特性。不论空载电流是否含谐波分量,稳态空载电流(包括过激磁时)的波形都是对称,为对称非线性或对称线性波形。

短时动稳定电流为过渡过程中衰减的非对称短路电流的峰值,短时热稳定电流为规定时间内稳态对称短路电流的均方根值。

用动稳定电流考核变压器承受动稳定效应的能力,即承受短路电流产生的机械力的能力;用热稳定电流考核变压器承受外部短路时的热效应的能力。在2s 内的热稳定电流作用下,铜导体制成的绕组的平均温度应小于250 ℃。实际上是对短路电流密度作一限制。

暂态短路电流是指整个短路电流过渡期间非对称短路电流的衰减电流。电压波形过零时短路,暂态短路电流的第一个峰值最大,可达 1.8 倍稳态短路电流均方根值。暂态短路电流峰值也按指数曲线衰减,其时间常数为整台变压器的电感量与电阻量之比。这与涌流时间常数仅与合闸侧绕组的电感量与电阻量之比有关。大容量变压器的短路电流衰减时间常数要比小容量变压器的电流衰减时间常数要大,也就是说大容量变压器会遭到较多个峰值很大的短路电流的作用,因此,宜用快速继电器在短暂时间内使断路器动作将短路电流切除。

稳态短路电流是短路电流过渡过程结束后的对称短路电流均方根值。稳态短路电流的长时间作用会对绕组或引线,分接开关或套管产生热效应,靠断路器动作解除对变压器的热效应。

变压器本身应承受住短时动稳定电流与短时热稳定电流产生的机械力与热的效应。

在变压器设计要进行绕组中安匝平衡计算内绕组失稳计算,各个绕组动态与静态应力计算,对短路电流密度限制到2s 内铜导体平均温度小于250 ℃。在工艺上加垫块进行密度压处理,绕组进行恒干燥处理,各绕组的磁中心要一致。尤其注意绕组中换位与段到段过渡处的机械强度,不能在机械力作用发生匝间到段间短路。

变压器常识(1)--7 绝缘水平

返回

绝缘水平是变压器能够承受住运行中各种过电压与长期最高工作电压作用的水平。

在电力系统中一般都用非线性元件,即避雷器限制电力系统的过电压水平,如电力系统遭受过电压时,如雷电过电压,由于非线性特性的避雷器在高电压时,电阻值降低,致使对地击穿放电,放电后,在避雷器阀片上有残压存在,不同电压等级的避雷器具有不同的残压值,变压器应能承受住作用到变压器的残压。以绝缘水平是按绝缘配合决定的,用不同特性的避雷器保护变压器时,变压器可选用不同的绝缘水平,或者说,变压器可有不同的试验电压。一般有下列几种避雷器,普通阀式、磁吹阀式、碳化硅避雷器、氧化锌避雷器。高压与超高压系统一般用性能较高的氧化锌避雷器。超高压变压器用氧化锌避雷器保护时,试验电压与最高系统电压之比值在降低。下表为几个代表性电压等级的试验电压:

上表中k 为额定全冲击耐受电压与Um 之比值。Um 超高,k 越小。

对Um ≤ 252kV 的变压器,更应注意变压器能承受住雷电冲击电压的作用。对Um=550kV 的变压器,则应注意长期工作电压的作用。

从总的原则来讲,变压器的绝缘水平应高于避雷器的保护水平,这就是绝缘配合。变压器没有避雷器保护时是不能运行的。避雷器的性能越好,变压器的试验电压可越低。变压器的Um 越高,长期最高工作电压越重要。

变压器的试验电压种类:

(1)Um ≤ 126kV

1min 工频试验电压、全波与截波雷电冲击试验电压。

(2 )Um=252kV

除Um ≤ 126kV 的试验电压外,还有局部放电试验电压。

( 3 )Um=363kV 与550kV

除Um=252kV 的试验电压外,还有操作波冲击试验电压。Um=550kV 的变压器还要做油流带电试验。

如果变压器与GIS (气体绝缘变电站)相联时还要考虑特快瞬变过电压(VFTO )的作用,应加试陡截波试验电压。

各种电压沿绕组的分布是不同的。

沿绕组作线性分布的电压有:长期工作电压、感应试验电压、局部放电试验电压、操作波冲击试验电压。在作这些试验时,绕组都不同短路。

沿绕组作非线性分布的电压为雷电冲击试验电压,包括全波与截波冲击试验电压。作雷电冲击试验时,非被试验组应两端短接并接地。

为验证变压器能否承受住试验电压的作用,可用场强低于允许值来事先控制。在试验时Um ≤ 126kV 变压器而言,主要是从试验电压下有没有放电或击穿来考核,对Um ≥ 252kV 变压器现时言,主要是从局部放电试验电压下局部放电量来考核。所以对Um ≥ 252k V 变压器现时言,应控制局部放电试验电压下场强低于允许值,长期最高工作电压下场强也要低于允许值。

要保证变压器能具有一定的绝缘水平,还应注意试验电压的传递作用,如高压绕组在作冲击试验时,低压绕组虽两端接地,但通过静电电容感受应,在低压绕组中部会有感受应冲击电压;低压绕组与低压侧引线的局部放电会传递到高压绕组。

所以说,变压器的绝缘水平是对整台变压器而言的,决不是对某一绕组而言,应使整台变压器能具有承受住各种试验电压作用的要求。在运行时,变压器的每一侧,即高压、中压与低压侧,都应有相应的电压等级的避雷器保护。即使是配电电压0.4kV 侧也应有非线性保护元件保护。

变压器承受过电压的能力还与变压器绕组的接法有关。如多雷地区用的配电变压器应选Yzn11 接法。

还应注意,试验电压分对地与相间两大类;对Um ≤ 252kV 变压器而言,对地试验等到于相同试验电压;Um ≥ 363kV 变压器的相间试验电压大于对地试验电压。对Um=550kV 三相变压器而言,操作波冲击试验电压与感应试验电压的相间值约为对地值的 1.5 倍。

变压器常识(1)--8 环境影响

返回

(1) 气候环境

a. 海拔高度

在海拔高度为1000m 及以下地区使用的变压器可不考虑海拔高度的影响。

在海拔高度为1000m 以上地区使用的变压器必须考虑高海拔处的空气比较稀薄,它对变压器的散热与外绝缘的电介质稳定性有影响。

因此,对海拔高度>1000m 的高海拔地区使用的变压器必须在合同上规定产品运行地点的海拔实际高度,以便制造厂考虑变压器的温升限值以及外绝缘的最小空间隙。一般是加强套管的外绝缘,加大沿面泄露距离与对地跳电距离,加大套管间与套管对地部件的空气间隙尺寸。如制造厂位于正常海拔地区,那就可以按降低的升限值控制高海拔地区变压器的温升限值。

对温升限值而言,是以1000m 以上的每500m 为一级,侧得的温升不得超过按每500m 为一级而降低的温升限值;油浸自冷每500m 降2% ,油浸风冷嘲热讽及强油风冷嘲热讽为3% ,干式自冷每500m 降 2.5% ,干式风冷为5% 。如在1800m 处运行的油浸风冷式变压器线圈平均温升限值为:

(65-2 × 0.03 × 65) ≈ 61.1K

油面温升限值:

(55-2 × 0.03 × 55) ≈ 51.7K

如果使用部门提供的高海拔运行地点的环境温度比正常规定的环境温度低,且符合每升高1000m 降低 5 ℃及更多时,则认为变压器在高海拔运行时,由于散热条件降低而使温升增加的影响已由环境温度的降低所补偿。用于高海拔地区变压器在正常海拔制造厂试验时温升限值可不予校正。可在合同上明确这一点。这样,变压器可以更为经济,更为便宜。

油浸式变压器外绝缘距离按每超过1000m 以上的100m 加大1% ,干式变压器每超过1000m 以上的500m 加大额定短时工频耐受电压值 6.25% 。

b. 风速

通常规定在地面上某一距离在一段时间内的最大风速值。如地面上10m 处,10min 内为35m/s 的风速。

风速对套管及装在变压器油箱上的附属设备有影响。对上述的地面上10m 处,10min 内为35m/s 的风速而言,对设计在每台变压器上配装的套管、储油柜、散热器或冷却器等附件时,应考虑此风速在机械上的影响。

c. 湿度

以某一温度下的百分值表示相对温度。

在高温度下有高相对湿度时,易繁殖霉菌对油箱表面的喷漆有影响。另外,高温下的高对湿度在温度变化时,如温度下降,相对温度增加,这就易凝成水,使套管的沿面表面电阻下降。高湿度还影响金属的腐蚀。

一般产品应按25 ℃时相对湿度为90% 考虑。如有特殊要求,可在合同上注明。

d. 温度

外围环境湿度是指空气自然变化的温度。日外围温度的自然变化规律是正弦形式变化(见图 1 )

年外围攻温度的自然变化规律是双重正弦函数形式变化(见图 2 )。

变压器正常使用条件的温度值:

在风速为0.5m/s 下日照为0.1w/cm 2 时,对变压器而言。这是正常使用条件。日照辐射能量影响箱盖温升与变压器油顶层温升。对强油循环变压器而言,对温升限值无影响。

i. 暴雨

有暴雨地区,可提请制造厂供应相应泄漏比距,和一定跳距的套管,以防不必要的对地闪络。

(2) 地质环境

主要是考虑变压器能承受地震力。正常使用条件中规定的地面水平加速度小于0.2g 。当变压器安装地点属地震区时,可在订货时指明变压器应承受住的里氏地震裂度。

对变压器内部结构而言,由于已考虑在运输中已能较好的固定紧,并已能承受短路电流产生的机械应力,因此,变压器内部不受地震裂度的影响。主要是高压与超高压套管连同升高座的耐地震力。

为防止气体继电器在地震时的误动,可供双接点串联联的干簧式接点的气体继电器,如用户要将小车固定在地基轨道上时,只要在合同中指明可提供特殊的固定装置,以防地震时变压器从轨道上跳出。

(3) 生态环境

a. 污染

污染对套管沿面放电强度有影响,对表面喷漆有影响,可根据不同污染水平,选取一定泄漏比的套管。根据国标,共有下列几种泄漏比可供选用。

0 级14.8mm/kV

Ⅰ级16mm/kV 相当于复盐密度0.05mg/cm 2

Ⅱ级20mm/kV 相当于复盐密度0.1mg/cm 2

Ⅲ级25mm/kV 相当于复盐密度0.2mg/cm 2

Ⅳ级31mm/kV 相当于复盐密度0.4mg/cm 2

泄漏比是指套管最小公称沿南爬电距离与最高工作电压Um 之比。

爬山电距离增加时,跳电距离也应增加,使爬距/ 跳距≤ 3.5 。

b. 沿海环境

沿海空气中含盐雾,它影响套管爬山距,金属腐蚀。可用等值盐密量来表示套管必须具有的泄漏比,已在泄漏比中列出等值盐密。

等值盐密量是指套管绝缘表面上污秽沉淀物的等值氯化钠量。将套管绝缘表面上的全部污秽积物以及上述等值直盐密量的氯化钠分别溶解在相同体种的蒸馏水中,它们具有相同的体积电导率,是化学上的电性能相等的意义上的一种量,不是指闪络电压相同的条件下的相对应盐密。

C. 其他

霉菌的分泌物会污染油漆,昆虫会影响风冷却器的散热面(昆虫将散热面堵住)。在平时应用压缩空气清理风冷却器表面与散热面。

水冷却时如用海水、或水中有悬浮杂质应向制造厂家说明。

(4) 为免除套管受各种因素的影响,可选用直接式或间接式电缆出头,低压套管可用封闭母线保护,变压器与可供油/SF 套管,以便与GIS 联。

变压器常识(1)--9 额定容量与负载能力

返回

额定容量是指主分接下视在功率的惯用值。在变压器名牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于×额

定空载线电压×额定线电流, 额定容量一般以kVA 或MVA 表示。额定容量是在规定的整个正常使用寿命期间,如30 年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。

对无载调压变压器而言,在-5% 的分接位置时, 可输出额定容量, 低于-5% 的分接位置时要降低输出容量。

对有载调压变压器而言,一般制造厂都规定在-10% 分接位置时仍可输出额定容量, 低于-10% 分接位置时降低额定容量. 以上都是对恒磁通调压电力变压器或配电变压器而言。对变磁通调压电炉变压器或整流变压器而言,额定容量是指最大输出容量,多数分接位置下输出容量都小于额定容量。

在实际运行时,变压器还有一个负载能力,额外负担定容量决不是变压器的负载能力。负载能力是指变压器仅仅在所确认的一定时间间隔内所能够输出的实际容量值。这个容量值是由变压器在所认定的时间间隔内的运行条件而决定,或者由是否损害其正常使用寿命,是否增加其绝缘的自然老化,是否危及变压器的安全运行而决定。负载能力可以超过额定容量,但是负载能力有一上限值,即绕组热点温度不能超过140 ℃,超过140 ℃时会使绕组热点温度附近的油分解出气体,影响安全运行,绕组热点温度虽未超过140 ℃,油温超过115 ℃时,由于热和电的复合作用,会影响油的许用场强。绕组热点温度超过98 ℃时会影响变压器使用寿命。

由于急救的需要,变压器的实际负载能力可超过额定容量,但要保证绕组热点温度不能超过140 ℃,牺牲的使用寿命,要用低于额定容量运行时所增加的寿命来补偿。在急救超过名牌容量运行时,负载损耗要比额定负载损耗高得多。负载下输出电压要比额定空载电压低得多,效率也差。

自耦变压器的额定容量是指通过容量,真正结构容量比额定容量小得多。自耦变压器的输出容量中仅有部分是属于电磁感应过去的容量,一部分输出容量是直接通过的。

三绕组变压器的额定容量一般以百分数表示每个绕组的额定容量,如100% /100%/100% 是指每个绕组都能达到额定容量,100%/100%/60% 是指低压绕组只能达到60% 额定容量。

自耦变压器的低压绕组一般都达不到额定容量,如以100%/100%/50% 表示时,低压绕组只能达50% 额定容量。

另外,当一台变压器具有几种冷却方式时,额定容量是指最大容量,改变冷却方式时要改变输出容量。

一台变压器有三种不同冷却工况时,如强迫油循环风冷、油浸风冷、油浸自然冷却方式三种不同冷却工况运行的变压器,相应于每种冷却方式的额定容量以百分数表示时,为100%/80%/60% 。强迫油循环风冷时可输出100% 额定容量,当冷却泵运时为油浸风冷下可输出80% 额定容量,即泵停运时,输出容量要降低20% ,当冷却泵与冷却风扇都停运时,为油浸自冷下不仅可输出60% 额定容量,即泵与风扇都有停运时,输出容量要降低40% 额定容量。不同冷却工况下相应的输出容量与冷却装置结构有关,某些结构的冷却器只能在强迫油循环风冷下运行,泵停用时要在较短时间内将输出容量降为零。100%/80%/60% 三种不同冷却方式的容量是指散热器式冷却装置加泵与风扇构成。

三种不同冷却工况运行的变压器可具有三个额定容量,但性能参数都以最大额定容量为基准。每种冷却方式的额定容量都以温升不超过规定限值为基准。

变压器常识(1)--10 最高分接电压与系统最高工作电压返回

以电压比为115000 ± 8 × 1.25%/11000V 的三相变压器为例。使用这台变压器的系统额定电压为

110kV ,系统最高长期工作电压Um=126kV ,也就是说,作用在变压器上的系统电压是随负载性质与大小在变化着,但最高值不会超过126kV ,系统最高工作电压Um 是对系统而言的电压。电压比中最高分接电压是按额定电压计算出的,或者是按变压器绕组匝数算出的电压。对上述110kV 三相变压器而言,最高分接电压115+10% × 115=126.5kV 。这是对变压器而言相对于最高分接匝数时的标称最高分接电压。

对降低变压器而言,当系统最高工作电压为126kV 时,变压器分接位置为最高分接匝数时,即126.5kV ,此时,当变压器为空载时,空载电压仅10957V 。

对升压变压器而言,当低压侧为11000V 时,高压侧不能在最高分接位置时空载运行,因高压侧最高空载电压126.5kV 已超过系统最高工作电压。如果系统已接一定负载,变压器高压侧负载下电压就低于最高空载电压(变压器本身阻抗会在包载电流通过时产生压降)。

另一种情况,对恒磁通调压变压器而言,变压器的分接电压为115000+3 × 1.25% ×

115000=119312.5V ,而系统电压为126000V 时,此时,变压器就过激磁运行,此降压变压器在空载时的低压空载电压为V, 这一电压也已超过10kV 级系统最高工作电压Um 为11.5kV ,此时不能在此分接位置空载运行。负载下运行时低压侧电压会低些。

对自耦变压器、三绕组变压器都应根据变压器本身电压比核算变压器本身的空载或负载下电压,加到系统上的电压要限制在Um 以下。

系统最高工作电压Um 还决定变压器的绝缘水平,在变压器使用寿命期间,变压器应承受住系统最高工作电压的长期作用。

套管外绝缘的泄漏比是按系统最高工作电压Um 计算的。

局部放电试验时所加电压也按Um 计算,不是按额定电压计算。

感应试验所加电压是按电压比计算。

最高分接位置时阻抗电压分数是以最高电压为基准,不是以额定电压为基准,主分接时阻抗电压百分数是以额定电压为基准。最小分接位置时阻抗电压百分数是以最小分接电压为基准。

综上所述,最高分接电压是指变压器按匝数计算而得的电压,它在数值上可以高于系统最高工作电压。在运行时感应出的最高分接电压不能高于系统最高工作电压。系统最高工作电压对某一绝缘等级而言有一规定固定值。

还有一点应注意,同一电压等级的Um 值在各国略有不同。如110kV 的Um ,在国内为126kV ,而IEC 标准规定为123kV ;220kV 的Um ,在国内为252kV ,IEC 标准规定为245kV 。对63kV 而言,新的国标中规定Um=72.5kV ,这与IEC 标准规定值是一致了。

变压器常识(1)--11 恒磁通调压与变磁通调压

返回

恒磁通调压一般用于电力变压器与配电变压器的调压。不论分接开关在哪个位置,不带分接的绕组始终为额定空载电压的调压方式为恒磁通调压。有分接的绕组上每匝所施加的电压与无分接绕组的每匝电压相等的情况就是恒磁通调压。

在恒磁通调压中,每个分接位置的输出容量是等于或小于额定容量,空载损耗值在每个分接位置时都是相等的。每个分接位置的负载损耗与阻抗电压都是不同的。恒磁通调压时分接开关的选用都按最小分接位置时最大分接电流选取,并要考虑过载能力。

对恒磁通调压变压器而言,不是所有运行情况下都是恒磁通下运行,仍有过激磁与欠激磁的可能。

当分接位置固定时,外施电压高于相应的分接电压时,即每匝电压高于额定匝电压,铁心中即存在过激磁,根据标准规定,恒磁通调压变压器应能在110% 额定磁通密度下长期空载运行,或在105% 额定磁通密度长期在额定电流下运行。系统中无功容量不足,系统电压偏低,会使变压器在欠激磁下运行。在运行中,如果每匝电压虽保持相同,系统的频率变化时也会引起过激磁与欠激磁。在运行中,如发电机功率不足,系统中频率会下降,变压器中磁通密度即增加,使变压器在过激磁条件下运行。

为保持二次侧始终为恒定电压输出,就可利用高压侧加有载调压分接开关来实现。

所以,恒磁通调压只是理论上存在一种调压方式,在设计上相当于每匝电压在任何分接位置都相同的一种调压方式,在实际运行中,恒磁通调压变压器铁心中磁通密度仍是会变动的。

变磁通调压一般用于整流变压器与电炉变压器。

调压用的分接匝数设在一次侧,而一次输入电压为恒定值。因此,不同分接位置时会产生不同的每匝电压,在铁心中磁通密度也是变量。

自耦变压器有时采用中点调压方案,此时可选用较低绝缘等级的有载调压分接开关。在自耦变压器的中点调压方案中,会产生过激磁与欠激磁。这是由于调压匝数加在公共绕组上的原因,调压匝数产生的电压既影响一次又影响二次电压。当自耦变压器的电压比越接近时,过激磁与欠激磁现象越严重。电压经接近的自耦变压器一般不选用中点调压方案。

变压器常识(1)--12 油浸式变压器冷却方式选择

返回

油浸式变压器可有自冷式、风冷式、强油风冷或水冷式冷却方式可供选择。

随着低损耗技术的发展,采用油浸、自冷式冷却的容量上限制在增加,40000kVA 及以下额定容量的变压器可选用油浸自冷冷却方式。优点是不要辅助供风扇用的电源,没有风扇所产生的噪声,散热器可直接持在变压器油箱上,也可集中装在变压器附近,油浸自冷式变压器的维护简单,始终可在额定容量下运行。

如选用可膨胀式散热器,变压器可不装储油柜并可设计成全密封型,维护量更少了,一般可在2500kV 及以下配电变压器上采用。

风冷式散热器是利用风扇改变进入散热器与流出散热器的油温差,提高散热器的冷却效率,使散热器数量减少,占地面积缩小。8000kVA 以上容量的变压器可选用风冷冷却方式。但此时要引入风扇的噪声,风扇的辅助电源。停开风扇时可按自冷方式运行,但是输出容量要减少,要降低到三分之二的额定容量。对管式散热器而言,每个散热器上可装两个风扇,对片式散热器而言,可用大容量风机集中吹风,或一个风扇吹几组散热器。

强油风冷式水冷是采用带有潜油泵与风扇的风冷却器或带有潜油泵的水冷却器。一般用于50000kVA 及以上额定容量的变压器。强油风冷冷却器可持在油箱上或单独安装。根据国内习惯,一般在变压器上多供一台备用冷却器。这是供有一台冷却器有故障需维修时使用。由于不是额定容量下运行时,变压器可停运一部分冷却器,对停用冷却器而言,潜油泵不能倒转,因此,每台冷却器上应有逆止阀,使油只能沿一个方向流动。

对强油冷却方式应注意几个问题:

(1) 油泵与风扇失去供电电源时,变压器就不能运行,即使空载也不能运行。因此应有两个独立电源供冷却器使用。

(2) 潜油泵不能有定子与转子扫膛现象,金属异物进入绕组会引起击穿事故。

油路设计时不能使潜油泵产生负压,有负压时勿吸入空气,影响绝缘会引起击穿事故。

(3) 强油冷却的油面温升较低,不能以油面温度来判断绕组温升。尤其强油水冷,绕组温升接近规定限值时,油面温升很低。

(4) 超高压变压器采用强油冷却时还应防止油流放电现象。在绕组内油路设计时,应防止油的紊流,限制油流速度,选用合适电阻率的油,绝缘件表面要光滑,铁心上应有足够体积使油释放电荷。防止油流带电发展到油流放电。在启动冷却器时可逐个启动到应投入的冷却器数。

(5) 选用大容量冷却器时应注意油流不能短路,要使冷却后的油能进入绕组。

(6) 选用水冷却器时应注意冷却水的水质,冷却水内有杂质,易堵住冷却器而影响散热面。水压不能大于油压。

(7) 强油风冷变压器外有隔墙时,隔墙应离冷却器3m 以上,以免干扰空气自由运动。

选用散热器或强油风冷冷却方式,此时,停泵时可按80% 额定容量运行,停泵与停风扇时可按60% 额定容量运行,但安装面积要足够。

变压器常识(1)--13 油浸式变压器的油系统

返回

油浸式变压器有几个互相隔离的独立油系统。在油浸式变压器运行时,这些独立油系统内的油是互不相通的,油质与运行工况也不相同,要分别做油中含气色谱分析以判断有无潜在故障。

(1) 主体内油系统。与绕组周围的油相通的油系统都是主体内系统,包括冷却器或散热器内的油,储油柜内的油,35kV 及以下注油式套管内油。

注油时必须将这个油系统内存储的气体放气塞放出,一般而言,上述部件都应有各自的放气塞。主体内油主要起绝缘与冷却作用。油还可增加绝缘纸或绝缘纸板的电气强度。在真空注油时,如有些部件不能承受与主体油箱能承受的相同真空强度时,应用临时闸隔离,如储油柜与主油箱间的闸阀。冷却器上潜油泵扬程要够,以免由于负压而吸入空气。这个油系统要有释压装置的保护系统,以排除器身有故障时所产生的压力。

(2) 有载分接开关切换开关室内的油。这部分油有本身的保护系统,即流动继电器、储油柜、压力释放阀。这个开关室内的油起绝缘与熄灭电流作用。油会在切换开关切断负载电流时产生的油中去,这个油系统要良好的密封性能,即使在切换过程中产生电弧压力也要保护密封性能。

有载分接开关切换开关室内的油虽与主体内油隔离,但在真空注油时,为避免破坏切换开关室的密封,应与主体内油同时真空注油,在真空注油时,使这两个系统具有相同的真空度,必要时也应将这个系统的储油柜在抽真空时隔离。为结构上方便,主体的储油与切换开关室的储油柜设计成一互相隔离的整体。

(3)60kV 及以上电压等级的全密封。这个油系统内的主要起绝缘作用,或增加油电容式套管内绝缘纸的电气强度。在主体内注油时,应将套管端部接线端子密封好,以免进气。

(4) 高压出线箱内油、或点气出线箱内油。三相500kV 变压器的高压出线通过波纹绝缘隔离油系统。这个油系统主要起绝缘作用。

为简化结构,这个油系统也可通过连管与主体内油系统相联或设计成单独的油系统。

(5) 在对油浸式变压器进行各种绝缘试验时, 首先是放气, 通过放气塞释放可能存储的气体。可通过分析各个系统的油中含气色谱分析可预判有无潜在故障。每一油系统都要满足运行的要求,如吸收油膨胀与收缩时油体积的变化,放油用阀门、放气塞、冷却器与散热器与主油箱的隔离阀等。每一油系统具有良好的密封性能,有载分接开关切换开关室内的油应能单独更换而不放出主体内油,运输时主体内油可放出而充干燥氮气。

即使同一油系统,油基不同的油是不能混用的。

每一油系统应注意在负温时的油特性,如主体内油在负温时油的粘度大,流动性差,散热性差。有载分接开关切换开关室内油在负温时会影响切换过程加长,使过渡电阻温升增加。

对超高压油浸式变压器的主体内油系统而言,还应注意油流带电现象,要防止油流带电过渡到油流放电现象。要控制油的电阻率、各部分油速、释放油中电荷的空间。

变压器运行方式

变压器运行方式

1主题内容与适用范围 本规程规定了电力变压器(下称变压器)运行的基本要求、运行方式、运行维护、不正常运行和处理,以及安装、检修、试验、验收的要求。 本规程适用于电压为1kV及以上的电力变压器。 2引用标准 GB1094.1~1094.5电力变压器 GB6450干式电力变压器 DL400继电保护和安全自动装置技术规程 SDJ7电力设备过电压保护设计技术规程 SDJ8电力设备接地设计技术规程 SDJ9电气测量仪表装置设计技术规程 SDJ2变电所设计技术规程 DL/T573-95电力变压器检修导则 3基本要求 3.1保护、测量、冷却装置 3.1.1变压器应按有关标准的规定装设保护和测量装置。 干式变压器有关装置应符合相应技术要求。 3.1.2装有气体继电器的油浸式变压器,无升高坡度者,安装时应使顶盖沿气体继电器方向有1%~1.5%的升高坡度。 3.1.3变压器的冷却装置应符合以下要求: a.按制造厂的规定安装全部冷却装置; b.风扇的附属电动机应有过负荷、短路及断相保护;

3.1.4变压器应按下列规定装设温度测量装置: a.应有测量顶层的温度计(柱上变压器可不装),无人值班变电站内的变压器应装设指示顶层最高值的温度计; b.干式变压器应按制造厂的规定,装设温度测量装置。 3.2有关变压器运行的其它要求 3.2.1变压器应有铭牌,并标明运行编号和相位标志。 3.2.2变压器在运行情况下,应能安全地查看顶层温度。 3.2.3室内安装的变压器应有足够的通风,避免变压器温度过高。 3.2.4变压器室的门应采用阻燃或不燃材料,并应上锁。门上应标明变压器的名称和运行编号,门外应挂“止步,高压危险”的标志牌。 3.3技术文件 3.3.1变压器投入运行前,应保存好技术文件和图纸。 a.制造厂提供的说明书、图纸及出厂试验报告; 3.3.1.2检修竣工后需交: a.变压器及附属设备的检修原因及检修全过程记录; 3.3.2每台变压器应有下述内容的技术档案: a.检修记录; b.预防性试验记录; c.变压器保护和测量装置的校验记录; 4变压器运行方式 4.1一般运行条件 4.1.1变压器的运行电压一般不应高于该运行分接额定电压的105%。对于特殊的使用情况,允许在不超过110%的额定电压下运行。

变压器基本知识试卷答案

变压器基本知识试卷答案 得分: 姓名: 第一题:是非题(20分) 1.变压器的基本知识储备是每一个电力人必备的技能。 2.发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用 电区。 3.变压器是根据电磁感应制成的。 4.将变压器和电源一侧连接的线圈叫初级线圈(或叫原边)。 5.变压器初级线圈与次级线圈电压比和初级线圈与次级线圈的匝数比值有关。 6.匝数越多,电压就越高。 7.自耦变压器常用作调节电压。 8.小型变压器指容量在1千伏安以下的单相变压器。 9.在选用变压器时,应尽量使设备容量和实际使用量一致,以提高设备利用 率。 10.上层油温不得超过85C。 第二题:填空题(20分) 1.变压器部件主要是由铁芯、线圈组成,此外还有油箱、油枕、绝缘套管及 分接开头等 2.按用途分有电力变压器,专用电源变压器,调压变压器,测量变压器(电 压互感器、电流互感器),小型电源变压器(用于小功率设备),安全变压器.

第三题:名词角释(20分) 1、什么叫变压器? 在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。 2、什么是自耦变压器? 自耦变压器只有一组线圈,次级线圈是从初级线圈抽头出来的,它的电能传递,除了有电磁感应传递外,还有电的传送,这种变压器硅钢片和铜线数量比一般变压器要少,常用作调节电压。 第四题:问答题(40分) 1.变压器油有什么用处? 变压器油的作用是: (1)、绝缘作用 (2)、散热作用 (3)、消灭电弧作用 2.如何保证变压器有一个额定的电压输出? 电压太高或过低都会影响变压器的正常工作和使用寿命,所以必须调压。调压的方法是在初级线圈中引出几个抽头,接在分接开头上,分接开头通过转动触头来改变线圈的匝数。只要转动分接开关的位置,即可得到需要的额定电压值。要注意的是,调压通常应在切断变压器所接的负载后进行。 3.怎样选择变压器?如何确定变压器的合理容量?

变压器知识习题及答案

变压器知识习题及答案 一、填空题 ? 1、油浸式电力变压器一般是由铁芯、绕组、()绝缘套管和冷却系统五大部分组成。 2、变压器油起着散热和()的作用。 3、将连接组别为y , dl 的三相变压器改接为Y, Yno。如果一次侧的额定电电压不变,则二次侧的额定电压为原来的√3倍,其容量不变。 4、变压器空载运行时,由于()很小,铜损近似为零。 5、变压器空载运行时的主磁通与额定运行时主磁通相同,所以变压压器的空载损耗似等于()损耗。 6、变压器运行中温度最高的部位是(),温度最低的是变压器油。 7、当变压器负载系数为()时,其效率最高。 8、变压器绕组损耗分为基本损耗和附加损耗,其中基本损耗耗是()。 9、一台油浸自冷式变压器,当周围围空气温度为 32℃时,其上层油温为I 60°'C ,则上层油的温升为()。 10.变压器空载电流的无功分量很大,而()分量很小,因此变压器空载运行行时的功率因素很低。 11.变压器空载试验的目的是测量()损耗和空载电流。 12、变压器并列运行的目的是:()和提高供电可靠性。 13、变压器的相电压变比等于原边、副边绕组的()之比。 14、变压器过负荷时的声音是()。 15、变压器呼吸器中的硅胶受潮后,其颜色变为()。 16、电力变压器的交流耐压试验,是考核变压器的()绝缘。 17、测定电力变压器的变压比,一般采用的试验仪器是()。 18、常用的电压互感器在运行时相当于一个空载运行的降压变压器,它的二次电压基本上等于二次()。 19、电压互感器按其工作原理可分为()原理和电容分压原理。 20、电流互感器二次侧的额定电流一般为()安培,电压互感器二次侧的电压一般为()伏,这样,可使测量仪表标准化。 二、选择题 ? ? ? ? 1、并列运行变压器的变压比不宜超过()。 A、 2:1 B:3:1 C:4:1 D:5:1 2、变压器轻瓦斯保护正确的说法是()。 A.作用于跳闸 B、作用于信号 C.作用于信号及跳闸 D.都不对 3、带有瓦斯继电器的变压器,安装时其顶盖沿瓦斯继电器方向的的升高场坡度为()。 A. 1%~5% B、1%% C. 1%一25% D. 1%-30% 4、配电变压器低压侧中性点应进行工作接地,对于容量为l00kVA及以上其接地电阻应不大于()。 A. 0. 4Ω B. 10Ω C一8 ΩΩ 5、已知变压器额定容量为s,额定功率库因数0. 8,则其额定有功负载应是()。 B. 1·25S D. 0. 64S

变压器知识培训学习资料

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

变压器的介绍.

变压器 1.1 概述 变压器是一种静止的电器设备,它依靠电磁感应作用,将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。 变压器是电力系统中重要的电气设备。众所周知,输送一定的电能时,输电线路的电压愈高,线路中的电流和相应的损耗就愈小。为此,需要用升压变压器把交流发电机发出的电压升高到输电电压,通过高压输电线将电能经济地送到用电地区;然后再用降压变压器逐步将输电电压降到配电电压,送到各用电区;最后再经配电变压器变成用户所需的电压,供各种动力和照明设备安全而方便地使用。变压器的总容量要比发电机的总容量大得多,可达6~7 倍。 除此之外,变压器还广泛应用在其他场合,如电焊、电炉和电解使用的变压器,化工行业用的整流变压器,传递信息用的电磁传感器,供测量用的互感器,自控系统中的脉冲变压器,试验用的调压器等。 变压器还可以改变电流,改变负载的等效阻抗、电源的相数和频率。 变压器的结构虽然简单,其基本原理、分析方法却可作为其他交流电机研究的基础,特别是感应电机。 1.2 变压器的分类 变压器的种类繁多,从不同角度,变压器可以作不同的分类。 从用途来看,可分为电力变压器、试验变压器、测量变压器及特殊用途变压器。电力变压器用在电力系统中,用来升高电压的变压器称为升压变压器;用来降低电压的变压器称为降压变压器。升压变压器与降压变压器除了额定电压不同以外,在原理和结构上并无差别。此外还有配电变压器和联络变压器。试验变压器用于实验室,有调压变压器和高压试验变压器。测量变压器用于测量大电流和高电压,主要是仪用互感器,包括电压互感器和电流互感器。特殊用途变压器有电炉用变压器、电焊用变压器、电解用整流变压器、晶闸管线路中的变压器、传递信息用的电磁传感器、自控系统中的脉冲变压器等。 从相数来看,有单相变压器、三相变压器和多相变压器。电力变压器以三相居多。 从每相绕组数目来看,可分为单绕组变压器、双绕组变压器、三绕组和多绕组变压器。通常变压器都为双绕组变压器,单绕组变压器又称自藕变压器,三绕组变压器(即联络变压器)用于把三种电压等级的电网连接在一起,大容量电厂中用作厂用电源的分裂变压器就是一种多绕组变压器。 从铁心结构看,可分为心式变压器、壳式变压器、渐开线式变压器和辐射式变压器等。 从冷却方式看,有以空气为冷却介质的干式变压器,以油为冷却介质的油浸变压器,以特殊气体为冷却介质的充气变压器。油浸变压器又分自冷、风冷和强制油循环冷却的变压器。自冷是利用温差产生变压器油的自循环进行冷却,风冷是利用装在散热器上的吹风机进行冷却,强制油循环冷却是利用专门设备(如油泵)强迫变压器油加速循环。 从容量大小看,可分为小型变压器(10~630kVA )、中型变压器(800~6300kVA)、大型变压器( 8000~63000 kVA )和特大型变压器(90000kVA 以上)。 1.3 变压器工作原理 1.3.1 变压器的构成

电力变压器运行规程-DL572-95资料讲解

DL 中华人民共和国电力行业标准 DL/572-95 ______________________________________________________________________________ 电力变压器运行规程 1995-06-29 1995-11-01实施 _______________________________________________________________________________ 中华人民共和国电力工业部发布

目次 1 主题内容适用范围 2 引用标准 3 基本要求 4 变压器运行方式 5 变压器的运行维护 6 变压器的不正常运行和处理 7 变压器的安装、检修、试验和验收 附录自藕变压器的等值容量(补充件) 附加说明

中华人民共和国电力行业标准 DL/T 572-95 电力变压器运行规程 _______________________________________________________________________________ 1 主题内容与适用范围 本规程规定了电力变压器(下称变压器)运行的基本要求、运行方式、运行维护、不正常运行和处理,以及安装、检修、试验、验收的要求。 本规程适用于电压为1kV及以上的电力变压器,电抗器、消弧线圈、调压器等同类设备可参照执行。国外进口的电力变压器,一般按本规程执行,必要时可参照制造厂的有关规定。 2 引用标准 GB1094~1094·5 电力变压器 GB6450 干式电力变压器 GB6451 油浸式电力变压器技术参数和要求 GB7252 变压器泊中溶解气体分析和判断导则 GB/T15164 油浸式电力变压器负载导则 GBJ148 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 DL400 继电保护和安全自动装置技术规程 SDJ7 电力设备过电压保护设计技术规程 SDJ8 电力设备接地设计技术规程 SDJ9 电气测量仪表装置设计技术规程 SDJ2 变电所设计技术规程 DL/T573 电力变压器检修导则 DL/T574 有载分接开关运行维修导则 3基本要求 3.1保护、冷却、测量装置 3.1.1变压器应按有关标准的规定装设保护和测量装置。 3.1.2油浸式变压器本体的安全保护装置、冷却装置、油保护装置、温度测量装置和油箱及附件等应符合GB6451的要求。 干式变压器有关装置应符合相应技术要求。 3.1.3变压器用熔断器保护时,熔断器性能必须满足系统短路容量、灵敏度和选择性的要求。分级绝缘变压器用熔断器保护时,其中性点必须直接接地。 3.1.4装有气体继电器的油浸式变压器,无升高坡度者〈制造厂规定不需安装坡度者除外〉,安装时应使顶盖沿气体继电器方向有1%~1.5%的升高坡度。 3.1.5变压器冷却装置的安装应符合以下要求: a.按制造厂的规定安装全部冷却装置; b.强油循环的冷却系统必须有两个独立的工作电源并能自动切换。当工作电源发生故障时,应自动投入备用电源并发出音响及灯光信号; C.强油循环变压器,当切除故障冷却器时应发出音响及灯光信号,并自动(水冷的可手动)投入备用冷却器 d.风扇、水泵及油泵的附属电动机应有过负载、短路及断相保护;应有监视油泵电机旋转方向的装置; e.水冷却器的油泵应装在冷却器的进油侧,并保证在任何情况下冷却器中的油压大于水压约 0.05MPa(制造厂另有规定者除外)。冷却器出水侧应有放水旋塞; f.强泊循环水冷却的变压器,各冷却器的潜油泵出口应装逆止阀; g.强泊循环冷却的变压器,应能按温度和(或)负载控制冷却器的投切。 3.1.6 变压器应按下列规定装设温度测量装置: a.应有测量顶层油温的温度计(柱上变压器可不装),无人值班变电站内的变压器应装设

变压器基础知识

变压器基础知识有哪些 变压器基础知识有哪些 第一章:通用部分 1.1 什么是变压器? 答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。 1.2 什么是局部放电? 答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。 1.3 局放试验的目的是什么? 答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。 1.4 什么是铁损? 答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。 1.5 什么是铜损? 答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经

额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。 1.6 什么是高压首端? 答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。 1.7 什么是高压首头? 答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。 1.8 什么是主绝缘?它包括哪些内容? 答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。 它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。 1.9 什么是纵绝缘?它包括哪些内容? 答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。 它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。 1.10 高压试验有哪些?分别考核重点是什么? 答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。

弧焊变压器工作原理分析

《弧焊电源》授课讲稿第5次课第2章弧焊变压器 弧焊变压器工作原理分析 1空载状态分析 (1)电路-磁路图 电路-磁路耦合关系 (2)基本方程式 ①1 =①0 +①L0 物理意义:总磁通①1等于主磁通①0加漏磁通①L0 E20 =U o 物理意义:空载电压U b等于空载时的2次绕组的感应电动势E20 E10的由来E 1b 1次绕组的空载感应电动势有效值 e1b 1次绕组的空载感应电动势瞬时值 物理关系:同一磁通量上不同绕组的感应电动势取决于圈数 < __________________ 丿 耦合系数Km物理意义:主磁通与总磁通之比 由于存在漏磁,耦合系数小于1

物理意义: 两个因素 使输出端的 空载电压 低于 输入电压 耦合系数低于 1:存在漏磁,导致主磁通量小于总磁通量 匝数比小于 1 :导致 输出端感应电动势易于输入端 空载状态下输入回路的电压平衡 物理意义: 回路中感应电动势 E 10 、输入电压 U 1 、绕组上的压降之和为零 2 负载状态分析 (1)电路- 磁路图 电路 - 磁路耦合关系 物理关系:主磁通由 1 次线圈中的输入电流和 2 次线圈中的输出电流共同产生 2)外特性方程式推导 输入回路的电压平衡 物理关系 输入回路中的电压降与电动势之和为零 注意 漏磁产生的感应电动势被等效电感代替 将输入回路的电压平衡式中的参数代换为输出回路的参数 上述公式的物理意义:反映了输入回路与输出回路的磁耦合关系 E 1 转换为输出回路的感应电动势 E 2 I 1 , 转换为输入回路的空载电流 I 0 和 I 2 得到如下方程式 物理意义:负载时,输出回路的感应电动势 E 2 与输出回路的电流之间的关系 经如下整理 即:将输入回路感应电动势 将输入回路的负载电流 输出回路的负载电流

供电系统的运行方式

供电系统的运行方式 1.主变电所的运行方式 每座主变电所分别从城市电网引入2路相互独立的110kV电源进线,每路电源进线各带一台110/35kV有载调压主变压器,并在高压侧设有载分接开关。主变电所的110kV侧采用内桥接线,在正常运行方式下,高压进线的联络开关打开,两台主变压器同时分列运行,主变电所的35kV侧采用单母线分段接线并设常开母联开关,馈出35kV 中压电源给沿线的牵引变电所和降压变电所供电。 在正常运行方式下,每座主变电所的2路电源进线和两台主变压器同时分列运行,负担各自供电分区的牵引负荷和动力照明负荷。 在故障情况下,当其中一台主变压器解列时,合上该所的母联开关,由另一台主变压器负担该主变电所的供电区域负荷,该主变压器应能满足该所供电区域内高峰小时牵引负荷和动力照明一、二级负荷需要;当其中一路电源进线故障时,合上进线侧的联络开关,由另一路电源进线负担该主变电所的供电区域内负荷,它应能满足该所供电区域内高峰小时全部牵引负荷和动力照明负荷。 在严重故障情况下,当一座主变电所解列时(不考虑该主变电所的母线故障),合上两座主变电所间设于建国道变电所的环网联络开关,由另一座主变电所通过环网越区供电负担全线供电范围内的牵引负荷及动力照明一、二级负荷需要。 2.牵引变电所的运行方式 牵引变电所的35kV侧采用单母线分段接线,两套整流机组并联接在

同一段35kV母线上,DC750V侧为单母线接线,通过直流快速开关向接触轨供电,两台配电变压器分别接在两段35kV母线上。 在正常运行方式下,牵引变电所中的两套整流机组并联工作并组成等效24脉波整流方式;相邻牵引变电所对正线接触轨实行上下行分路双边供电方式。 当正线任一座牵引变电所解列时,由相邻的两座牵引变电所越区“大双边”供电。 当牵引变电所内有一台牵引变压器出现故障,另一台变压器可以负担该所的牵引负荷,但一般不会 3.降压变电所的运行方式 降压变电所的35kV侧采用单母线分段接线,两台动力变压器分别接在两段高压母线上;低压0.4kV侧采用单母线分段接线,通过低压开关向车站各动力照明负荷供电,并设三级负荷总开关,以方便对三级负荷必要的切除工作。 在正常运行方式下,两台动力变压器同时分列运行,共同负担供电区域内的动力照明负荷。 在故障情况下,当牵引降压混合变电所或降压变电所中的一台动力变压器故障解列时,自动切除三级负荷,由另一台动力变压器负担该所供电范围内全部动力照明一、二级负荷。 4.中压环网电缆的运行方式 在正常运行方式下,每个供电分区均由两路电源同时负担供电。 在故障情况下,当供电分区中的任一路电缆故障时,跳开故障电缆的

变压器的基础知识

变压器的基础知识 一、变压器: 就是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。换句话说,变压器就就是实现电能在不同等级之间进行转换。 二、结构: 铁心与绕组:变压器中最主要的部件,她们构成了变压器的器身。 铁心:构成了变压器的磁路,同时又就是套装绕组的骨架。铁心由铁心柱与铁轭两部分构成。铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。 铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。硅钢片有热轧与冷轧两种,其厚度为0、35~0、5mm,两面涂以厚0、02~0、23mm的漆膜,使片与片之间绝缘。 绕组:绕组就是变压器的电路部分,它由铜或铝绝缘导线绕制而成。 一次绕组(原绕组):输入电能 二次绕组(副绕组):输出电能 她们通常套装在同一个心柱上,一次与二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压与电流。 其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。从高、低压绕组的相对位置来瞧,变压器的绕组又可分为同心式、交迭式。由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。 其她部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。 三、额定值 额定值就是制造厂对变压器在指定工作条件下运行时所规定的一些量值。额定值通常标注在变压器的铭牌上。变压器的额定值主要有: 1、额定容量S N

额定容量就是指额定运行时的视在功率。以 V A 、kV A 或MV A 表示。由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。 2、额定电压U 1N 与U 2N 正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。二次侧的额定电压U 2N 就是指变压器一次侧加额定电压时二次侧的空载电压。额定电压以V 或kV 表示。对三相变压器,额定电压就是指线电压。 3、额定电流I 1N 与I 2N 根据额定容量与额定电压计算出的线电流,称为额定电流,以A 表示。 对单相变压器 N N N U S I 11=; N N N U S I 22= 对三相变压器 N N N U S I 113=;N N N U S I 223= 4、额定频率 f N 除额定值外,变压器的相数、绕组连接方式及联结组别、短路电压、运行方式与冷却方式等均标注在铭牌上。额定状态就是电机的理想工作状态,具有优良的性能,可长期工作。 四、变压器的空载运行

变压器介绍

变压器的构造及各部件的功用是什么? 答: 变压器主要由铁芯、绕组、油箱、油枕以及绝缘套管、分接开关和气体继电器等组成。其各部分的功用如下。 (1)铁芯。铁芯是变压器的磁路部分; 为了降低铁芯在交变磁通作用下的磁滞和涡流损耗,铁芯采用厚度为 0.35mm 或更薄的优质硅钢片叠成。目前厂泛采用导磁系数高的冷轧晶粒取代硅钢片,以缩小体积和重量,也可节约导线和降低导线电阻所引起的发热损耗。铁芯包括铁芯柱和铁轭两部分。铁芯柱上套绕组,铁轭将铁芯柱连接起来,使之形成闭合磁路。按照绕组在铁芯中的布置方式,变压器又分为铁芯式和铁壳式(或简称芯式和壳式)两种。单相二铁芯柱。此类变压器有两个铁芯柱,用上、下两个铁轭将铁芯柱连接起来,构成闭合磁路。两个铁芯柱上都套有高压绕组和低压绕组。通常,将低压绕组放在内侧,即靠近铁芯,而把高压绕组放在外侧,这样易于符合绝缘等级要求。 铁芯式三相变压器有三相三铁芯柱式和三相五铁芯柱式两种结构。三相五铁芯柱式(或称三相五柱式)也称三相三铁芯柱旁轭式,它是在三相三铁芯柱(或称三相三柱式)外侧加两个旁轭(没有绕组的铁芯)而构成,但其上、下铁轭的截面和高度比普通三相三柱式的小。从而降低了整个变压器的高度。三相三铁芯柱,它是将三相的三个绕组分别放在三个铁芯柱上,三个铁芯柱也由上、下两个铁轭将芯柱连接起来,构成闭合磁路。绕组的布置方式同单相变压器一样。三相五铁芯柱,它与三相铁芯相比较,在铁芯柱的左右两侧多了两个分支铁芯柱,成为旁扼。各电压级的绕组分别按相套在中间三个铁芯柱上,而旁轭没有绕组,这样就构成了三相五铁芯柱变压器。由于三相五柱式铁芯各相磁通可经旁轭而闭合,故三相磁路可看作是彼此独立的,而不像普通三相三柱式变压器各相磁路互相关联。因此当有不对称负载时,各相零序电流产生的零序磁通可经旁轭而闭合,故其零序励磁阻抗与对称运行时励磁阻抗(正序)相等。中、小容量的三相变压器都采用三相三柱式。大容量三相变压器. 常受运输高度限制,多采用三相五柱式。铁壳式单相变压器,具有一个中心铁芯柱和两个分支铁芯柱(也称旁轭),中心铁芯柱的宽度为两个分支铁芯柱宽度之和。全部绕组放在中心铁芯柱上,两个分支铁芯柱好像“外壳” 似的围绕在绕组的外侧,因而有壳式变压器之称。有时亦称其为单相三柱式变压器。铁壳式三相变压器,其铁芯可以看作由三个独立的单相壳式变压器并排放在一起而构成。芯式变压器结构比较简单,高压绕组与铁芯的距离较远,绝缘容易处理。壳式变压器的结构比较坚固,制造工艺比较复杂,高压绕组与铁芯柱的距离较近,绝缘处理较困难。壳式结构易于加强对绕组的机械支撑,使其能承受较大的电磁力,特别适用于通过大电流的变压器。壳式结构也用于大容量电力变压器。 在大容量变压器中,为了使铁芯损耗发出的热量能被绝缘油在循环时充分地带走,从而达到良好的冷却效果,通常在铁芯中设有冷却油道。冷却油道的方向可以做成与硅钢片的平面平行或垂直。 (1)绕组。 1)绕组在铁芯上相互间的布置形式。变压器的绕组,按其高压绕组和低压绕组在铁芯上的布置,有两种基本形式: 同心式和交叠式。同心式绕组,高压绕组和低压绕组均做成圆筒形,但圆筒的直径不同,然后同轴心地套在铁芯柱上。交叠绕组,又称为饼式绕组,其高压绕组和低压绕组各分为若干线饼,沿着铁芯柱的高度交错排列着。交叠绕组多用于壳式变压器。芯式变压器一般都采用同心式绕组。通常低压绕组装得靠近铁芯,高压绕组则套在低压绕组的外面,低压绕组与高压绕组之间以及低压绕组与铁芯之间都留有一定的

变压器节能降耗措施

浅谈变配电变压器节能降耗措施 摘要:首先分析了变压器运行的损耗,然后从配变的选型、配置、运行方式、无功补偿和管理5个方面探讨了其节能降耗措施。 关键词:配网;变压器;节能降耗 0.引言 变压器是电网中运用最普遍的设备之一,它贯穿于电力系统的发、输、变、配、用各个环节。一般说来,从发电到用电需要经过3~5次的电压变换过程,其中变压器必然产生有功和无功损耗,所以其电能总损耗约占发电量的 10%。尤其在变配电网中,增加配变布点的要求使得配电变压器的数量和总容量非常庞大,在整个电力系统变压器中占了相当比例。因此,提高变配电运行效率、降低配网损耗具有极为重大的意义。 1.变压器损耗 变压器损耗包括铁耗和铜耗[1]。铁耗与铁芯的材质有关,与负荷大小无关,其值基本上是固定的;铜耗与变压器的负载密切相关。近似与负荷电流的平方成正比。变压器的等效电路如图 1所示 因此,变压器有功损耗可标示为:ΔP=P0+β2Pk 式中,ΔP 为变压器有功损耗;P0为空载损耗;β 为变压器负载率;Pk为短

路损耗率。变压器的损耗率可以表示为: η=P2/P1×100%=P2/P2+ΔP1×100%随着变压器负载率的变化,当β=(P0 /Pk)0.5时,即当可变损耗(铜耗)等于不变损耗(铁耗)时,变压器效率最大值为: ηmax=SN cosφ/SN cosφ+2P0P K×100% 2.变压器节能降耗措施 根据变压器损耗产生的根源,以下从 5个方面探讨降低变压器铜耗与铁耗的措施。 2.1合理选择变压器型号 变压器的铁耗发生在变压器铁芯碟片内,主要由交变的磁力线通过铁芯产生磁滞及涡流带来损耗。最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,20世纪初,经研究发现,在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用 0.35 mm厚的硅钢片代替了铁线制作变压器铁芯。近年来,变压器的铁芯材料已发展到最新的节能材料—非晶态磁性材料,非晶合金铁芯变压器应运而生这种变压器的铁损大幅度降低,仅为硅钢变压器的1/5。我国 S7系列变压器是 20世纪 80年代后推出的,其空载损耗和短路损耗均较高。目前推广应用的是 S11系列低损耗变压器,其卷铁芯改变了传统的叠片式铁芯结构为硅钢片连续卷制,铁芯无接缝,大大减少了磁阻,使空载电流减少了 60%~80%,提高了功率降低了电网线损,改善了电网的供电品质。文献[2]对800kVA 的S9型配变和非晶合金配变的节能性能进行了比较,其在 20%和

浅谈电力变压器的安全运行(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅谈电力变压器的安全运行(最 新版) Safety management is an important part of production management. Safety and production are in the implementation process

浅谈电力变压器的安全运行(最新版) 随着社会不断进步、用电量迅速增长,为了安全供电、提高供电可靠性,满足社会用电需求,对于变压器的安全运行,更显得意义重要。 现就以下几个方面论述如下: 1、合理选址变压器安全运行,需要有良好的外部环境。其安装选址要避免低洼、潮湿、高温、灰尘和腐蚀性气体的影响,尽量选择自然通风良好的地方,以提高散热条件和避免易燃易爆气体的影响。 2、合理选择变压器的保护方式在电力系统中,继电保护应具有可靠性、快速性、灵敏性和选择性。变压器是电网中主要元件之一,应根据负荷的重要性和变压器自身价值等方面,综合选择所需的继电保护方式。变压器保护有变压器自身故障保护和外部电路故障保护。而变压器自身故障分为油箱内和油箱外故障两种。

以下介绍几种保护方式: (1)瓦斯保护。瓦斯保护有轻瓦斯保护和重瓦斯保护,轻瓦斯动作于信号,重瓦斯动作于电源侧断路器跳闸。在变压器开始带负荷运行的一星期内,应把重瓦斯保护从跳闸切换为信号。要把重瓦斯保护从跳闸功换为信号,要选择一只电阻代替中间继电器的电压线圈,而该电阻的阻值,应能使信号继电器的灵敏度大于1.4,并要检验长期流过电流信号继电器的电流是否小于电流信号继电器的额定电流。故此,代替中间继电器线圈的电阻R1阻值应满足:1.4Idz<[Ue/(R1+R2)]

油浸式变压器知识大全

导读 配电变压器为工矿企业与民用建筑供配电系统中的重要设备之一,它将10(6)kV或35kV 网络电压降至用户使用的230/400V 母线电压。此类产品适用于交流50(60)Hz,三相最大额定容量2500kVA(单相最大额定容量833kVA,一般不推荐使用单相变压器),可在户内(外)使用,容量在315kVA 及以下时可安装在杆上,环境温度不高于40℃,不低于-25℃,最高日平均温度30℃,最高年平均温度20℃,相对湿度不超过90%(环境温度25℃),海拔高度不超过1000m。若与上述使用条件不符时,应按GB6450-86的有关规定,作适当的定额调整。一分类 相数区分 可以分为三相变压器和单相变压器。在三相电力系统中,一般应用三相变压器,当容量过大且受运输条件限制时,在三相电力系统中也可以应用三台单相式变压器组成变压器组。 绕组区分 可分为双绕组变压器和三绕组变压器。通常的变压器都为双绕组变压器,即在铁芯上有两个绕组,一个为原绕组,一个为副绕组。三绕组变压器为容量较大的变压器(在5600千伏安以上),用以连接三种不同的电压输电线。在特殊的情况下,也有应用更多绕组的Satons 变压器。 结构分类 则可分为铁芯式变压器和铁壳式变压器。如绕组包在铁芯外围则为铁芯式变压器;如铁芯包在绕组外围则为铁壳式变压器。二者不过在结构上稍有不同,在原理上没有本质的区别。电力变压器都系铁芯式。 变压器主要由铁芯、绕组、油箱、油枕、绝缘套管、分接开关和气体继电器等组成。 1.铁芯 铁芯是变压器的磁路部分。运行时要产生磁滞损耗和涡流损耗而发热。为降低发热损耗和减小体积和重量,铁芯采用小于0.35mm导磁系数高的冷轧晶粒取向硅钢片构成。依照绕组在铁芯中的布置方式,有铁芯式和铁壳式之分。在大容量的变压器中,为使铁芯损耗发出的热量能够被绝缘油在循环时充分带走,以达到良好的冷却效果,常在铁芯中设有冷却油道。

电力变压器的运行方式及容量选择

电力变压器的运行方式及容量选择 【摘要】电力变压器是生产企业主要用电设备之一,其运行方式及容量选择是否妥当与企业生产能否正常进行、电费开支多少有很大关系。本文主要分析了电力变压器的运行方式及容量选择。 【关键词】电力变压器;运行方式;容量选择 一、电力变压器的运行方式 1.一般运行条件 (2)无励磁调压变压器在额定电压±5%范围内改换分接位置运行时,其额定容量不变。 (3)油浸式自然循环自冷变压器,冷却介质最高温度为40℃时,最高顶层油温不超过95℃(制造厂有规定的按制造厂规定)。当冷却介质温度较低时,顶层油温也相应降低。自然循环冷却变压器的顶层油温一般不宜经常超过85℃。 (4)干式变压器的温度限值应按制造厂的规定。 (5)变压器三相负载不平衡时,应监视最大一相的电流。接线为Y,yn0和Y,Zn11的配电变压器,中性线电流的允许值分别为额定电流的25%和40%,或按制造厂的规定。接线为D,yn11的配电变压器不在此限。 2.变压器在不同负载状态下的运行方式 (2)配电变压器负载状态的分类。①正常周期性负载。在周期性负载中,某段时间环境温度较高,超过额定电流,但可以由其他时间内环境温度较低或低于额定电流所补偿。从热老化的观点出发,它与设计采用的环境温度下施加额定负载是等效的;②长期急救周期性负载。要求变压器长时间在环境温度较高或超过额定电流下运行,这种运行方式可能持续几星期或几个月,将导致变压器的老化加速,但不直接危及绝缘的安全;③短期急救负载。要求变压器短时间大幅度超额定电流运行,这种负载可能导致绕组热点温度达到危险的程度,使绝缘强度暂时下降。 (3)附件和回路元件的限制。变压器的载流附件和外部回路元件应能满足超额定电流运行的要求,当任一附件和回路元件不能满足要求时,应按负载能力最小的附件和元件限制负载。 3.树脂绝缘干式变压器的运行条件 (1)树脂绝缘干式变压器在规定的绕组平均温升前提下可在限定时间内作过负载运行,允许过负载量与环境温度、变压器初始负载有关,与额定负载时的绕组温升和绕组热时间常数密切相关。制造厂可根据环境温度、所需过负载时间、过负载倍数及规格、容量,按计算结果提供不同情况下的正常过负载资料;(2)树脂绝缘干式变压器在强迫风冷情况下可短时过负载40%~50%。 二、电力变压器容量的选择 1.变压器台数的选择 选择变电所主变压器台数时应遵守下列原则: (1)对接有大量一、二级负荷的变电所,宜采用两台变压器,可保证一台变压器发生故障或检修时,另一台变压器能对一、二级负荷继续供电;(2)对只有二级负荷的变电所,如果低压侧有与其他变电所相联的联络线作为备用电源也可采用一台变压器;(3)对季节性负荷或昼夜负荷变动较大的变电所,可采用两

变压器运行特性分析

课程设计名称:电机与拖动课程设计 题目:变压器运行特性分析计算 专业: 班级: 姓名:

学号: 课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

1 变压器结构及其组成部分 (1) 1.1变压器的基本结构 (1) 1.1.1铁芯 (1) 1.1.2绕组 (1) 1.1.3油箱和冷却装置 (2) 1.1.4绝缘套管 (2) 1.1.5其他构件 (2) 1.2变压器的额定值 (2) 2变压器的变换关系 (4) 2.1电压变换 (4) 2.2电流变换 (4) 2.3阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13)

变压器运行

1 变压器运行 1.1 变压器的运行方式 1.1.1正常运行方式 1.1.1.1主变正常运行方式:#1主变接于500kV第二串,#2主变接于500kV第三串,#3、#4主变接于500kV第四串。 1.1.1.2#01高压备变正常运行方式:#01高压备变高压侧固定联结于500kV IM母线,低压侧通过备用电源共箱母线、6kV备用电源进线开关接至#1~#4机6kV各母线段。当单元机组的主变、高厂变发生事故跳闸或者检修时以及6kV母线电源定期切换工作时,由#01高压备变接带机组的6kV厂用电,其它情况下均由机组的高厂变带本机的6kV厂用电系统负荷。 1.1.1.3高厂变正常运行方式:各高厂变高压侧均接于相对应的主变低压侧,低压侧接于相应的6kV A、B段上。机组运行时由发电机向对应的高厂变供电。当机组停机后发电机出口开关断开,由系统通过主变向对应的高厂变倒供电。 1.1.1.4低厂变正常运行方式:单元机组的A、B低压厂变分别接至各自机组6kV A、B段上,#1循泵变、#1厂前区变接于6kV 1A段上,#1调压站变、#1化水变接于6kV 1B段上;#2循泵变、#2厂前区变接于6kV 2A段上,#2调压站变、#2化水变接于6kV 2B段上。1.1.1.5SFC隔离变:#1SFC隔离变接于6kV 1B段上,#2SFC隔离变接于6kV 3B段上。 1.1.2变压器中性点运行方式 1.1. 2.1#1~#4主变高压侧中性点采用直接接地方式。 1.1. 2.2#01高压备变高压侧中性点采用直接接地方式,低压侧中性点采用高阻接地方式。 1.1. 2.3高厂变高压侧为不接地系统,低压侧中性点采用高阻接地方式。 1.1. 2.4380V低压厂用变低压侧中性点采用直接接地方式。 1.2 变压器的运行规定: 1.2.1一般规定 1.2.1.1运行中的变压器额定电压变动范围在±5%以内时,其额定容量不变,其最高运行电压不得超过额定值的105%。 1.2.1.2强迫油循环变压器上层油温正常不超过75℃,最高不超过85℃,温升不超过45℃。 1.2.1.3油浸风冷变压器上层油温正常情况下不超过85℃,最高不超过95℃,温升不超过55℃(周围温度以40℃为准)。

变压器常识,牛逼啊

作者简介:本文作者朱英浩同志系沈阳变压器研究所总工程师,我国变压器行业唯一的中国工程院院士。 1.局部放电(一) 2.局部放电(二) 3.局部放电(三) 4.局部放电(四) 5.三相交流系统的对称分量法 6.空载电流的谐波分量 7.变压器不对称运行时的对称分量 1.局部放电(一) 在电场强度作用下,在变压器绝缘系统中局部区域有绝缘性能薄弱的地方会被激发出局部放电,局部放电是不足以贯通施加电压的两个电极间形成放电通道,即平常所说的击穿。如果将局部放电量控制在一定放电量水平以下,对绝缘不会引起损伤,所以局部放电试验是一种无损探测绝缘特性的试验,在一定的局部放电试验电压与大于局部放电试验电压并模拟运行中过电压的局部放电预激发电压作用后,在以后的局部放电试验电压持续时间内测局部放电视在放电量,如局部放电视在放电量小于标准规定值,即认为变压器能通过局部放电试验。这项试验比传统的短时工频耐压试验要严格,因短时工频耐压试验是以绝缘结构中是否有击穿作为能否通过试验的准则。局部放电试验能检测出绝缘上薄弱的部位,在运行中检测局部放电量可探测出潜在的绝缘薄弱部位。而短时工频耐压试验,只能探测到绝缘结构能否承受住各种过电压或试验电压的作用,要么承受住,要么承受不住,发现不了潜在的绝缘薄弱地位。所以说,局部放电试验是一种比较理想的绝缘试验项目,是一项正在推广应用范围的试验项目,凡是能通过局部放电试验的变压器,在运行中可靠性是比较高的。因此应对局部放电特性及检测加以研究,使变压器达到低局部放电量水平的要求,某些试验用变压器还应达到无局部放电的水平。 在油纸绝缘的变压器中,在内部带电电极上,固体绝缘部件的表面(油与绝缘材料的分界面)或内部、变压器油内部所发生的局部放电都统称为局部放电,发生在被气体所包围的电极表面或附近气体中局部放电则称为电晕。变压器的允许局部放电量水平不包括套管在空气中的电晕所产生的允许局部放电量水平,只是指油箱内部所产生的局部放电量水平。对三相变压器可以分相测出每一相的局部放电量水平。对每一相的局部放电量而言,包括其它绕组传递到被测绕组的局部放电量。每一相的高压、中压与低压绕组有其各自的局部放电量。每一相高压绕组(或中压或低压绕组)的局部放电量可能来自线端套管、中点套管、有载调压分接开关或无励磁分接开关、引线、绕组、

相关主题
文本预览
相关文档 最新文档