当前位置:文档之家› 磁共振序列原理

磁共振序列原理

磁共振序列及技术

自旋回波序列类 1.SE (常规自旋回波序列)(Spin Echo)(西门子也称SE) 根据TR的TE的不同组合,可得到T1加权像(T1WI ),质子加权像(PDWI),T2加权像(T2WI)。T1WI 现正在广泛使用于日常工作中,而PDWI和T2WI因扫描时间太长几乎完全被快速SE取代。 2.FSE (快速自旋回波序列)(Fast Spin Echo)(欧洲厂家西门子和飞利浦以“turbo”来表 示快速,故称之为TSE(Turbo Spin Echo)) 该序列的优点是(1)速度快,图像对比不降低,所以现在尤其在T2加权成像方面几乎已经完全取代了常规SE序列而成为临床标准序列。(2)与常规SE序列一样,对磁场的不均匀性不敏感; 该序列的缺点有(1)如采集次数不变,S/N有所降低,一般多次采集;(2)T2加权像上脂肪信号比常规SE像更亮,显得有些发白,易对图像产生干扰,解决的方法主要是用化学法或STIR序列进行脂肪抑制;(3)当ETL>8以后,图像高频部分缺失,导致一种滤波效应产生模糊,常在相位编码方向上出现图像的细节丢失;(4)RF射频能量的蓄积;(5)磁化转移效应等。 3.SS-FSE (单次发射快速SE)(Single shot FSE RARE)(西门子称SS-TSE) 4.HASTE (半傅里叶单发射快速SE序列)(half-fourier acquisition single-shot turbo spin-echo)(西门子也称HASTE) 该序列的有效回波时间可较短,例如80ms,提高了信噪比和组织对比。 HASTE序列应用越来越广泛,除用于不能配合检查的患者外,还因速度快,在腹部成像中应用较多。如用于不能均匀呼吸又不能屏气的病例,,磁共振胰胆管成像(MRCP)、磁共振尿路成像(MRU)、肝脏扫描中增加囊性病变与实性病变的对比、显示肠壁增厚和梗阻性肿块、肿块表面和肠壁受侵犯情况、MR结肠造影等。 5.FRFSE (fast recovery) (快速恢复快速自旋回波序列)(西门子为TSE-Restore)(1)在实际工作中,经常会遇到T2WI扫描时TR不能降低,但扫描层次却较少的场合,比如脊柱,颈椎矢状位等,此时梯度的工作周期远未接近100%,此时采用FRFSE序列,减少TR,可提高工作效率,或改善图像质量(增加采集次数)。 (2)在实际工作中,例如1.5T MR头颅扫描时TR常选2500ms,但选择FRFSE后,TR可短至1300ms,图像质量并无明显降低。 使用方法:西门子公司机器的TSE有两种,一种是普通TSE;另一种是TSE-Restore。在参数调整界面的“contrast”卡中勾选“Restore Magn.”项,如不勾选,即为普通TSE 6.IR (inversion recovery)(反转恢复序列)(西门子也称IR) 7.FIR ( fast inversion) (快速反转恢复序列)(西门子称作TIR/IR-TSE) 反转恢复序列引入RARE技术,提高了扫描速度。 但这里有一问题应引起注意。在FIR(或TIR)成像过程中,水平X轴上方有“magnitude detection”与X轴下方“phase sensitive detection”呈对应关系。如检到X轴下方组织信号,但在图像上以其幅度绝对值来表示,可以想像,图像中只有相当于X轴水平的信号值是最低的,图像中无物体的空白背景处应该呈低信号黑色。这时西门子公司将此序列称之为TIRM (turbo inversion recovery (modulus) magnitude);而如同样的信号不以幅度绝对值来表达,而是以实际的值来显示,此时图像背景仍然相当于X轴水平的信号值,但却是灰色(即中等信号),成像组织中的信号有可能低于背景的信号,此时称之为TIR Real。

磁共振的基本原理

磁共振基本原理 磁共振成像的依据是与人体生理、生化有关的人体组织密度对核磁共振的反映不同。要理解这个问题,就必须知道核磁共振和核磁共振的特性。 一、核磁共振与核磁共振吸收的宏观描述 由力学中可知,发生共振的条件有二: 一是必须满足频率条件,二是要满足位相条件。 原子核是自旋的,它绕某个轴旋转(颇像个陀螺)。旋转时产生一定的微弱磁场和磁矩。将自旋的原子核放在一个均匀的静磁场中,受磁场作用,原子核的自旋轴会被强制定向,或与磁场方向相同,或与磁场方向相反。重新定向的过程中,原子核的自旋轴将类似旋转陀螺般的发生进动。不同类的原子核有不同的进动性质,这种性质就是旋转比(非零自旋的核具有特定的旋转比),用γ表示。进动的角频率ω一方面同旋转比有关;另一方面同静磁场的磁场强度 B 有关。其关系有拉莫尔(Larmor)公式(ω又称拉莫尔频率) : ω=γ·B (6-1) 静磁场中的原子核自旋时形成一定的微弱势能。当一个频率也为ω的交变电磁场作用到自旋的原子核时,自旋轴被强制倾倒,并带有较强的势能;当交变电磁场消除后,原子核的自旋轴将向原先的方向进动,并释放其势能。这种现象就是核磁共振现象(换言之,当电磁辐射的圆频率和外磁场满足拉莫尔公式时,原子核就对电磁辐射发生共振吸收),这一过程也称为弛豫过程,释放势能所产生的电压信号就是核磁共振信号.也被称为衰减信号(FID)。显然,核磁共振信号是一频率为ω的交变信号,其幅度随进动过程的减小而衰减。 图6-1表示几种原子核的共振频率与磁场强度的关系。这些频率是在电磁波谱的频带之内,这样的频率大大低于 X 线的频率,甚至低于可见光的频率。可见它是无能力破坏生物系统的分子的。在实际情况下,由于所研究的对象都是由大量原子核组成的组合体,因此在转入讨论大量原子核在磁场中的集体行为时,有必要引人一个反映系统磁化程度的物理量来描述核系统的宏观特性及其运动规律。这个物理量叫静磁化强度矢量,用 M表示。由大量原子核组成的系统,相当于一大堆小磁铁,在无外界磁场时,原子核磁矩μ的方向是随机的,系统的总磁矩矢量为 (6-2) 如果在系统的 Z 轴方向外加一个强静磁场B。,原子核磁矩受到外磁场的作用,在自身转动的同时又以 B。为轴进动,核磁矩取平行于 BO 的方向。按照波尔兹曼分布,在平衡状态下,处于不同能级的原子核数目不相等,使得原子核磁矩不能完全互相抵消,从而有 (6-3) 此时可以说系统被磁化了,可见 M 是量度原子核系统被磁化程度的量,是表示单位体积中全部原子核磁矩的矢量和。 图6-1几种原子核的共振频率与磁场强度的关系 1

磁共振常用英文缩写

磁共振常用英文缩写 A ACR 美国放射学会 ADC 模数转换器、表面扩散系数 B BBB 血脑屏障 BOLD 血氧合水平依赖性(成像法) C CBF 脑血流量 CBV 脑血容量 CE 对比度增强 CSI 化学位移成像 CHESS 化学位移选择性(波谱分析法) CNR 对比度噪声比 CNS 中枢神经系统 Cr 肌酸 CSF 脑脊液 D DAC 数模转换器 DDR 偶极-偶极驰豫、对称质子驰豫

DICOM 医学数字成像和通信标准 DTPA 对二亚乙基三胺五乙酸 DWI 扩散加权成像 DSA 数字减影成像术 DRESS 磷谱研究所用空间定位法,又称深度分辨表面线圈波普E EPI 回波平面成像 TE 回波时间 ETL 回波链长度 ETS 回波间隔时间 EVI 回波容积成像 EDTA 乙二胺四乙酸 ETE 有效回波时间 EPR 电子顺磁共振 ESR 电子自旋共振 F FFT 快速傅里叶变换 FLASH 快速小角度激发 FSE 快速自旋回波 FE 场回波 FID 自由感应衰减 FOV 成像野

FISP 稳定进动快速成像 FLAIR 液体抑制的反转恢复 fMRI 功能磁共振成像 FID 自由感应衰减信号 FIS 自由感应信号 FT 傅里叶变换 FWHH 半高宽 G GM 灰质 GMC 梯度矩补偿 GMN 梯度矩置零 GMR 梯度矩重聚 GRE 梯度回波 H HPG-MRI 超极化气体磁共振成像术I IR 反转序列 IRSE 反转恢复自旋回波序列 K K-space K空间 L LMR 定域磁共振

M MRA 磁共振血管成像 MRCM 磁共振对比剂 MRI 磁共振成像 MRM 磁共振微成像 MRS 磁共振波谱学 MRSI 磁共振波谱成像 MRV 磁共振静脉造影 MT 磁化转移 MTC 磁化转移对比度 MAST 运动伪影抑制技术 MIP 最大密度投影法 MTT 平均转运时间 MESA 多回波采集 MPR 多平面重建 MP-RAGE 磁化准备的快速采集梯度回波序列MS-EPI 多次激发的EPI N NEX 激励次数 NMR 核磁共振 NMRS 核磁共振波谱学 NSA 信号(叠加)平均次数

MRI常用序列

MRI常用序列 扫描序列是指射频脉冲、梯度场和信号采集时刻等相关参数的设置及其在时序上的排列。MR成像主要依赖于四个因素:即质子密度、T1、T2、流空效应,应用不同的磁共振扫描序列可以得到反映这些因素不同侧重点的图像。目前最基本、最常用的脉冲序列为SE序列,其它还包括GRE序列、IR序列等。 1)自旋回波(spin echo,SE) 首先发射一个90。的射频脉冲后,间隔数至数十毫秒,发射1个180。的射频脉冲,再过数十毫秒后,测量回波信号。是MR成像的经典序列,特点是在90。脉冲激发后,利用180。复相脉冲,以剔除主磁场不均匀造成的横向磁化矢量衰减。SE序列的加权成像有三种:A、质子密度N(H)加权像:参数选择:长TR(1500ms~2500ms)短TE(15ms~30ms)。采集的回波信号幅度与主要质子密度有关,因而这种图像称为质子密度加权像。 B、T2加权像:参数选择:长TR(1500ms~2500ms)长TE(90ms~120ms)。采集的回波信号幅度主要反映各组织的T2弛豫差别,因而这种图像称为T2加权像。 C、T1加权像:参数选择:短TR(500ms左右)短TE(15ms~30ms)。采集的回波信号幅度主要反映各组织的T1驰豫差别,因而这种图像称为T1加权像。 特点:1、图像信噪比高,组织对比良好;2、序列结构简单,信号变化容易解释;3、对磁场不均匀敏感性低,没有明显磁化率伪影;4、采集时间长,容易产生运动伪影,难以进行动态增强。 2)快速自旋回波序列 在一次90。RF激发后利用多个(2个以上)180。复相脉冲产生多个自旋回波,每个回波的相位编码不同,填充K空间的不同位置。不同厂家的MRI仪上有不同的名称,安科公司和GE 公司称之为FSE(fast spin echo,FSE),西门子公司和飞利浦公司称之为TSE(turbo spin echo)。FSE以前也称弛豫增强快速采集(rapid acquisition with relaxation enhancement,RARE)。 特点:1、快速成像,FSE序列的采集时间随ETL的延长而成比例缩短;2、回波链中每个回波信号TE不同,FSE序列的T2对比较SE序列下降,ETL越长,对图像对比的影响越大;3、回波链中每个回波信号强度不同,在傅里叶转换中发生对位错误,导致图像模糊;4、脂肪组织信号强度增高;5、对磁场不均匀性不敏感;6、能量沉积增加。ETL越长,ES越小,越明显。 3)反转恢复序列 具有180。反转预脉冲的序列统称反转恢复类序列。短反转时间的反转恢复(short TI inversion recovery,STIR)主要用于T2WI的脂肪抑制;液体抑制反转恢复(fluid attenuated inversion recovery,FLAIR)可以有效的抑制自由水的信号。 特点:1、增加T1对比度;2、选择性抑制一定T1值的组织信号;3、信噪比相对SE序列降低;4、扫描时间长。 4)梯度回波序列(gradient echo pulse sequence,GRE) 是利用梯度回波的MR成像,梯度回波与自旋回波类似,自旋回波的产生是利用180。复相脉冲,而梯度回波的产生是在一次RF激发后,利用读出梯度场方向正反向切换产生一个梯度回波。 特点:1、小角度激发,加快成像速度;2、T2*弛豫,不能剔除主磁场不均匀因素;3、图像信噪比较低;4、对磁场不均匀性敏感;5、血流常呈高信号。 5)平面回波成像(echo planar imaging,EPI) 是目前MR成像最快的序列,MR信号也属梯度回波。与一般梯度回波不同的是在一次RF 激发后,利用读出梯度场的连续正反向切换,每次切换产生一个梯度回波,因而有回波链的

磁共振的原理

磁共振的原理 固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。 利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。

磁共振基本原理 磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω =ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。这一现象即为磁共振。 磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g为朗德因子, 为玻尔磁子,e和me为电子的电荷和质量。外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。如果等于塞曼能级裂距,啚ω=gμBB=啚

MRI常用扫描序列

MRI常用扫描序列 扫描序列 是指射频脉冲、梯度场和信号采集时刻等相关参数的设置及其在时序上的排列。MR成像主要依赖于四个因素:即质子密度、T1、T2、流空效应,应用不同的磁共振扫描序列可以得到反映这些因素不同侧重点的图像。目前最基本、最常用的脉冲序列为SE序列,其它还包括GRE序列、IR序列等。 1)自旋回波(spin echo,SE) 首先发射一个90。的射频脉冲后,间隔数至数十毫秒,发射1个180。的射频脉冲,再过数十毫秒后,测量回波信号。是MR成像的经典序列,特点是在90。脉冲激发后,利用180。复相脉冲,以剔除主磁场不均匀造成的横向磁化矢量衰减。SE序列的加权成像有三种: A、质子密度N(H)加权像:参数选择:长TR(1500ms~2500ms)短TE(15ms~30ms)。采集的回波信号幅度与主要质子密度有关,

因而这种图像称为质子密度加权像。 B、T2加权像:参数选择:长TR(1500ms~2500ms)长TE(90ms~120ms)。采集的回波信号幅度主要反映各组织的T2弛豫差别,因而这种图像称为T2加权像。 C、T1加权像:参数选择:短TR(500ms左右)短TE(15ms~30ms)。采集的回波信号幅度主要反映各组织的T1驰豫差别,因而这种图像称为T1加权像。 特点:1、图像信噪比高,组织对比良好;2、序列结构简单,信号变化容易解释;3、对磁场不均匀敏感性低,没有明显磁化率伪影;4、采集时间长,容易产生运动伪影,难以进行动态增强。 2)快速自旋回波序列 在一次90。RF激发后利用多个(2个以上)180。复相脉冲产生多个自旋回波,每个回波的相位编码不同,填充K空间的不同位置。不同厂家的MR I仪上有不同的名称,安科公司和GE公司称之为

核磁共振的基本原理

理工学院工学三部生医L081班冯俊卿08L0804125 核磁共振成像原理及其发展 核磁共振(Nuclear Magnetic Resonance即NMR)是处于静磁场中的原子核在另一交变电磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。并不是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。 核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 科学原理 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。 根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同: 质量数和质子数均为偶数的原子核,自旋量子数为0 ,即I=0,如12C,16O,32S等,这类原子核没有自旋现象,称为非磁性核。质量数为奇数的原子核,自旋量子数为半整数,如1H,19F,13C等,其自旋量子数不为0,称为磁性核。质量数为偶数,质子数为奇数的原子核,自旋量子数为整数,这样的核也是磁性核。但迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P ,由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。 原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。

核磁共振基本原理

核磁共振基本原理 一、原子核的磁矩 核磁共振研究的对象是具有磁矩的原子核。原子核是由中子与质子组成。质子与中子数为偶数的核,其自旋量子数I=0,没有自旋现象。质子与中子数其中之一为奇数I≠0(质子数与中子数都为奇数的I=半整数),具有自旋现象,例如 I≠0的核有自旋运动,并且核带有一定的正电荷。这些电荷也围绕着自旋轴旋转,从而产生循环电流,循环电流就会产生磁场。因此凡是I≠0的原子核都会产生磁矩。I=1/2的原子核,类似于电荷均匀分布在表面的球体。而I=1或I等于1/2整数倍的原子核,电荷分布不是球形对称的,一般用原子核的电四极矩来度量原子核中电荷分布离开球形对称的程度。 二、核磁共振 根据量子力学理论,磁性核(I≠0)在外加磁场(B0)中的自旋取向不是任意的,而是量子化的,共有(2I+1)种取向。可由磁量子数m 表示。m=1,I=-1,...(-I+1)、-I。如下图所示:

核的自旋角动量(P)在Z轴上的投影P z也只能取不连续的数值。 (3.3) 与P z相应的核磁矩在Z轴上的投影为μz, (3.4) 磁矩与磁场相互相用能为E,E=-μz B0 (3.5) (3.6) 由量子力学的选律可知,只有△m=±1的跃迀才是允许跃迁。所以相邻两能级间的能量差为: (3.7) (3.7)式表明,△E与外加磁场B0的强度有关,△E随B0场强的增

大而增大(见图3.2) 在B0中,自旋核绕其自旋轴(与磁矩μ方向一致)旋转,而自旋轴既与B0场保持一夹角θ又绕B0场进动,称Larmor进动(图3.3),类似于陀螺在重力场中的进动。核的进动频率由(3.8)式决定。 (3.8 ) 若在与B0垂直的方向上加一个交变场B1(称射频场),其频率为 v1。当v1=v2时,自旋核会收射频的能量,由低能态跃迀到高能态(核自旋发生倒转),这种现象称为核磁共振吸收。由3.7式及△E=hv得: (3.9) 同一种核,y为一常数,B0场强度增大,其共振频率v也增大。对于1H,当B =1.4TG时,v=60MHZ;当B0=2.3TG时,v=100MHz(1TG=104高 斯,1MHz=106赫兹) B0相同,不同的自旋核因y值不同,其共振频率亦不同。如 B0=2.3TG 时,1H(100MHz),19F(94MHz),31P(40.5MHz),13C(25MHz) 三、化学位移 核磁共振谱线的各谱线的数目及各谱线出现的位置,取决于被测原子核周围的化学环境,即决定于样品的结构与性质。因此研究谱线的数

核磁共振原理

核磁共振仪的其发展与应用 1 简介: 目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。 1.1 连续波核磁共振仪 连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(如图一)。磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz 以上,最高可达500~600MHz。频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波。检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 核磁共振波谱仪的分辨率多用频率表示其定义是在仪器磁场下激发氢原子所需的电磁波频率。如一台磁场强度为9.4T的超导核磁中,氢原子的激发频率为400MHz,则该仪器为“400兆”的仪器。频率高的仪器,分辨率好,灵敏度高,图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 图一、核磁共振仪组成 1.2 脉冲傅里叶(PFT)变换 20世纪70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究

得以迅速开展。脉冲变换傅里叶核磁共振波谱仪(pulse Fourier transform-NMR)与连续波仪器不同,它增设了脉冲程序控制器和数据采集处理系统,利用一个强而短(1~50μs)的脉冲将所有待测核同时激发,在脉冲终止时及时打开接收系统,采集自由感应衰减信号(FID),待被激发的核通过弛豫过程返回平衡态时再进行下一个脉冲的激发。得到的FID 信号是时域函数,是若干频率的信号的叠加,在计算机中经过傅里叶变换转变为频域函数才能被人们识别。PFT-NMR在测试时常进行多次采样,而后将所得的总FID信号进行傅里叶变换,以提高灵敏度和信噪比(进行n次累加,信噪比提高n^0.5倍)。PFT-NMR灵敏度很高,可以用于低丰度核,测试时间短(扫一次一到几秒),还可以测定核的弛豫时间,使得利用核磁共振测定反应动态成为现实 2、基本原理 2、1核磁共振现象 核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况。原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。 μ=γP 式中,P是角动量矩,γ是磁旋比,它是自旋核的磁矩和角动量矩之间的比值,因此是各种核的特征常数。当自旋核(spin nuclear)处于磁感应强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相像,称为拉莫尔进动(larmor process)。自旋核进动的角速度ω0与外磁场感应强度B0成正比,比例常数即为磁旋比(magnetogyric ratio)γ。式中ν0是进动频率。 ω0=2πν0=γB0 原子核在无外磁场中的运动情况如下图,微观磁矩在外磁场中的取向是量子化的(方向量子化),自旋量子数为I的原子核在外磁场作用下只可能有2I+ l个取向,每一个取向都可以用一个自旋磁盘子数m来表示,m与I之间的关系是:m=I,I-1,I-2…-I 原子核的每一种取向都代表了核在该磁场中的一种能量状态,I值为1/2的核在外磁场作用下只有两种取向,各相当于m=1/2 和m=-1/2,这两种状态之间的能量差ΔE值为 ΔE=γh B0/2π一个核要从低能态跃迁到高能态,必须吸收ΔE的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振。当频率为ν射的射频照射自旋体系时,由于该射频的能量E射=hν射,因此核磁共振要求的条件为hν射=ΔE(即2πν射=ω射=

相关主题
文本预览
相关文档 最新文档